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Abstract—A distinct trend has emerged that the Internet is
used to transport data on a more and more massive scale. Ca-
pacity shortage in the backbone networks has become a genuine
possibility, which will be more serious with fiber-based access.
The problem addressed in this paper is how to conduct massive
content distribution efficiently in the future network environment
where the capacity limitation can equally be at the core or the
edge. We propose a novel technique as a main content transport
mechanism to achieve efficient network resource utilization. The
technique uses multiple trees for distributing different file pieces,
which at the heart is a version of swarming. In this paper, we
formulate an optimization problem for determining an optimal
set of distribution trees as well as the rate of distribution on
each tree under bandwidth limitation at arbitrary places in the
network. The optimal solution can be found by a distributed
algorithm. The results of the paper not only provide stand-alone
solutions to the massive content distribution problem, but should
also help the understanding of existing distribution techniques
such as BitTorrent or FastReplica.

Index Terms—Content Distribution, Peer-to-Peer Networks,
Multicast, Optimization, Bandwidth Allocation

I. I NTRODUCTION

One of the distinct trends is that the Internet is being used
to transfer content on a more and more massive scale. This has
made capacity shortage in the backbone networks a genuine
possibility, which will become more serious with fiber-based
access1. As an example, with its early adoption of FTTH, by
2005, Japan already saw 62% of its backbone network traffic
being from residential users to users, which was consumed by
content downloading or P2P file sharing; the fiber users were
responsible for 86% of the inbound traffic; and the traffic was
rapidly increasing, by 45% that year [3].

The problem addressed in this paper is how to conduct
massive content distribution efficiently in the future network
environment where the capacity limitation can equally be atthe
core or the edge. The proposed solution is a class of improved
swarming techniques, known asoptimal swarming. Swarming
was originally invented by the user and research community
as a technique for large-scale peer-to-peer file sharing, e.g.,
[4]–[10]. In a swarming session, the file to be distributed is
broken into many chunks at the original source, which are then
spread out across the peers in a fashion that the sets of chunks
at different peers are substantially different. Subsequently, the
peers can exchange the chunks with each other to speed up
the distribution process. Swarming enables content providers
with poor capacity to reach a large number of audience, allows
rapid deployment of a large distribution system with minimum
infrastructure support.

1At the present, telecom companies are aggressively rolling out fiber-to-the
home (FTTH) or its variants. Verizon is building a nationwideFTTH network
in the US, to be completed by 2010. Japan had 5.6 million FTTH subscribers
by June, 2006, is on an exponential upward ramp to have 30 million by 2010
[1]. The speed of the access fiber is currently at 100 Mbps or lower, heading
to 1 Gbps by 2020 and is likely to reach 10 Gbps thereafter [2].

In this paper, swarming is viewed not just as a casual
technique for end-user file-sharing applications. Instead, we
envision it as an advanced technique to be employed by critical
content distribution applications or other network services in
infrastructure networks, such as content distribution networks
or ISP networks. We will see that the benefits of swarming rest
upon the fact it is an advanced form of networking mechanism,
more advanced and more powerful than all previous distribu-
tion schemes, including IP or application-level multicast(e.g.
[11]), network cache systems and existing content distribution
networks (e.g., Akamai [12]). We will argue that swarming can
be thought as distributing content onmultiple multicast trees.
When done properly, it provides the most efficient utilization
of the network capacity, a remedy for backbone congestion,
or gives the fastest distribution.

The earlier description of swarming does not specify the
precise manner at which the chunks are initially spread out or
the manner at which the peers exchange them later. In fact,
many different ways of swarming have been proposed, such as
BitTorrent [4], FastReplica [5], [6], Bullet [7], [8], Chunkcast
[9], CoBlitz [10], and Julia [13]. The most popular one
among them is the BitTorrent protocol. The optimal swarming
technique proposed in the paper can be contrasted with the
existing swarming techniques. First, the optimal swarming
is specifically designed for infrastructure networks and its
performance objective is network-centric, i.e., how to mini-
mize the worst-case network congestion.2 In contrast, being
originally designed for end-system file-sharing applications,
most existing swarming systems have user-centric performance
objectives, such as how to complete individual download fast.
Second, in existing systems, the bandwidth bottleneck is often
assumed to be at the access links, rather than throughout the
network. The optimal swarming will be able to automatically
adapt to capacity constraint anywhere in the network. Third,
most existing systems use heuristic techniques that are not
understood well enough regarding how well they work or
how much improvement remains possible. On the other hand,
the optimal swarming is designed systematically based on the
optimization theory and algorithms. As a result, it achieves
the best performance with respect to the our chosen objective.
The optimization framework not only supplies sophisticated
algorithms, which are very difficult to re-invent, it also gives
performance guarantees about the algorithms, for instance, in
terms of algorithm convergence speed.

For illustration of the main ideas in this paper, consider the
toy example in Fig. 1. The numbers associated with the links

2It will be shown later that minimizing the worse-case link congestion is
equivalent to minimizing the distribution time of a file, or maximizing the
distribution throughput. The equivalence is in the sense that one can recover
the solution with respect to one objective from the solutionunder another
objective. In the subsequent discussion, we will use these three objectives
interchangeably.
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are their capacities. Suppose a large file is split into many
chunks at source node 1. We wish to find the fastest way
to distribute all chunks to receivers 2 and 3. We impose no
restriction on how peers can help each other in the distribution
process. Let us focus on a fixed chunk and consider how it
can be distributed to the receivers. With some thoughts, it can
be argued that, when the delay is not modeled, the path should
be a tree rooted at the source and covering both receivers. All
possible distribution trees are shown in Fig. 2. The question
becomes how to assign the chunks to different distribution
trees so that the distribution time is minimized, subject tothe
link capacity constraint. For this simple example, it is easy to
see that distributing the chunks in 1:2 ratio on the second and
third tree, while leaving the first unused, is optimal.
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Fig. 1. Node 1 sends the file to node 2 and 3.
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Fig. 2. All possible distribution trees for the example in Fig. 1.

