Matrix: JGD_GL6/GL6_D_6
Description: Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
![]() |
| (bipartite graph drawing) |
![]() |
![]() |
![]() |
| Matrix properties | |
| number of rows | 469 |
| number of columns | 201 |
| nonzeros | 2,526 |
| structural full rank? | no |
| structural rank | 199 |
| # of blocks from dmperm | 2 |
| # strongly connected comp. | 7 |
| explicit zero entries | 0 |
| nonzero pattern symmetry | 0% |
| numeric value symmetry | 0% |
| type | integer |
| structure | rectangular |
| Cholesky candidate? | no |
| positive definite? | no |
| author | P. Elbaz-Vincent |
| editor | J.-G. Dumas |
| date | 2008 |
| kind | combinatorial problem |
| 2D/3D problem? | no |
Notes:
Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.
From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html
http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev
D_6 Smith Invariants = [ 1:156 ]
D_7 Smith Invariants = [ 1:307 2:3 60:2 ]
D_8 Smith Invariants = [ 1:320 2:1 6:2 12:1 ]
D_9 Smith Invariants = [ 1:217 2:3 ]
D_10 Smith Invariants = [ 1:120 ]
Filename in JGD collection: GL6/D_6.sms
| Ordering statistics: | result |
| nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD | 47,044 |
| nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD | 13,773 |
| SVD-based statistics: | |
| norm(A) | 65.9917 |
| min(svd(A)) | 0 |
| cond(A) | Inf |
| rank(A) | 156 |
| sprank(A)-rank(A) | 43 |
| null space dimension | 45 |
| full numerical rank? | no |
| singular value gap | 3.78705e+14 |
| singular values (MAT file): | click here |
| SVD method used: | s = svd (full (A)) ; |
| status: | ok |

For a description of the statistics displayed above, click here.
Maintained by Tim Davis, last updated 12-Mar-2014.
Matrix pictures by cspy, a MATLAB function in the CSparse package.
Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.