Matrix: JGD_Homology/n3c6-b1

Description: Simplicial complexes from Homology from Volkmar Welker.

JGD_Homology/n3c6-b1 graph JGD_Homology/n3c6-b1 graph
(bipartite graph drawing) (graph drawing of A+A')

JGD_Homology/n3c6-b1 dmperm of JGD_Homology/n3c6-b1
scc of JGD_Homology/n3c6-b1

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Homology
  • Click here for a description of the JGD_Homology group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 1 KB. Use UFget(2097) or UFget('JGD_Homology/n3c6-b1') in MATLAB.
  • download in Matrix Market format, file size: 1 KB.
  • download in Rutherford/Boeing format, file size: 1 KB.

    Matrix properties
    number of rows105
    number of columns105
    structural full rank?no
    structural rank15
    # of blocks from dmperm2
    # strongly connected comp.96
    explicit zero entries0
    nonzero pattern symmetry 9%
    numeric value symmetry 8%
    Cholesky candidate?no
    positive definite?no

    authorV. Welker
    editorJ.-G. Dumas
    kindcombinatorial problem
    2D/3D problem?no


    Simplicial complexes from Homology from Volkmar Welker.     
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,   
    Filename in JGD collection: Homology/n3c6.b1.105x15.sms     

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD389
    Cholesky flop count2.0e+03
    nnz(L+U), no partial pivoting, with AMD673
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD1,105
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD210

    SVD-based statistics:
    null space dimension91
    full numerical rank?no
    singular value gap1.71456e+16

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;

    JGD_Homology/n3c6-b1 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.