The ideas contained in the toy example are also given in
[14]. That work focuses on how to compute the maximum
throughput, which leads to the fastest distribution. Our con-
tribution in this paper is on developing distributed algorithms
to identify and use the optimal distribution trees, and at the
same time, allocate correct bandwidth on the selected trees.

The paper is organized as follows. The models and problem
formulations are given in Section II. The distributed algorithm
is given in Section III. In Section IV, we discuss practical
issues in applying our algorithm to realistic settings, such as
scalability and coping with network dynamics and churn. In
Section V, we evaluate the performance of our algorithm,
including a comparison with BitTorrent and FastReplica. In
Section VI, we discuss additional related work. The conclusion
is drawn in Section VII.

II. PROBLEM DESCRIPTION

We will start with a formulation for optimal content dis-
tribution on a generic network. It turns out the problem
is difficult on an arbitrary network. However, for overlay
content distribution, the problem is far easier. We will give
formulations for two possible scenarios of overlay distribution.

A. Optimal Multicast Tree Packing

Let the network be represented byG = (V,E), whereV
is the set of nodes andE is the set of links. The capacity
associated with each linke ∈ E is ce. The utilization of link
e, a measure of link congestion, is denoted byµe. We define a

multicast session as a group of nodes (members) exchanging
the same file. In a session, some members own some distinct
chunks of a large file (The case of overlapping content at
different nodes requires a minor extension, which will be
discussed in Section IV-A.) and we call those memberssources
of the session. A reasonable assumption about a session is that
all members in the session are interested in the file, and at the
end of file distribution, every member in the session will have
a complete copy of the file.

Let M be the set of all multicast sessions. For each session
m ∈ M , let V (m) ⊆ V represent the set of members in session
m, and letS(m) ⊆ V (m) be the set of sources in sessionm.
For each sources ∈ S(m), let L(m)

s be the total size of the file
chunks at sources for sessionm. Let the set of all possible
multicast trees spanning all members in the session rooted at
sources ∈ S(m) be denoted byT (m)

s . A multicast tree may
contain nodes not in the session, in which case the tree is
called aSteiner tree. In the case where all nodes on the tree
belong to the session, the multicast tree is called aspanning
tree, meaning it spans the multicast session (rather than the
whole networkV ). For theith tree t

(m)
s,i ∈ T

(m)
s , where the

order of indexing is arbitrary, denotez(m)
s,i to be the sending

rate on treet(m)
s,i from the roots.

A straightforward objective is to minimize the overall down-
loading time for all multicast sessions, which is to minimize
the worst downloading time associated with any sources in
any sessionm. With some thought, we see that no difference
is made in terms of the achievable downloading time if we
assume that all sources in all sessions finish their distribution
at the same time. We can then minimize this common duration
t. Let the total rate on a linke ∈ E be denoted byxe. It is
equal to the sum of all the rates on all the trees passing through
link e, across all sessions and all sources. That is,

xe =
∑

m∈M

∑

s∈S(m)

∑

i:e∈t
(m)
s,i

z
(m)
s,i .

The optimization problem is as follows.

min t (1)

s.t. t

|T (m)
s |
∑

i=1

z
(m)
s,i = L(m)

s , ∀s ∈ S(m), ∀m ∈ M (2)

xe ≤ ce, ∀e ∈ E (3)

z
(m)
s,i ≥ 0, ∀i = 1, · · · , |T (m)

s |,∀s ∈ S(m),∀m ∈ M.

Condition (2) says that, if one looks at all the multicast trees
rooted at a sources for a sessionm, the sum of the distribution
rates on all these trees, multiplied by the distribution time,
should be equal to the total size of all the file chunks stored
at sources for sessionm. This means that every bit of the file
stored ats must travel along exactly one tree (and hence, be
received by each receiver exactly once). A moment of thinking
reveals that nothing is gained by sending the bit on more than
one tree. Condition (3) is the link capacity constraint. At each
link e, the flow rate on the link should be no greater than the
link capacity,ce.

It turns out the above problem is equivalent to a minimizing-
congestion problem. This is immediate if we definey

(m)
s,i =

tz
(m)
s,i and make the substitution of variables. But, we will

do this a little differently for ease of interpretation. Let
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z
(m)
s =

∑|T (m)
s |

i=1 z
(m)
s,i be the total sending rate at a source

nodes of sessionm. Select a set of constants{r(m)
s }, each

being proportional toL(m)
s with the same constant proportional

factor. Eachr(m)
s is understood as a rate. Consider a feasible

solution {z
(m)
s,i } and t. By (2), z

(m)
s is proportional toL

(m)
s ,

the total size of the chunks ats for sessionm. Then,z(m)
s =

γr
(m)
s , for some constantγ > 0. Next, defineµ = 1/γ. We

then make the substitution of variables byt = µL
(m)
s /r

(m)
s ,

and redefinez(m)
s,i to beµz

(m)
s,i . Now, xe is the aggregate link

flow rate of linke under the redefined tree rates. Then, we get
the following minimizing-congestion formulation.

min µ (4)

s.t.
|T (m)

s |
∑

i=1

z
(m)
s,i = r(m)

s , ∀s ∈ S(m), ∀m ∈ M

xe ≤ µce, ∀e ∈ E

z
(m)
s,i ≥ 0, ∀i = 1, · · · , |T (m)

s |,∀s ∈ S(m),∀m ∈ M.

In the above formulation,r(m)
s can be understood as the

demanded rate, andµ is the maximum link utilization, which
also measures the worst link congestion. The problem is to
minimize the worst link congestion subject to the fulfill-
ment of all demanded rates. Let(~z∗, ~x∗, ~µ∗) be an optimal
solution of the congestion minimization problem (4). Then,
(~z∗/||~µ∗||∞, ~x∗/||~µ∗||∞) is optimal to the original problem
(1). In the minimization problem (4),~z and~x are redefined as
the vector of tree rates and the vector of aggregate link rates
under the fixed demand rate vector~r, respectively.

