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Abstract— Protocols such as TCP require packets to be ac-
cepted, i.e., delivered to the receiving application, in the order
they are transmitted at the sender. Packets that arrive at
the receiving host may be mis-ordered for reasons such as
retransmission of dropped packets or multi-path routing. In
order to deliver the arrived packets in sequence, the receiver’s
transport layer is responsible to temporarily buffer out-of-order
packets and to resequence them as more packets arrive. In this
paper, we analyze a model where the mis-ordering is caused by
multi-path routing. Packets are generated according to a Poisson
process. Then, they arrive at a disordering network modelled by
two parallel M/M/1 queues, and are routed to each of the queues
according to an independent Bernoulli process. A resequencing
buffer follows the disordering network. In such a model, the
packet resequencing delay is known. However, the size of the
resequencing queue is unknown. We derive the probability for
the large deviation of the queue size.

I. INTRODUCTION

Reliable transport protocols such as TCP requires packets
to be accepted, i.e., delivered to the receiving application, in
the order they are transmitted at the sender. Packets that arrive
at the receiving host may be mis-ordered for several reasons,
for instance, retransmission of dropped packets, or multi-path
routing. The transport layer at the receiver is responsible to
temporarily buffer out-of-order packets and to resequence all
packets, as a result, delaying some of them. In our earlier paper
[12], we model packet mis-ordering by adding an IID random
propagation delay to each packet and derive simple expres-
sions for the required buffer size and the resequencing delay.
We demonstrate that these two quantities can be significant
and show that the resequencing problem becomes worse as the
link speed increases. In this paper, we analyze a model with
correlated delays where the mis-ordering is caused by multi-
path routing. Packets are generated according to a Poisson
process. Then, they arrive at a disordering network modelled
by two parallel M/M/1 queues, and are routed to each of
the queues according to an independent Bernoulli process. A
resequencing buffer follows the disordering network. In such
a model, the packet resequencing delay is known. However,
the size of the resequencing queue is unknown. We derive the
probability for the large deviation of the queue size.

This paper is organized as follows. In Section II, we describe
the resequencing model and give the main theorem of the

paper. We also discuss the relation of this study with previous
studies. Sections III, IV and V constitute the bulk of the
paper, which is a proof for the main theorem. We show some
implications of the theorem in the concluding section, VI.

II. THE MODEL AND THE MAIN RESULT

The detailed network and resequencing model is shown
in Figure 1. Sequentially-numbered customers (or packets)
arrive at the disordering network (DN) according to a Poisson
process with rate λ. Each customer either enters queue 1
with probability p, or enters queue 2 with probability 1 − p,
independent of other customers. Then, the arrival processes to
the queues in the DN are independent Poisson processes with
rate λi, i ∈ {1, 2}, where

λ1 = pλ λ2 = (1 − p)λ

λ

Queue 1

Queue 2

Disordering Network

Resequencing Queue1 − p

p
µ1

µ2

Fig. 1. Network and resequencing model

The service times for the customers at queue i are IID
exponentially distributed with mean 1/µi, i = 1, 2. Hence,
we have two M/M/1 queues in the DN. Due to the multi-
path routing, customers may be disordered after the DN. They
are resequenced at the resequencing queue (RSQ) that follows
the DN. Customers immediately leave the RSQ after they are
properly resequenced. That is, customer j leaves the RSQ as
soon as all customers i < j have arrived at the RSQ. Note that
the server of the RSQ is assumed to have infinite processing
capacity. We are interested in computing the stationary queue
size of the RSQ. Let qr be the stationary size of the RSQ. The



main result of this paper is the following theorem. Without the
loss of generality, let us assume µ1 − λ1 ≤ µ2 − λ2. Then,

Theorem 1:

limn→∞
1
n

log P{qr(t) ≥ n}
= max{log λ2

λ2+µ1−λ1
, log 4λ1µ1

(λ1+µ1+µ2−λ2)2
} (1)

