Matrix: Pajek/Erdos992
Description: Pajek network: Erdos collaboration network
![]() |
| (undirected graph drawing) |
![]() |
![]() |
| Matrix properties | |
| number of rows | 6,100 |
| number of columns | 6,100 |
| nonzeros | 15,030 |
| # strongly connected comp. | 1,023 |
| explicit zero entries | 0 |
| nonzero pattern symmetry | symmetric |
| numeric value symmetry | symmetric |
| type | binary |
| structure | symmetric |
| Cholesky candidate? | no |
| positive definite? | no |
| author | J. Grossman, P. Iain, R. Castro |
| editor | V. Batagelj |
| date | 2006 |
| kind | undirected graph |
| 2D/3D problem? | no |
| Additional fields | size and type |
| cluster | full 6100-by-1 |
| nodename | full 6100-by-40 |
Notes:
------------------------------------------------------------------------------ Pajek network converted to sparse adjacency matrix for inclusion in UF sparse matrix collection, Tim Davis. For Pajek datasets, See V. Batagelj & A. Mrvar, http://vlado.fmf.uni-lj.si/pub/networks/data/. ------------------------------------------------------------------------------
| SVD-based statistics: | |
| norm(A) | 15.1312 |
| min(svd(A)) | 3.88025e-80 |
| cond(A) | 3.89955e+80 |
| rank(A) | 922 |
| null space dimension | 5,178 |
| full numerical rank? | no |
| singular value gap | 1.28486e+13 |
| singular values (MAT file): | click here |
| SVD method used: | s = svd (full (A)) ; |
| status: | ok |

For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.