Thus, we have two equivalent views of optimal multicast
tree packing. In the first, the objective is to minimize the over-
all distribution time (or maximize the distribution throughput)
while satisfying the link capacity constraint. In the second, the
objective is to best balance the network load while satisfying
the rate demand for all sources and all sessions.

Another minor reformulation will be helpful later. Letµe

stand for the utilization of linke, and let~µ denote the vector
of µe over all links. Let ||~µ||∞ denote the maximum norm,
i.e., ||~µ||∞ = maxe∈E µe. The above minimizing-congestion
formulation is equivalent to the following.

min ||~µ||∞ (5)

s.t.
|T (m)

s |
∑

i=1

z
(m)
s,i = r(m)

s , ∀s ∈ S(m), ∀m ∈ M (6)

xe = µece, ∀e ∈ E (7)

z
(m)
s,i ≥ 0, ∀i = 1, · · · , |T (m)

s |,∀s ∈ S(m),∀m ∈ M. (8)

The optimization problem proposed so far is equivalent to
the problem of packing Steiner trees [15], [16], which is com-
putationally intractable. Fortunately, for content distribution
on overlay networks, the problem becomes simpler. For each
session, an overlay network is constructed over exactly those
nodes (members) in the session. For any nodei and nodej in
the overlay network, there is a directed overlay link from node
i to nodej. This overlay link is in fact the path in the underlay
network from nodei to nodej, which contains a known set of
physical links. Hence, the overlay network is directed and fully
connected. Given an underlay network and|M | distribution
sessions,|M | such overlay networks are constructed. However,

at this point, the bandwidth of each overlay link has not been
determined. We will consider two possibilities about how to
determine the overlay bandwidth in Section II-B and II-C.

Since the overlay network of each session consists of exactly
those nodes in the session, any Steiner tree that covers all
nodes of the session is in fact a spanning tree. We will show
later that our optimization algorithm involves a minimum-
cost spanning tree subproblem in each iteration. Should some
Steiner node exist, it would have involved a minimum-cost
Steiner tree problem. The former is far more tractable than the
latter NP-hard problem. One should be reminded that, although
the computation for the overlay network case is far easier, the
achievable performance is sub-optimal since the overlay edges
are determined by the fixed underlay routing.

B. Fixed Overlay Link Bandwidth

In this case, the bandwidth of each overlay link is a
fixed constant3 determined by a bandwidth allocation scheme
external to our problem. For instance, the bandwidth may be
determined by the end-to-end TCP control, or by bandwidth
allocation algorithms that enforce other allocation policies
such as the max-min fairness [17]. We assume the overlay
nodes know about the bandwidth on each overlay link. For
instance, in the case of TCP, the overlay link bandwidth
can be measured. When the overlay link bandwidth is fixed,
different distribution sessions become decoupled. We then
have |M | totally independent overlay networks. The original
optimization problem becomes separated to|M | identical
but independent optimization problems. The solution to this
problem will require running algorithms only at the overlay
nodes, making deployment easy.

We illustrate this by focusing on one of the overlay net-
works, which corresponds to one session. LetĜ = (V̂ , Ê)
represent the overlay network. For all other notations, since
there is no danger of confusing them with earlier definitions,
we will re-define them. The bandwidth associated with each
overlay link e ∈ Ê is ce, which is allocated already and is a
constant. The utilization of overlay linke is denoted byµe.
AssumeS ⊆ V̂ is the set of sources. LetTs represent the
set of all possible (overlay) multicast trees rooted at source s
spanning all overlay nodes. Letts,i ∈ Ts be theith (overlay)
multicast tree andzs,i be the associated sending rate on tree
ts,i. The rate on the overlay linke ∈ Ê is

xe =
∑

s∈S

∑

i:e∈ts,i

zs,i.

The optimization problem is now

min ||~µ||∞ (9)

s.t.
|Ts|
∑

i=1

zs,i = rs, ∀s ∈ S

xe = µece, ∀e ∈ Ê

zs,i ≥ 0, ∀i = 1, · · · , |Ts|, ∀s ∈ S.

3By fixed overlay bandwidth, we do not mean the bandwidth may not vary
over time. We simply mean that the overlay link bandwidth is not determined
by our algorithm and is known at the time of running the algorithm.
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C. Optimally Allocated Overlay Bandwidth

In this subsection, we consider an alternative scenario with
better performance. Instead of relying on TCP to allocate
the overlay bandwidth, leading to the partition of the overall
network into multiple independent overlay networks, we will
incorporate overlay bandwidth allocation into the optimization
problem. Note that different sessions are coupled togetherby
the sharing of the underlay links. The solution to this problem
will require cooperation from the physical links. But, it is
possible to modify the problem slightly and run the algorithm
at only bottleneck links, such as the inter-ISP slow links.

Let Ĝ(m) = (V̂ (m), Ê(m)) represent theoverlay networkfor
each sessionm. For each overlay link̂e ∈ Ê(m), the notation
e ∈ ê for some underlay linke ∈ E means that linke is
on overlay link ê, which is itself an underlay path. For each
sessionm, let T

(m)
s be the set of all possible spanning trees

on Ĝ(m) rooted at sources , andt
(m)
s,i be theith tree inT

(m)
s .

Then, the total rate on a physical linke ∈ E, xe, is given by

xe =
∑

m∈M

∑

s∈S(m)

∑

ê∈Ê(m):e∈ê

∑

i:ê∈t
(m)
s,i

z
(m)
s,i .

The optimization problem is exactly written as in (5)-(8).

III. D ISTRIBUTED ALGORITHM: DIAGONALLY SCALED
GRADIENT PROJECTION

Note thatmin ||~µ||∞ has the same solution asmin ||~µ +
~κ||∞, where~κ = (κ, . . . , κ) for some small constantκ ≥ 0.
We replace the objective function||~µ||∞ by ||~µ + ~κ||∞ in (5)
and keep the same constraints.~κ serves as a regularization
term. The strictly positive vector~κ (i.e., κ > 0) guarantees
that our gradient projection algorithm has a global geometric
convergence rate; if~κ = ~0, we can only claim that our
algorithm converges to one optimal solution globally.

