Matrix: JGD_SL6/D_11

Description: Differentials of the Voronoi complex of perfect forms

JGD_SL6/D_11 graph
(bipartite graph drawing)

JGD_SL6/D_11 dmperm of JGD_SL6/D_11
scc of JGD_SL6/D_11

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_SL6
  • Click here for a description of the JGD_SL6 group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 7 KB. Use UFget(2193) or UFget('JGD_SL6/D_11') in MATLAB.
  • download in Matrix Market format, file size: 9 KB.
  • download in Rutherford/Boeing format, file size: 7 KB.

    Matrix properties
    number of rows169
    number of columns461
    structural full rank?no
    structural rank168
    # of blocks from dmperm3
    # strongly connected comp.6
    explicit zero entries0
    nonzero pattern symmetry 0%
    numeric value symmetry 0%
    Cholesky candidate?no
    positive definite?no

    authorP. Elbaz-Vincent
    editorJ.-G. Dumas
    kindcombinatorial problem
    2D/3D problem?no


    Differentials of the Voronoi complex of perfect forms                    
    from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.         
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,                        
    D_5  Smith Invariants = [ 1:92 3:2 18:1 ]                                
    D_6  Smith Invariants = [ 1:338 2:1 ]                                    
    D_7  Smith Invariants = [ 1:621 2:5 6:1 60:2 ]                           
    D_8  Smith Invariants = [ 1:637 3:3 12:1 ]                               
    D_9  Smith Invariants = [ 1:491 ]                                        
    D_10 Smith Invariants = [ 1:318 2:3 4:2 ]                                
    D_11 Smith Invariants = [ 1:129 2:6 6:1 ]                                
    Filename in JGD collection: SL6/D_11.sms                                 

    Ordering statistics:result
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD39,547
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD9,582

    SVD-based statistics:
    null space dimension33
    full numerical rank?no
    singular value gap1.04282e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;

    JGD_SL6/D_11 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.