The studies that deal with packet mis-ordering due to
multi-path routing (also including parallel processing or load
balancing, etc.) typically analyze an open queueing network, of
which the model in Figure 1 is a special case. In some models,
a FIFO queue follows the resequencing buffer. The DN is
also modelled as a queueing system, whose type typically
distinguishes different studies. For instance, the DN is an
M/M/∞ queue in [9], an M/GI/∞ queue in [6], a GI/GI/∞
queue in [1], an M/M/2 queue in [11], an M/M/K queue
in [13], an M/H2/K queue in [3], an M/M/2 queue with a
threshold-type server assignment policy in [7], two parallel
M/M/1 queues with additional fixed propagation delays in [5],
and K parallel M/GI/1 queues in [8]. A survey is given in
[2]. Most of these studies are concerned mostly with finding
the distribution and/or mean of the resequencing delay or
end-to-end delay. Several also give results about the number
of packets in the resequencing queue. Among the previous
studies reviewed here, the most relevant one is [8], where the
DN consists of K parallel M/GI/1 queues. In [8], Jean-Marie
and Gun derive the distribution of the resequencing delay. In
contrast, our results are (i) for the resequencing queue size,
(ii) of the large-deviation type, and (iii) for the 2-M/M/1-queue
case.

In the remaining part of the paper, we will prove Theroem 1.
The proof is a formalization of the following line of thoughts.
Suppose the oldest customer in the DN is C∗ and is being ser-
viced at queue 1 in the DN. We wish to find out the probability
that the RSQ has at least n customers. The customers in the
RSQ must all arrived at the DN after C∗, and all went through
queue 2 in the DN during the time C∗ spent in queue 1, which
is (roughly) an exponential random variable, independent of
the queue 2 process. Therefore, the probability that the RSQ
has at least n customers is the same as the probability that at
least n customers arrive at queue 2, an M/M/1 queue, and
at least n of those customers depart the queue during an
exponential random time T that is independent of the queue
2 process. There is also the symmetric case where the oldest
customer is in queue 2 and all customers in the RSQ come
from queue 1. In Section III, we set up the two different cases
and write the quantities to be computed. In Section IV, we
compute the key quantity, P{M(T ) ≥ n}, where the function
M(t) is the number of those customers who arrived at the
M/M/1 queue on the interval [0, t] and who departed by time
t, and T is an exponential random variable independent of
the M/M/1 queue. In Section V, we combine results of the
previous two sections and give the proof for Theroem 1.

III. THE SETUP

At time t, let V (t) be the event {the DN is empty at time
t}. If V̄ (t), let C∗(t) be the oldest customer in the DN, let

W∗(t) be the time C∗(t) has spent in the DN, and let I∗(t) be
the queue in the DN which C∗(t) goes through. For n ≥ 0,
let

E(t, s, n) = {at least n customers arrived at the DN

on the interval (t − s, t], out of which

at least n have left the DN by t}

Let the size of the resequencing queue (RSQ) at time t be
qr(t), and let qi(t) be the size of queue i at time t, where
i = 1 or 2. Then, for n > 0,

P{qr(t) ≥ n} = P{V̄ (t) and E(t,W∗(t), n)} (2)

We explain the above equality in words. When the RSQ size
is greater than or equal to n, where n > 0, it must be waiting
for some customer still in the DN. In particular, the next
packet gap the RSQ is trying to fill is C∗(t). The customers
in the RSQ are exactly those who arrived at the DN later
than C∗(t), but who have left the DN by time t. We are
interested in computing limt→∞ P{qr(t) ≥ n}. Alternatively,
let us assume all relevant processes are stationary.

Let us extend the definition of W∗(t), W∗(t) = 0 if V (t).
Then, when n = 0,

P{qr(t) ≥ n} = 1

P{V̄ (t) and E(t,W∗(t), n)}
= P{E(t,W∗(t), n)|V̄ (t)}P{V̄ (t)} = P{V̄ (t)}

P{V (t) and E(t,W∗(t), n)}
= P{E(t,W∗(t), n)|V (t)}P{V (t)} = P{V (t)}

Hence, for n = 0,

P{qr(t) ≥ n} = P{E(t,W∗(t), n)} (3)

For n > 0, (3) is still true because

P{V (t) and E(t,W∗(t), n)}
= P{E(t, 0, n)|V (t)}P{V (t)} = 0

Note that, because customers are served on first-come-first-
serve basis in each of the queues, the oldest customers in the
non-empty DN must be in service at one of the queues. If
queue i is not empty, i ∈ {0, 1}, let Wi(t) be the duration
for which the customer in service at queue i has stayed in the
queue. If queue i is empty, let Wi(t) = 0. By using a simple
reversibility argument, Wi(t) has the same distribution as the
waiting time in queue i (not including the service time) by an
arbitrary customer. This distribution and the density are (page
213 in [10]), for x ≥ 0,

FWi
(x) = P{Wi(t) ≤ x} = 1 − ρie

−(µi−λi)x (4)

fWi
(x) = (1 − ρi)δ(x) + λi(1 − ρi)e

−(µi−λi)x (5)

where ρi = λi/µi, and δ(x) is the Dirac delta function,
representing the point probability mass at x = 0. We will
occasionally omit the dependency on t for brevity.