A. Fixed Overlay Link Bandwidth

The goal of minimizing||~µ+~κ||∞ is to balance the network
load. The same objective can be achieved by minimizing
∑

e∈Ê f̂e(xe), where f̂e is some convex increasing function
on xe ≥ 0. Such an objective function discourages large
link rate. One such function is theq norm ||~µ + ~κ||q =
(
∑

e∈Ê(µe +κ)q)1/q. In fact, ||~µ+~κ||∞ can be approximated
by ||~µ + ~κ||q: as q → ∞, ||~µ + ~κ||q → ||~µ + ~κ||∞. We will
assumeq ≥ 2 throughout. Sincemin ||~µ + ~κ||q is equivalent
to min ||~µ+~κ||qq, after a substitution ofµe with xe/ce, we get
an approximation of problem (9) as

min
∑

e∈Ê

(
xe

ce
+ κ)q (10)

s.t.
|Ts|
∑

i=1

zs,i = rs, ∀s ∈ S (11)

zs,i ≥ 0, ∀i = 1, · · · , |Ts|, ∀s ∈ S. (12)

For optimization problems with the simplex constraint (11),
the optimality condition is especially simple [18]. It has been
shown in [19] and [20] that there exists a special gradient
projection algorithm. For our case, the gradient projection
algorithm can also be easily extended to an equally simple
scaled version. The latter overcomes the issue that our problem
may be ill-conditioned, and hence, drastically improves the

algorithm’s convergence time. Our computational experiences
have shown that the scaled gradient algorithm is much faster
than the unscaled one or the subgradient algorithm. The latter
is often used in network optimization problems.

Another difficulty is the large number of possible spanning
trees, and hence, the large number of variables. Fortunately,
the algorithm does not maintain all possible spanning trees.
The following steps take place for every source at the overlay
network level. The algorithm starts out with one or few span-
ning trees. In each iteration, a cost is assigned to each (overlay)
link to reflect the current link congestion. Then, a minimum-
cost spanning tree can be computed. The algorithm shifts
an appropriate amount of traffic (rate) from each currently
maintained spanning tree to the minimum-cost tree. The new
minimum-cost tree enters the current collection of spanning
trees. Some previous spanning tree may leave the collection
if its distribution rate is reduced to zero.

We next illustrate some details. LetT =
⋃

s∈S Ts be the
collection of all multicast trees rooted at any source. Letz be
the vector(zs,i) wheres ∈ S, i = 1, . . . , |Ts|, with an arbitrary
indexing order for the sources. In problem (10), let the feasible
set defined by (11) and (12) be denoted byZ.

For each overlay linke ∈ Ê, recall thatxe is the aggregate
flow rate it carries. Let~x be the vector(xe)e∈Ê . Let H

denote the|Ê| × |T | link-tree incidence matrix associated
with the trees inT (i.e. [H]et = 1 if link e lies on tree
t; and [H]et = 0 otherwise). Obviously,x = Hz. Now
definef̂e(xe) = (xe/ce + κ)q and f̂(x) =

∑

e∈Ê f̂e(xe). The
objective function, denoted byf(z), is given by

f(z) = f̂(Hz) =
∑

e∈Ê

f̂e(xe) =
∑

e∈Ê

(
xe

ce
+ κ)q,

and (10) can be written as

min f(z) = f̂(Hz) (13)

s.t. z ∈ Z.

The derivative of the objective functionf(z) with respect to
zs,i is given by

∂f(z)

∂zs,i
=

∑

e∈ts,i

∂f̂(xe)

∂xe
=

∑

e∈ts,i

q

ce
(
xe

ce
+ κ)q−1.

Note that ∂f̂(xe)
∂xe

is the so-called first-derivative link cost of
link e [18], [20]. It reflects the current congestion level at link
e. ∂f(z)

∂zs,i
is the first-derivative cost of the treets,i, which is

equal to the sum of the first-derivative costs of the links on
the tree. It reflects the current congestion level of the treets,i.
The first-derivative tree cost is an important quantity. We will
see later that our algorithm is to shift flows from trees with
higher costs to the minimum-cost tree. The second derivative
of f(z) will be used in the scaling of the algorithm. With
respect tozs,i andzs,j , it is given by

∂2f(z)

∂zs,i∂zs,j
=

∑

e∈ts,i∩ts,j

q(q − 1)

c2
e

(
xe

ce
+ κ)q−2. (14)

For eachs ∈ S, let is be the index of a minimum-cost tree
rooted ats (i.e., with s as the source). That is,

is(z) = argmin{i:ts,i∈Ts}
{
∂f(z)

∂zs,i
}.
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If there are multiple minimum-cost trees, we choose an
arbitrary one. Since the feasible setZ is a convex set and the
objective function is a convex function, we can characterize
an optimal solutionz∗ to the problem (10) by the following
optimality condition.

∑

s∈S

∑

i:ts,i∈Ts

∂f(z∗)

∂zs,i
(zs,i − z∗s,i) ≥ 0, ∀z ∈ Z. (15)

This optimality condition can be equivalently written as, for
any sources ∈ S,

z∗s,i > 0 only if [
∂f(z∗)

∂zs,j
≥

∂f(z∗)

∂zs,i
,∀ts,j ∈ Ts].

That is, for every source, only those trees with the minimum
first-derivative cost carry positive amount of flow. This intu-
itively suggests that, in the algorithm, we should shift flowto
the minimum-cost trees from other trees.

It turns out this is exactly what the gradient projection
algorithm does. We will develop the gradient projection algo-
rithm following the proposal in [20] to solve the problem (10).
But we will add diagonal scaling to speed up the algorithm’s
convergence time.

