Matrix: TSOPF/TSOPF_RS_b39_c7

Description: transient optimal power flow, Reduced-Space. Guangchao Geng, Zhejiang Univ

TSOPF/TSOPF_RS_b39_c7 graph TSOPF/TSOPF_RS_b39_c7 graph
(bipartite graph drawing) (graph drawing of A+A')

TSOPF/TSOPF_RS_b39_c7 dmperm of TSOPF/TSOPF_RS_b39_c7
scc of TSOPF/TSOPF_RS_b39_c7

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: TSOPF
  • Click here for a description of the TSOPF group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 403 KB. Use UFget(2242) or UFget('TSOPF/TSOPF_RS_b39_c7') in MATLAB.
  • download in Matrix Market format, file size: 734 KB.
  • download in Rutherford/Boeing format, file size: 469 KB.

    Matrix properties
    number of rows14,098
    number of columns14,098
    structural full rank?yes
    structural rank14,098
    # of blocks from dmperm711
    # strongly connected comp.711
    explicit zero entries0
    nonzero pattern symmetry 6%
    numeric value symmetry 0%
    Cholesky candidate?no
    positive definite?no

    authorG. Geng
    editorT. Davis
    kindpower network problem
    2D/3D problem?no

    Additional fieldssize and type
    bsparse 14098-by-19


    Transient stability-constrained optimal power flow (TSOPF) problems from     
    Guangchao Geng, Institute of Power System, College of Electrical Engineering,
    Zhejiang University, Hangzhou, 310027, China.  (genggc AT gmail DOT com).    
    Matrices in the  Full-Space (FS) group are symmetric indefinite, and are best
    solved with MA57.  Matrices in the the Reduced-Space (RS) group are best     
    solved with KLU, which for these matrices can be 10 times faster than UMFPACK
    or SuperLU.                                                                  

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD521,509
    Cholesky flop count2.0e+07
    nnz(L+U), no partial pivoting, with AMD1,028,920
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD75,240
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD542,410

    SVD-based statistics:
    null space dimension0
    full numerical rank?yes

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;

    TSOPF/TSOPF_RS_b39_c7 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.