Let M̂i(t, s) be the number of those customers who arrived
at queue i on the interval (t− s, t] and who departed by time
t. Note that for n > 0,

P{M̂1(t,W∗(t)) ≥ n | W1(t) = W2(t) = 0}
= P{M̂1(t, 0) ≥ n | W1(t) = W2(t) = 0} = 0

Also,

P{W1(t) = W2(t) 6= 0} = 0

Therefore,

P{M̂1(t,W∗(t)) ≥ n | W1(t) = W2(t)}
·P{W1(t) = W2(t)} = 0

Then, for n > 0,

P{qr(t) ≥ n}
= P{E(t,W∗(t), n)}
= P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

·P{W1(t) > W2(t)}
+P{M̂1(t,W∗(t)) ≥ n | W2(t) > W1(t)}
·P{W2(t) > W1(t)}

This can be explained as follows. If W1(t) > W2(t), then the
oldest customer, C∗(t), in the DN must be in service at queue
1. Hence, W1(t) = W∗(t). All customers who came to the DN
after C∗(t) and who have left the DN by time t must have
been routed to the RSQ via queue 2.

For n > 0,

P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W1(t) = s,W1(t) > W2(t)}

·fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W1(t) = s,W2(t) < s}

·fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}

·fW1|W1>W2
(s)ds (6)

In the above, fW1|W1>W2
(s) denote the conditional density of

W1(t) given {W1(t) > W2(t)}. In the last step, we used the
fact that the two queue processes are independent. Note that,
in the integral, the (conditional) probability mass at s = 0
does not contribute to the probability on the left hand side.

We will compute the conditional density by starting with
the joint probability. For x ≥ 0,

P{W1 > x,W1 > W2}

= ρ1e
−(µ1−λ1)x − ρ1ρ2

µ1 − λ1

µ1 − λ1 + µ2 − λ2

·e−(µ1−λ1+µ2−λ2)x (7)

From (7), we have

P{W1 > W2} = P{W1 > 0,W1 > W2}

= ρ1 − ρ1ρ2
µ1 − λ1

µ1 − λ1 + µ2 − λ2
(8)

From (7) and (8), we get the conditional density for x ≥ 0.

fW1|W1>W2
(x)

= K1e
−(µ1−λ1)x − K2e

−(µ1−λ1+µ2−λ2)x (9)

where K1 and K2 are constants, given by,

K1 =
µ1 − λ1

1 − ρ2
µ1−λ1

µ1−λ1+µ2−λ2

K2 =
ρ2(µ1 − λ1)

1 − ρ2
µ1−λ1

µ1−λ1+µ2−λ2

Note that the second term in (9) decays much faster than the
first term. If we ignore it, the conditional probability density
decays exponentially.

Next, we will bound (6) from above and below.
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) < s}fW1|W1>W2
(s)

P{W2(t) < s}ds

≤
∫ ∞

0+

P{M̂2(t, s) ≥ n} fW1|W1>W2
(s)

P{W2(t) = 0}ds

≤ 1

1 − ρ2

∫ ∞

0+

P{M̂2(t, s) ≥ n}fW1|W1>W2
(s)ds (10)

For a lower bound,
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) < s}fW1|W1>W2
(s)

P{W2(t) < s}ds

≥
∫ ∞

0+

P{M̂2(t, s) ≥ n,W2(t) = 0}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M̂2(t, s) ≥ n, q2(t) = 0}

·fW1|W1>W2
(s)ds (11)

In the next section, we will prepare to compute the upper
and lower bound.

IV. COMPUTATION OF P{M(T ) ≥ n}
In this section, we consider a stationary M/M/1 queue whose

arrival rate is λ1 and whose departure rate is µ1. We assume
λ1 < µ1 so that the queue is stable. Let T be an exponential
random variable independent of the queue process with mean
1/(µ2−λ2), where λ2 < µ2. Let M(t) be the number of those
customers who arrived on the interval [0, t] and who departed
by time t. We wish to compute P{M(T ) ≥ n} for large n.
The main result of this section is Theorem 2.