The equality constraint in (11) implies that, for each source,
one of the variables depends completely on the rest of the
variables. We can eliminate this variable and have a problem
with fewer variables. To be concrete, at a feasible vectorz,
let’s eliminate the variablezs,is

for eachs ∈ S. Define a new
objective functiong(ẑ) on R

|T |−|S|, where ẑ consists of the
remainingzs,i’s after zs,is

is eliminated for eachs. Without
loss of generality, suppose, for each sources, is corresponds
to the tree with the largest index, i.e.,is = |Ts|. Also suppose
the sources are index from 1 to|S|. Then,

ẑ =(z1,1, . . . , z1,|T1|−1; z2,1, . . . , z2,|T2|−1;

. . . ; z|S|,1, . . . , z|S|,|T|S|
).

We will call the domain ofg whereẑ lies the reduced domain.
We let

g(ẑ) =f(z1,1, . . . , z1,|T1|−1, r1 −

|T1|−1
∑

j=1

z1,j ;

z2,1, . . . , z2,|T2|−1, r2 −

|T2|−1
∑

j=1

z2,j ; . . . ;

z|S|,1, . . . , z|S|,|T|S|−1|, r|S| −

|T|S||−1
∑

j=1

z|S|,j).

The optimization problem in (10)- (12) is equivalent to

min
ẑ≥0

g(ẑ).

This problem can be solved by the gradient projection algo-
rithm.

ẑ(k + 1) = [ẑ(k) − δ(k)∇g(ẑ(k))]+, (16)

whereδ(k) is a positive step size and[ ]+ is the projection
operator on̂z ≥ 0. In this case,[y]+ just means that, ifyi is a
component ofy, we takemax(yi, 0) as the corresponding com-
ponent of the vector[y]+. The key is to compute∇g(ẑ(k)).

Let is(k) be a short hand foris(z(k)). It is easy to show, for
s ∈ S and i 6= is(k),

∂g(ẑ(k))

∂zs,i
=

∂f(z(k))

∂zs,i
−

∂f(z(k))

∂zs,is(k)
.

The first derivatives are given in (14).
The algorithm in (16) is actually the constrained steepest-

descent algorithm. It is well-known that the steepest-descent
algorithm can be slow if the optimization problem is ill-
conditioned. It happens that the minimizing-congestion type
of network problems is often ill-conditioned. In our case, the
problem becomes more ill-conditioned when the parameter
q in the q norm becomes larger. An ultimate solution to
an ill-conditioned problem is Newton’s algorithm. However,
Newton’s algorithm is generally very complex since it requires
the inverse of the Hessian matrix of the objective function.For
large problems, this computation is generally impractical. We
will next develop the diagonally scaled gradient algorithm,
which is a much simpler alternative and a good approxima-
tion of Newton’s algorithm. The scaled gradient projection
algorithm can be written as

ẑ(k + 1) = [ẑ(k) − δ(k)D(k)∇g(ẑ(k))]+,

whereD(k) is a positive definite matrix. For diagonal scaling,
D(k) is chosen to be a diagonal matrix.

D(k) = diag[(ds,i(k))−1]s∈S,i6=is(k).

That is, the diagonal entry corresponding tozs,i(k) is chosen
to be(ds,i(k))−1. For eachs ∈ S and i 6= is(k), the value of
ds,i(k) is chosen to be

ds,i(k) =
∂2g(ẑ(k))

∂z2
s,i

.

This way, the matrixD(k) approximates the inverse of the
Hessian ofg at ẑ(k). For eachs ∈ S and i 6= is(k), the
second derivative ofg is further given by

∂2g(ẑ(k))

∂z2
s,i

=
∂2f(z(k))

∂z2
s,i

+
∂2f(z(k))

∂z2
s,is(k)

− 2
∂2f(z(k))

∂zs,i∂zs,is(k)
.

The second derivatives are given in (14).
We can now collect different pieces of the development

above and formally give the diagonally scaled gradient pro-
jection algorithm in the original domain wherez lies. A slight
generalization is present in (17).
Diagonally Scaled Gradient Projection Algorithm

z(k + 1) = α(k)z̄(k) + (1 − α(k))z(k) (17)

z̄s,i(k) = (18)






[zs,i(k) − δ(k) · (ds,i(k))−1 · (∂f(z(k))
∂zs,i

− ∂f(z(k))
∂zs,is(k)

)]+,

if i 6= is(k);
rs −

∑

1≤j≤|Ts|,j 6=is(k) z̄s,j(k), if i = is(k),

with

ds,i(k) =
∑

e∈ts,i∪ts,is(k)\ts,i∩ts,is(k)

q(q − 1)

c2
e

(
xe(k)

ce
+ κ)q−2.

(19)
In (17), α(k) is a scalar on[a, 1], for somea, 0 < a ≤ 1.

(17) says that the new rate vector at the(i + 1)th iteration,
z(k + 1), is on the line segment betweenz(k) and z̄(k).
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The main part of the algorithm is expression (18), which
computes the end point of a feasible direction,z̄(k), entry by
entry. There are three cases.

case 1 If a treets,i is not the chosen minimum-cost tree
(with indexis(k)) andts,i has a positive flow, its rate
will be reduced (more precisely, ifts,i is a minimum-
cost tree with positive flow rate but not the chosen
minimum-cost tree, its rate will keep the same).

case 2 If a treets,i is not the chosen minimum-cost tree and
the tree has zero flow rate, then the rate stays at 0.

case 3 Ifts,i is the chosen minimum-cost tree, the rate of
the tree is increased so that the total rates of all trees
rooted ats will be equal to the demanded raters.

Note that the description in case 3 ensures thatz̄(k) is feasible
(in Z). Sincez(k) is also feasible, by (17), the new rate vector
z(k+1) is feasible. Hence, if we start with a feasible solution
in Z, z(k) is in Z for all k. 4

What remains to be said is how much the rate is reduced
in case 1. Note that the expression∂f(z(k))

∂zs,i
− ∂f(z(k))

∂zs,is(k)
is the

difference in the first-derivative cost between the treets,i and
the chosen minimum-cost tree, and the difference is always
non-negative. Intuitively, the amount of reduction shouldbe
proportional to this difference. Indeed, if we ignore the factor
(ds,i(k))−1 in (18), the rate reduction is proportional to this
difference with a proportional constant (step size)δs(k) > 0.

