Matrix: JGD_Homology/ch5-5-b3

Description: Simplicial complexes from Homology from Volkmar Welker.

JGD_Homology/ch5-5-b3 graph JGD_Homology/ch5-5-b3 graph
(bipartite graph drawing) (graph drawing of A+A')


  • Home page of the UF Sparse Matrix Collection
  • Matrix group: JGD_Homology
  • Click here for a description of the JGD_Homology group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 6 KB. Use UFget(2015) or UFget('JGD_Homology/ch5-5-b3') in MATLAB.
  • download in Matrix Market format, file size: 8 KB.
  • download in Rutherford/Boeing format, file size: 7 KB.

    Matrix properties
    number of rows600
    number of columns600
    structural full rank?yes
    structural rank600
    # of blocks from dmperm1
    # strongly connected comp.1
    explicit zero entries0
    nonzero pattern symmetry 2%
    numeric value symmetry 1%
    Cholesky candidate?no
    positive definite?no

    authorV. Welker
    editorJ.-G. Dumas
    kindcombinatorial problem
    2D/3D problem?no


    Simplicial complexes from Homology from Volkmar Welker.     
    From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,   
    Filename in JGD collection: Homology/ch5-5.b3.600x600.sms   

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD42,083
    Cholesky flop count6.5e+06
    nnz(L+U), no partial pivoting, with AMD83,566
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD37,492
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD60,846

    SVD-based statistics:
    null space dimension176
    full numerical rank?no
    singular value gap2.99813e+14

    singular values (MAT file):click here
    SVD method used:s = svd (full (A)) ;

    JGD_Homology/ch5-5-b3 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.