Theorem 2:

lim
n→∞

1

n
log P{M(T ) ≥ n}

=

{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

(12)

Lemma 3:

lim
n→∞

1

n
log P{M(T ) ≥ n, q(T ) = 0}

≥
{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

(13)

Proof: This is an intermediate step in the proof of lower
bound for Theorem 2.

In the next two subsections, we will prove the Theorem
2. We will frequently use the following fact. For a > 0 and
integer k ≥ 0,

Fact 4:
∫ ∞

0

e−attk

k!
dt = (

1

a
)k+1 (14)

A. Case of µ1 − λ1 ≥ µ2 − λ2

1) The Upper Bound:

P{M(T ) ≥ n}
≤ P{the number of customer arrivals on the

interval [0, T ] is at least n} (15)

=
∞
∑

k=n

∫ ∞

0

e−λ1t(λ1t)
k

k!
(µ2 − λ2)e

−(µ2−λ2)tdt

=

∞
∑

k=n

(µ2 − λ2)

∫ ∞

0

e−(λ1+µ2−λ2)t(λ1t)
k

k!
dt

=

∞
∑

k=n

µ2 − λ2

λ1 + µ2 − λ2
(

λ1

λ1 + µ2 − λ2
)k

=
µ2 − λ2

λ1 + µ2 − λ2

( λ1

λ1+µ2−λ2
)n

1 − λ1

λ1+µ2−λ2

= (
λ1

λ1 + µ2 − λ2
)n

2) The Lower Bound: Suppose, as n gets large,

∫ ∞

0

e−λ1t(λ1t)
n

n!
(µ2 − λ2)e

−(µ2−λ2)tdt

≈ max
t≥0

e−λ1t(λ1t)
n

n!
(µ2 − λ2)e

−(µ2−λ2)t

in some sense. It can be shown easily that the integrand is
maximized at,

to = n/(λ1 + µ2 − λ2) (16)

This information will be useful in the proof for the lower
bound.

Let q(t) be the queue size at time t. Let D(t) be the number
of departures on the interval [0, t].

P{M(t) = k}

=
∞
∑

m=0

P{M(t) = k|q(0) = m}P{q(0) = m}

≥ P{M(t) = k|q(0) = 0}P{q(0) = 0}
= (1 − ρ1)P{D(t) = k|q(0) = 0}
≥ (1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0} (17)

From [4] (page 199),

P{D(t) = k, q(t) = 0|q(0) = 0}

=
∞
∑

i=0

(1 + i)ρk
1

k!(k + i + 1)!
(µ1t)

2k+ie−(λ1+µ1)t

=
(λ1t)

ke−λ1t

k!

∞
∑

i=0

1 + i

(k + i + 1)!
(µ1t)

k+ie−µ1t

≥ 1

k + 1

(λ1t)
ke−λ1t

k!

∞
∑

i=0

1

(k + i)!
(µ1t)

k+ie−µ1t

=
1

k + 1

(λ1t)
ke−λ1t

k!
P{Y(µ1t) ≥ k} (18)

where Y(µ1t) is a Poisson random variable with mean µ1t.
Now, with the definition of to as in (16),

P{M(T ) ≥ n}
≥ P{M(T ) ≥ n, T ≥ to}
≥ P{M(to) ≥ n, T ≥ to}
= P{M(to) ≥ n}P{T ≥ to} (19)

=
∞
∑

k=n

P{M(to) = k}P{T ≥ to} (20)

The equality in (19) is because of independence between the
queue process and the random variable T . Then, by (20), (17)
and (18),

P{M(T ) ≥ n}

≥ (1 − ρ1)
∞
∑

k=n

1

k + 1

(λ1to)
ke−λ1to

k!

·P{Y(µ1to) ≥ k}e−(µ2−λ2)to

≥ (1 − ρ1)
1

n + 1

(λ1to)
ne−λ1to

n!

·P{Y(µ1to) ≥ n}e−(µ2−λ2)to (21)

We will show P{Y(µ1to) ≥ n} is greater than a constant as n
tends to infinity. By the definition of to and by the assumption
µ1 − λ1 ≥ µ2 − λ2,

µ1to =
µ1

λ1 + µ2 − λ2
n ≥ n

Let no = bµ1toc. Then, no ≥ n. Let X1, X2, ..., Xno
be IID.