The factor (ds,i(k))−1 does diagonal scaling, which can
effectively deal with our ill-conditioned problem. Scaling by
(ds,i(k))−1 can be understood as allowing different compo-
nents of the vectorz to use different step sizes. Note that the
expression fords,i(k) in (19) corresponds to theith tree; the
sum is over the non-overlapping links between theith tree and
the is(k)th tree, the latter being the minimum-cost tree.

The algorithm in (17)-(19) is a distributed one. In order to
compute the tree cost,∂f(z)

∂zs,i
in (14), and the scaling factor,

(ds,i(k))−1 in (19), each linke can independently compute
its corresponding term based on the local aggregate rate,xe,
passing through the link. Then, the tree cost and the scaling
factor can be accumulated by the sources based on the link
values along the tree. To find the minimum-cost treeis(k),
each source needs to compute the minimum-cost directed
spanning tree (MDSP). Both centralized and distributed al-
gorithms exist for computing the MDSP [21] [22] [23]. Both
achieveO(n2) time complexity for a complete graph withn
nodes. In the distributed version, the amount of information
exchanged is alsoO(n2). In our implementation, each source
collects the (overlay) link costs from all the receivers anduses
a centralized algorithm to compute the MDSP. Other than that,
the gradient algorithm is completely decentralized.

In addition to fast convergence, another strength of this
gradient algorithm lies in that it avoids the enumeration of
all possible spanning trees. The source only needs to manage
the set of active multicast trees, i.e., those trees with positive
flows. At each iteration, the source computes a new minimum-
cost tree. A non-active tree won’t become active unless it is
the minimum-cost tree. The source only adjusts the flow rates
among the set of active trees. The set of active trees usually
is not very large if the algorithm converges fast, since, at

4(17) can be replaced with a more general updatez(k+1) = A(k)z̄(k)+
(I − z(k))z(k), whereA(k) is a

∑

s∈S |Ts| ×
∑

s∈S |Ts| diagonal matrix
with diagonal entries in the interval[a, 1], for somea, 0 < a ≤ 1. To ensure
feasibility of z(k+1) in Z, it is required that

∑

1≤i≤|Ts|
as,i(k)(z̄s,i(k)−

zs,i(k)) = 0, whereas,i(k) is a corresponding diagonal entry ofA(k).

each iteration, at most one more tree becomes active. For the
original linear model (9), there are at most|Ê| + |S| active
trees in any extreme point solution. But since this gradient
algorithm is a kind of interior point method, strictly speaking,
|Ê|+ |S| is not really an upper bound. Nevertheless, it should
give a rough sense on what the bound might be.

We stress that the reason to apply the scaling factor is to
counter the ill-conditioned problem whenq is large. Though
the steepest-descent gradient projection algorithm has a linear
(i.e., geometric) converge rate asymptotically, in practice, it is
often slow if the optimization problem is ill-conditioned.Diag-
onal scaling often significantly outperforms the plain steepest-
descent algorithm. In an ill-conditioned problem, single-unit
changes of different variables have disproportionate effects on
the cost (objective value) change [18]. For convergence, the
step size in the iterative algorithm must be tuned accordingto
the variables that cause large cost changes. However, such a
step size can be too small for other variables, and as a result,
their values hardly change from iteration to iteration. The
diagonally scaled algorithm essentially re-scales the variables
so that single-unit changes in the scaled variables have similar
effect on the cost objective. For our problem, the scaling
has the simple interpretation that different trees use different
step sizes, each roughly being proportional to a power of
the worst link utilization on the tree. Note that by (19), the
scaling factor(ds,i(k))−1 is roughly inversely related to the
cost difference∂f(z(k))

∂zs,i
− ∂f(z(k))

∂zs,is(k)
. Thus when the step size is

too small for a tree (i.e., the cost difference between the tree
and the minimum-cost tree is also small), the scaling factor
(ds,i(k))−1 will be large and can compensate the small step
size. The resulting scaled algorithm is far superior to the plain
gradient projection algorithm.

B. Optimally Allocated Overlay Bandwidth

The problem described in Section II-C can be worked
out in a similar way, leading to a scaled gradient projection
algorithm. Substituteµe with xe/ce, the problem becomes

min
∑

e∈E

(
xe

ce
+ κ)q (20)

s.t.
|T (m)

s |
∑

i=1

z
(m)
s,i = r(m)

s , ∀s ∈ S(m), ∀m ∈ M (21)

z
(m)
s,i ≥ 0, ∀i = 1, · · · , |T (m)

s |,∀s ∈ S(m),∀m ∈ M. (22)

Let T =
⋃s∈S(m)

m∈M T
(m)
s be the collection of all multicast

trees rooted at any sources for any sessionm. Let z be
the vector(z(m)

s,i ) wheres ∈ S(m),m ∈ M, i = 1, . . . , |T
(m)
s |,

with an arbitrary indexing order for the sources. In problem
(20)-(22), let the feasible set defined by (21) and (22) be
denoted byZ.

Let Ê =
⋃

m∈M Ê(m) be the collection of all overlay links
in all sessions. Let̂H denote the|Ê| × |T | overlay link-tree
incidence matrix associated with the trees inT (i.e. [Ĥ]êt = 1
if overlay link ê lies on treet; and [Ĥ]êt = 0 otherwise).
RecallE is the set of underlay links, letH denote the|E|×|Ê|
underlay link-overlay link incidence matrix associated with the
overlay links in Ê (i.e. [H]eê = 1 if underlay link e lies on
overlay link (underlay path)̂e; and [H]eê = 0 otherwise).

