Matrix: Pajek/geom
Description: Pajek network: collaboration in computational geometry
![]() |
| (undirected graph drawing) |
![]() |
![]() |
| Matrix properties | |
| number of rows | 7,343 |
| number of columns | 7,343 |
| nonzeros | 23,796 |
| # strongly connected comp. | 2,060 |
| explicit zero entries | 0 |
| nonzero pattern symmetry | symmetric |
| numeric value symmetry | symmetric |
| type | integer |
| structure | symmetric |
| Cholesky candidate? | no |
| positive definite? | no |
| author | Edelsbrunner, van Leeuwen, Guibas, Stolfi |
| editor | V. Batagelj |
| date | 2002 |
| kind | undirected weighted graph |
| 2D/3D problem? | no |
| Additional fields | size and type |
| nodename | full 7343-by-31 |
Notes:
------------------------------------------------------------------------------ Pajek network converted to sparse adjacency matrix for inclusion in UF sparse matrix collection, Tim Davis. For Pajek datasets, See V. Batagelj & A. Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/data/. ------------------------------------------------------------------------------
| SVD-based statistics: | |
| norm(A) | 204.482 |
| min(svd(A)) | 2.49988e-57 |
| cond(A) | 8.17967e+58 |
| rank(A) | 5,499 |
| null space dimension | 1,844 |
| full numerical rank? | no |
| singular value gap | 6.33794e+09 |
| singular values (MAT file): | click here |
| SVD method used: | s = svd (full (A)) ; |
| status: | ok |

For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.