Poisson random variables with mean 1. Then,

P{Y(µ1to) ≥ n} ≥ P{X1 + X2 + ... + Xno

no

≥ n

no

}

≥ P{X1 + X2 + ... + Xno

no

≥ 1}

= P{X1 + X2 + ... + Xno
− no√

no
√

no

≥ 0}

By the central limit theorem,

lim
no→∞

P{X1 + X2 + ... + Xno
− no√

no
√

no

≥ 0}

=

∫ ∞

0

1√
2π

e−
x
2

2 dx =
1

2

Therefore, for any ε > 0, there exists some integer N > 0
such that for all n > N ,

P{Y(µ1to) ≥ n} ≥ 1

2
− ε (22)

Continuing from (21), for all n > N ,

P{M(T ) ≥ n}

≥ (1 − ρ1)(
1

2
− ε)

1

n + 1

(λ1to)
ne−λ1to

n!
e−(µ2−λ2)to

By the Stirling’s approximation,

n! =
√

2πnnne−n(1 + O(1/n))

For n large enough,

n! ≤ 2
√

2πnnne−n

Therefore, for large enough n,

P{M(T ) ≥ n}

≥ 1

4
(1 − ρ1)(1 − 2ε)

1

n + 1
(

λ1

λ1 + µ2 − λ2
)n

·
nn exp(− λ1

λ1+µ2−λ2
n)

√
2πnnne−n

exp(− µ2 − λ2

λ1 + µ2 − λ2
n)

=
(1 − ρ1)(1 − 2ε)

4
√

2πn(n + 1)
(

λ1

λ1 + µ2 − λ2
)n (23)

B. Case of µ1 − λ1 < µ2 − λ2

1) The Lower Bound: By (17) and (18),

P{M(T ) ≥ n}

≥
∫ ∞

0

∞
∑

k=n

(1 − ρ1)P{D(t) = k, q(t) = 0|q(0) = 0}

·(µ2 − λ2)e
−(µ2−λ2)tdt

≥ (1 − ρ1)(µ2 − λ2)
1

n + 1

·
∫ ∞

0

(λ1t)
ne−λ1t

n!
P{Y(µ1t) = n}e−(µ2−λ2)tdt

= (1 − ρ1)(µ2 − λ2)
1

n + 1

·
∫ ∞

0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)tdt

= (1 − ρ1)(µ2 − λ2)
1

n + 1

(2n)!

n!n!
(λ1µ1)

n

·
∫ ∞

0

t2ne−(λ1+µ1+µ2−λ2)t

(2n)!
dt

= (1 − ρ1)
µ2 − λ2

λ1 + µ1 + µ2 − λ2

1

n + 1

(2n)!

n!n!

·(λ1µ1)
n 1

(λ1 + µ1 + µ2 − λ2)2n

By the Stirling’s approximation, for large enough n,

(2n)!

n!n!
=

√
4πn(2n)2ne−2n(1 + O(1/n))

(
√

2πn(n)ne−n(1 + O(1/n)))2
≥ C1√

n
4n

for some constant C1 > 0. Therefore,

P{M(T ) ≥ n}

≥ C1(1 − ρ1)
µ2 − λ2

λ1 + µ1 + µ2 − λ2

· 1√
n(n + 1)

(
4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n (24)

2) The Upper Bound: The computation for the upper bound
in the previous case does not work here. To see the reason,
consider the integral in the lower bound calculation. Suppose,
as n becomes large,

∫ ∞

0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)tdt

≈ max
t≥0

(λ1t)
ne−λ1t

n!

(µ1t)
ne−µ1t

n!
e−(µ2−λ2)t

It can be shown easily the above maximum is achieved at

to =
2n

λ1 + µ1 + µ2 − λ2
(25)

Note that when µ1 − λ1 < µ2 − λ2,

µ1t0 =
2µ1n

λ1 + µ1 + µ2 − λ2
< n

Therefore, {Y(µ1to) ≥ n} is a large deviation type of event
instead of an event with constant probability, as n becomes
large. It is not tight enough to bound P{M(t) ≥ n} from
above by only looking at the arrival processes, as was done in
(15).