For each underlay linke ∈ E, recall thatxe is the aggregate
flow rate it carries. Letx be the vector(xe)e∈E . It is easy
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to seex = HĤz. Note that an underlay linke might carry
multiple copies of the same file chunk distributed by one tree
t. Define f̂e(xe) = (xe/ce + κ)q and f̂(x) =

∑

e∈E f̂e(xe).
The objective function, denoted byf(z), is given by

f(z) = f̂(HĤz) =
∑

e∈E

f̂e(xe) =
∑

e∈E

(
xe

ce
+ κ)q,

and (20) can be written as

min f(z) = f̂(HĤz)

s.t. z ∈ Z.

The derivative of the objective functionf(z) with respect to
z
(m)
s,i is given by

∂f(z)

∂z
(m)
s,i

=
∑

ê∈t
(m)
s,i

∑

e∈ê

∂f̂(xe)

∂xe

=
∑

ê∈t
(m)
s,i

∑

e∈ê

q

ce
(
xe

ce
+ κ)q−1.

For eachs ∈ S(m) in sessionm, let i
(m)
s be the index of

a minimum-cost tree rooted ats (i.e., with s as the source).
That is,

i(m)
s (z) = argmin

{i:t
(m)
s,i

∈T
(m)
s }

{
∂f(z)

∂z
(m)
s,i

}.

Let i
(m)
s (k) be a short hand ofi(m)

s (z(k)).
Diagonally Scaled Gradient Projection Algorithm

z(k + 1) = α(k)z̄(k) + (1 − α(k))z(k) (23)

z̄
(m)
s,i (k) = (24)















[z
(m)
s,i (k) − δ

(m)
s (k) · (d

(m)
s,i (k))−1(∂f(z(k))

∂z
(m)
s,i

− ∂f(z(k))

∂z
(m)

s,i
(m)
s (k)

)]+,

if i 6= i
(m)
s (k);

r
(m)
s −

∑

1≤j≤|T
(m)
s |,j 6=i

(m)
s (k)

z̄
(m)
s,j (k), if i = i

(m)
s (k),

with

d
(m)
s,i (k) = (25)

∑

ê∈t
(m)
s,i

∪t
(m)

s,i
(m)
s (k)

\t
(m)
s,i

∩t
(m)

s,i
(m)
s (k)

∑

e∈ê

q(q − 1)

c2
e

(
xe(k)

ce
+ κ)q−2.

The resulting algorithm is still fully distributed.

C. Convergence Results

We will show the convergence results of the synchronous
gradient projection algorithm under constant step size, i.e.,
δ(k) = δ for all k. We will adapt the results from [24] to find
an upper bound on the step sizeδ that guarantees the global
convergence of the synchronous gradient projection algorithm
to an optimal solution. Furthermore, with the strictly positive
regularization vector~κ (i.e., κ > 0), the convergence speed is
linear (i.e., geometric). The same convergence results canbe
said for the case of optimally allocated bandwidth.

In the optimization problem (13), we assumeq ≥ 2, so that
f̂e(xe) is continuous on the interval[0,∞), tends to∞ as
xe approaches∞, and its derivative and second derivative are

continuous and positive on(0,∞). Assuming the links are in-
dexed from1 to |Ê|, the Hessian∇2f̂ = diag[∂2f̂

∂x2
1
, · · · , ∂2f̂

∂x2
|Ê|

]

is an |Ê| × |Ê| diagonal matrix with nonnegative diagonal
entries. Furthermore, ifκ > 0, the diagonal entries of∇2f̂
are positive and bounded below bymine∈Ê{

q(q−1)
c2

e
κq−2}.

We assume there is at least one feasible solution, i.e.,z(0) ∈
Z satisfyingHz(0) ∈

∏

e∈Ê [0,∞), and define a compact set
Z0 = {z ∈ Z|f(z) ≤ f(z(0))}. Since this set is compact,
f must attain a minimum on this set. Hence, there is az∗ ∈
Z0 satisfying f(z∗) = f∗, where f∗ = minz∈Z0

f(z). We
call any suchz∗ an optimal solution. Denote byZ∗ the set
of optimal solutions (there may be more than one optimal
solutions since, althougĥf is strictly convex,f is not), i.e.,

Z∗ = {z ∈ Z0|f(z) = min
z∈Z0

f(z)}.

For simplicity, we assume the scaling factords,i(k) = 1.0.
The convergence results still hold for other scaling factors
as long as{ds,i(k)} are bounded between two fixed positive
scalars [24] [18]. Note that{ds,i(k)} is bounded below by
mine∈Ê{

q(q−1)
c2

e
κq−2}, and can be bounded above by a fixed

constant if the demand rate vectorr is carefully chosen so that
a feasible solution5 is achieved after a few steps.

Let δ1 = a/(Lmaxs∈S |Ts|), where L > 0 is an upper
bound of the norm of∇2f overZ0.

Lemma 1:For 0 < δ ≤ δ1, we have for allk such that
z(k) ∈ Z0

f(z(k+1))−f(z(k)) ≤ −(
a

δ maxs∈S |Ts|
−

L

2
)||z(k)−z̄(k)||2.

(26)
The proof of Lemma 1 follows the proof for a similar lemma
in [24]. The only change involves substitution of appropriate
constants.

Therorem 2: (Globally Convergence) Supposeκ ≥ 0. For
any δ, 0 < δ < δ1, every limit point of{z(k)} generated by
the synchronous gradient projection algorithm (17)-(19) with
z(0) ∈ Z0 is optimal.

Proof: With the constant step sizeδ < a
L maxs∈S |Ts|

, the
right-hand side of the inequality (26) is non-positive. Hence,
if {z(k)} has a limit point, the left-hand side tends to0. The
algorithm (17)-(19) can be denoted as a functionA(z), i.e.,
z(k + 1) = A(z(k)). Therefore,||z(k) − z̄(k)|| → 0, which
implies that for every limit point̃z of {z(k)} we havez̃ =
A(z̃). It is easy to show if̃z = A(z̃), for anys ∈ S, we have
z̃s
i > 0 only if ∂f(z̃)

∂z̃s,i
≤ ∂f(z̃)

∂z̃s,j
,∀ts,j ∈ Ts, which is exactly the

optimality condition in (15). Sõz is stationary (Proposition
2.3.2 and Example 2.1.2 in [18]).

