Matrix: Hollinger/g7jac080

Description: Jacobian from CEPII's 'G7marmotte' OLG model, oldstack 080

Hollinger/g7jac080 graph Hollinger/g7jac080 graph
(bipartite graph drawing) (graph drawing of A+A')

Hollinger/g7jac080 dmperm of Hollinger/g7jac080
scc of Hollinger/g7jac080

  • Home page of the UF Sparse Matrix Collection
  • Matrix group: Hollinger
  • Click here for a description of the Hollinger group.
  • Click here for a list of all matrices
  • Click here for a list of all matrix groups
  • download as a MATLAB mat-file, file size: 2 MB. Use UFget(554) or UFget('Hollinger/g7jac080') in MATLAB.
  • download in Matrix Market format, file size: 3 MB.
  • download in Rutherford/Boeing format, file size: 2 MB.

    Matrix properties
    number of rows23,670
    number of columns23,670
    structural full rank?yes
    structural rank23,670
    # of blocks from dmperm1,157
    # strongly connected comp.597
    explicit zero entries34,328
    nonzero pattern symmetry 4%
    numeric value symmetry 0%
    Cholesky candidate?no
    positive definite?no

    authorP. Hollinger
    editorT. Davis
    kindeconomic problem
    2D/3D problem?no

    Ordering statistics:result
    nnz(chol(P*(A+A'+s*I)*P')) with AMD5,878,121
    Cholesky flop count6.6e+09
    nnz(L+U), no partial pivoting, with AMD11,732,572
    nnz(V) for QR, upper bound nnz(L) for LU, with COLAMD6,615,944
    nnz(R) for QR, upper bound nnz(U) for LU, with COLAMD12,041,530

    Note that all matrix statistics (except nonzero pattern symmetry) exclude the 34328 explicit zero entries.

    SVD-based statistics:
    null space dimension6,043
    full numerical rank?no
    singular value gap1.01854

    singular values (MAT file):click here
    SVD method used:s = svd (full (A))

    Hollinger/g7jac080 svd

    For a description of the statistics displayed above, click here.

    Maintained by Tim Davis, last updated 12-Mar-2014.
    Matrix pictures by cspy, a MATLAB function in the CSparse package.
    Matrix graphs by Yifan Hu, AT&T Labs Visualization Group.