P{M(t) ≥ n}
≤ P{at least n customers arrived on the interval

[0, t], and at least n customers are served on

the same interval}

≤
∞
∑

k=n

e−λ1t(λ1t)
k

k!
P{

n
∑

i=1

Xi ≤ t} (26)

where {X1, X2, ..., Xn} are IID service times. The sum
∑n

i=1 Xi has the Gamma distribution with density,

f(t) =
µ1e

−µ1t(µ1t)
n−1

(n − 1)!



Hence,

P{M(T ) ≥ n}

≤
∞
∑

k=n

∫ ∞

0

e−λ1t(λ1t)
k

k!
∫ t

0

µ1e
−µ1τ (µ1τ)n−1

(n − 1)!
dτ(µ2 − λ2)e

−(µ2−λ2)tdt

= µ1(µ2 − λ2)

∞
∑

k=n

∫ ∞

0

∫ ∞

τ

e−(λ1+µ2−λ2)t(λ1t)
k

k!
dt

·e
−µ1τ (µ1τ)n−1

(n − 1)!
dτ

Let t = τ + u. The above becomes,

P{M(T ) ≥ n}

≤ µ1(µ2 − λ2)

∞
∑

k=n

∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)(τ+u)(λ1(τ + u))k

k!
du

eµ1τ (µ1τ)n−1

(n − 1)!
dτ

= µ1(µ2 − λ2)

∞
∑

k=n

λk
1

∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)u
∑k

i=0
k!

i!(k−i)!u
iτk−i

k!
du

e−(λ1+µ1+µ2−λ2)τ (µ1τ)n−1

(n − 1)!
dτ

= µ1(µ2 − λ2)

∞
∑

k=n

λk
1

k
∑

i=0

1

(k − i)!
∫ ∞

0

∫ ∞

0

e−(λ1+µ2−λ2)uui

i!
du

e−(λ1+µ1+µ2−λ2)τ τk−i(µ1τ)n−1

(n − 1)!
dτ

= (µ2 − λ2)µ
n
1

∞
∑

k=n

λk
1

k
∑

i=0

1

(k − i)!

1

(λ1 + µ2 − λ2)i+1

∫ ∞

0

e−(λ1+µ1+µ2−λ2)τ τn−1+k−i

(n − 1)!
dτ

= (µ2 − λ2)µ
n
1

∞
∑

k=n

λk
1

k
∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!

1

(λ1 + µ2 − λ2)i+1

1

(λ1 + µ1 + µ2 − λ2)n+k−i

=
µ2 − λ2

λ1 + µ2 − λ2
(

µ1

λ1 + µ1 + µ2 − λ2
)n

∞
∑

k=n

(
λ1

λ1 + µ1 + µ2 − λ2
)k

·
k

∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!
(
λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2
)i (27)

For i = 0, 1, ..., k, define

a(k, i) =
(n − 1 + k − i)!

2k(k − i)!(n − 1)!

Let
β =

λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2

Note that for µ1 − λ1 < µ2 − λ2, β < 2.

a(k + 1, i)

a(k, i)
=

n + k − i

2(k + 1 − i)
=

1 + n−1
k+1−i

2

Then, for each fixed i ∈ {0, 1, ..., k},

a(k + 1, i)

a(k, i)

{

≥ 1 if k ≤ n + i − 2
< 1 if k > n + i − 2

Therefore, a(k, i) is maximized at k = n + i− 1 for each i 1.
Then,

a(n + i − 1, i) =
(2n − 2)!

(n − 1)!(n − 1)!2n+i−1

Then, the sum in (27) index by i becomes,

k
∑

i=0

(n − 1 + k − i)!

(k − i)!(n − 1)!
(
λ1 + µ1 + µ2 − λ2

λ1 + µ2 − λ2
)i

= 2k

k
∑

i=0

a(k, i)βi

≤ 2k−n

k
∑

i=0

2(2n − 2)!

(n − 1)!(n − 1)!
(
β

2
)i

≤ 2k−n 2(2n − 2)!

(n − 1)!(n − 1)!

∞
∑

i=0

(
β

2
)i

= 2k−n 2(2n − 2)!

(n − 1)!(n − 1)!

2

2 − β

The infinite sum above is finite because β/2 < 1. Going back
to (27), we get,

P{M(T ) ≥ n}

≤ 4(µ2 − λ2)

(2 − β)(λ1 + µ2 − λ2)

(2n − 2)!

2n(n − 1)!(n − 1)!

(
µ1

λ1 + µ1 + µ2 − λ2
)n

∞
∑

k=n

(
2λ1

λ1 + µ1 + µ2 − λ2
)k

=
4(µ2 − λ2)

µ2 − λ2 − (µ1 − λ1)

(2n − 2)!

2n(n − 1)!(n − 1)!

(
µ1

λ1 + µ1 + µ2 − λ2
)n

·( 2λ1

λ1 + µ1 + µ2 − λ2
)n/(1 − 2λ1

λ1 + µ1 + µ2 − λ2
)

The above sum is finite because, for µ1 − λ1 < µ2 − λ2 and
λ1 < µ1, we have

2λ1

λ1 + µ1 + µ2 − λ2
< 1 (28)

1We assume that n is large enough when necessary. In this case, n ≥ 1.



Next, Stirling’s approximation yields,

(2n)!

n!n!
=

√
4πn(2n)2ne−2n(1 + O(1/n))

(
√

2πn(n)ne−n(1 + O(1/n)))2

≤ C2√
n

4n (29)

for some constant C2 > 0. Hence, for some other constant
C4 > 0, we have,

P{M(T ) ≥ n} ≤ C4√
n

(
4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
)n

V. PROOF OF THEOREM 1

We will combine the results of the previous two sections
and prove the main theorem. We wish to show that, without
the loss of generality, when µ1 − λ1 ≤ µ2 − λ2,

limn→∞
1
n

log P{qr(t) ≥ n}
= max{log λ2

λ2+µ1−λ1
, log 4λ1µ1

(λ1+µ1+µ2−λ2)2
} (30)

Proof: Start with (11).
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

≥
∫ ∞

0+

P{M̂2(t, s) ≥ n, q2(t) = 0}fW1|W1>W2
(s)ds

=

∫ ∞

0+

P{M2(s) ≥ n, q2(s) = 0}fW1|W1>W2
(s)ds

= K1

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}e−(µ1−λ1)sds

−K2

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}

e−(µ1−λ1+µ2−λ2)sds (31)

where K1 > 0 and K2 > 0 are some constants. In the above,
we used the fact the conditional density of W1 given {W1 >
W2} takes the form as in (9). By Lemma 13 with suitable
substitution of variables, since

µ2 − λ2 < µ1 − λ1 + µ2 − λ2

the second term in (31) gives

lim
n→∞

1

n
log

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}

·e−(µ1−λ1+µ2−λ2)sds

≥ log
4λ2µ2

(λ2 + µ2 + µ1 − λ1 + µ2 − λ2)2

≥ log
4λ2µ2

(2µ2 + µ1 − λ1)2
(32)

The first term in (31) gives

lim
n→∞

1

n
log

∫ ∞

0

P{M2(s) ≥ n, q2(s) = 0}

·e−(µ1−λ1)sds

≥
{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

(33)

Now,

λ2

λ2 + µ1 − λ1

=
4λ2µ2

4λ2µ2 + 4µ1µ2 − 4λ1µ2

4λ2µ2

(2µ2 + µ1 − λ1)2

=
4λ2µ2

4µ2
2 + 4µ1µ2 − 4λ1µ2 + (µ1 − λ1)2

Hence,
λ2

λ2 + µ1 − λ1
≥ 4λ2µ2

(2µ2 + µ1 − λ1)2

Also, because λ2 < µ2,

4λ2µ2

(λ2 + µ2 + µ1 − λ1)2
≥ 4λ2µ2

(2µ2 + µ1 − λ1)2

Therefore, we can ignore the contribution from (32) when
considering the lower bound. Then, (33) gives the correct
lower bound. Using similarly argument and by Theorem 2,
we get

limn→∞
1
n

log
∫ ∞

0+ P{M̂2(t, s) ≥ n}fW1|W1>W2
(s)ds

=

{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

(34)

Note that

P{M̂2(t, s) ≥ n}
= P{M̂2(t, s) ≥ n | W2(t) < s}P{ W2(t) < s}

+P{M̂2(t, s) ≥ n | W2(t) ≥ s}P{ W2(t) ≥ s}
≥ P{M̂2(t, s) ≥ n | W2(t) < s}

Hence, (34) is an upper bound of
∫ ∞

0+

P{M̂2(t, s) ≥ n | W2(t) < s}fW1|W1>W2
(s)ds

Since the upper and lower bound agree with each other, by
(6), we get

limn→∞
1
n

log P{M̂2(t,W∗(t)) ≥ n | W1(t) > W2(t)}

=

{

log λ2

λ2+µ1−λ1
if µ2 − λ2 ≥ µ1 − λ1

log 4λ2µ2

(λ2+µ2+µ1−λ1)2
if µ2 − λ2 < µ1 − λ1

(35)

To determine P{qr(t) ≥ n} for large n, we also need to
compute P{M̂1(t,W∗(t)) ≥ n | W2(t) > W1(t)} (See (6)).
By symmetry,

limn→∞
1
n

log P{M̂1(t,W∗(t)) ≥ n | W2(t) > W1(t)}

=

{

log λ1

λ1+µ2−λ2
if µ1 − λ1 ≥ µ2 − λ2

log 4λ1µ1

(λ1+µ1+µ2−λ2)2
if µ1 − λ1 < µ2 − λ2

(36)

When µ1 − λ1 ≤ µ2 − λ2, combining (35), (36) and (6), we
get (30).



VI. CONCLUSION

Some remarks about Theorem 1 are as follows. When, λ1 =
λ2 and µ1 = µ2,

lim
n→∞

1

n
log P{qr(t) ≥ n} = log ρ1

When µ1 − λ1 = µ2 − λ2,

lim
n→∞

1

n
log P{qr(t) ≥ n} = max{log ρ1, log ρ2}

Like all GI/GI/1 queues, the resequencing queue size de-
pends on the arrival and departure rates through a dimension-
less parameter. This implies that the resequencing queue size
does not change with the link speed of the network, assuming
the traffic characteristics are not altered by the technology
change. This is in contrast with the models from our previous
paper [12], where the improvement of network speed worsens
the packet resequencing problem in terms of both the queue
size and the delay. In the current model, there can be many
ways to produce the large resequencing queue size, which, in
general, depends on parameters for both queues in the DN.
An interesting observation is that it can be large even when
the queue sizes in the DN are both small. This occurs when
the two disordering queues are “mismatched”. For example,
suppose µi = 2λi for i = 1 and 2. Hence, ρ1 = ρ2 = 1/2,
and for i = 1 and 2,

lim
n→∞

1

n
log P{qi(t) ≥ n} = log

1

2

Suppose λ2 = 10λ1. Then,

lim
n→∞

1

n
log P{qr(t) ≥ n} = log

10

11

In Figure 2, we show the simulation results for P{qr = n}
and compare them with the analytical results in Theorem 1.
In Figure 2 (a), the parameters are chosen so that

λ2

λ2 + µ1 − λ1
=

10

11
= 0.9091

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
=

8

169
= 0.0473

In Figure 2 (b), the parameters are chosen so that

λ2

λ2 + µ1 − λ1
=

1

21
= 0.0476

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
=

800

1681
= 0.4759

Loosely speaking, Theorem 1 says, for µ1 − λ1 ≤ µ2 − λ2

and for large n,

P{qr(t) ≥ n} = e−δn+o(n) (37)

where o(n) is a function that grows more slowly than n, i.e.,
o(n)/n → 0 as n tends to infinity. The large deviation analysis
of this paper is able to give an expression for the parameter
δ,

δ = −max{log λ2

λ2 + µ1 − λ1
, log

4λ1µ1

(λ1 + µ1 + µ2 − λ2)2
}
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Fig. 2. P{qr
= n}: Simulation results. (a) λ1 = 1, µ1 = 2, λ2 = 10,

µ2 = 20; (b) λ1 = 10, µ1 = 20, λ2 = 1, µ2 = 12

but cannot capture the nature of o(n). In each plot of Figure
2, the gap between the two curves shows the “imprecision”
of the large deviation result. That is, it shows how much the
large deviation result misses the actual tail probability of the
queue size.

From the modelling point of view, compared with those in
[12], the model in this paper allows non-IID packet delays in
the DN and it specifically models packet disordering caused
by routing on different paths. The analysis is generalizable to
more complex arrival and service processes for the queues in
the DN, even non-IID arrival processes. One weakness of this
model is that it does not allow situations that yield heavy-tailed
distributions for the RSQ.
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