When the regularization vector~κ is strictly positive, the
diagonal entries of∇2f̂ are positive and bounded below by
mine∈Ê{

q(q−1)
c2

e
κq−2} > 0. Whenq = 2, the diagonal entries

of ∇2f̂ are positive and bounded below bymine∈Ê{
q(q−1)

c2
e

} >
0 for all κ ≥ 0. In these two cases, all conditions for global
geometric convergence required by [24] are satisfied. We have
a global geometric convergence rate for algorithm (17)-(19).

Therorem 3: (Globally Geometric Convergence Rate)
Supposeκ > 0. Let δ satisfy 0 < δ ≤ δ1. The sequence

{z(k)} generated by the synchronous gradient projection algo-
rithm (17)-(19) converges to an element ofZ∗ with an initial

5A feasible solution means that the aggregate link flow rate is no more than
the link capacity for each link.
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feasiblez(0) and the convergence rate is linear (i.e., geometric)
in the sense that for allk,

f(z(k + 1)) − f∗ ≤ (1 − D5δ)(f(z(k)) − f∗).

Furthermore, whenq = 2, the above conclusion holds for all
κ ≥ 0.

The constants and parameters are as follows.D5 =
a/(D4 + δ1), D4 = ((5L + 1)(D3)

2 + 1 + 2δ1 +
6L(δ1)

2/a)maxs∈S |Ts| and D3 = D max{1, δ1} for
some D > 0. Moreover, D is bounded above by
D1(D1 + (

√

maxs∈S |Ts| + 1)L̂||HT ||)/σ̂, where D1 =

max{||Q−1|| | Q an invertible submatrix ofH}. σ̂ ≤ L̂ are
any two positive scalars such that the diagonal entries of
∇2f̂(Hz) lie inside [σ̂, L̂] for all z ∈ Z0, where∇2f̂(Hz) is
a positive diagonal matrix.

IV. PRACTICAL CONSIDERATIONS

The formulations in the previous sections omit some details
that may be required in practice. The purpose of the omission
is for ease of presentation. The simplified formulations contain
the technical core, or the most difficult aspect, of the problem.
For the most part, these formulations are without loss of
generality. Practical details can be easily incorporated into the
formulations. We now address several of them.

A. Overlapping Content

We introduce virtual sources to handle the situation where
some sources share overlapping (common) chunks. For each
group of chunks that exist at multiple sources, we create a
virtual source, which will be considered as the source for
the overlapping chunks in question. The virtual source has
one outgoing virtual link with infinite capacity connecting
to each of the above original sources. We then arrive at an
expanded network where the sources and virtual sources no
longer contain overlapping chunks. If, initially, the way chunks
overlap at different original sources is not very complex, the
number of resulting virtual sources will be small. Otherwise,
we can always neglect some redundant sources to reduce the
number of virtual sources. We have conducted a separate study
on how to do this systematically.

At each iteration, each virtual source computes the MDSP
tree, updates the tree rates and allocates chunks to the active
trees. Since the capacity of a virtual link is infinite, its first-
derivative link cost must be zero. In the resulting MDSP
tree rooted at the virtual source, the virtual source is directly
connected to all the original sources that contain the over-
lapping chunks in question. The virtual source can inform the
original sources about the chunk allocation and leave the actual
transmission to the original sources. The original sourcesdo
not actually receive the chunks from the virtual source, but
only the control signals. In actual operation, one of the original
physical sources will act as the virtual source and run the
algorithm assigned to the virtual source.

B. Mixed Architecture of Fixed and Allocated Bandwidth

In Section II-B and II-C, we see two content distribution
scenarios with either fixed or optimally-allocated overlay
bandwidth. The latter should achieve better downloading time
than the former. However, the latter requires the deployment
of our algorithms to all network element, i.e. routers, which is

almost certainly impossible. There is an alternative framework
in which some routers or devices attached to the routers are
deployed with our algorithm, while others not. For instance,
our algorithm can be deployed at the cross-ISP links and
access links, where the bandwidth is more likely to be small.
In this framework, for those physically directly connected
router pairs deployed with our algorithms, we model the
physical links between them exactly; while for those not
directly connected devices, routers and end-systems, we let
TCP allocate the end-to-end bandwidth between them and
model these end-to-end paths as overlay links. Thus, in our
graph of the network, some links are real physical links and
others are overlay links with TCP-allocated bandwidth. The
algorithm applies as usual.

C. Network Dynamics and Churn

Thus far, we assume that the network is stable and no
members depart or join until all existing members finish
downloading. Since we are mostly considering the distribution
of massive content on managed infrastructure networks, the
assumption is reasonable for the most part. However, we do
need to deal with low-degree member churn and network
dynamics such as link capacity variations and failures.

If any source owning unique chunks leaves before it finishes
disseminating them, those chunks are no longer available
in the network. To minimize such risk, in the optimization
formulation, we can adjust the requested sending ratesrs of
the sources. If any source is expected to leave the network
soon, it may request (or be assigned) a higher sending rate so
that it can spread its chunks to network more quickly.

Other types of network and member dynamics include link
failures, the change of link capacities, the arrival of new
sources, and the departure and arrival of receivers. As argued
in [25], a distributed algorithm has built-in ability to adapt to
variations. A distributed algorithm can react rapidly to a local
disturbance at the point of disturbance with slower fine tuning
in the rest of the network. Such adaptive ability is intimately
connected with the algorithm’s speed of convergence in the
static case. Since our algorithm is the result of conscious
effort to improve the convergence speed (by diagonal scaling
of the gradient algorithm), we believe it is superior in coping
with network and member dynamics compared to other similar
distributed algorithms. In addition, our distributed algorithm is
naturally robust because of the lack of reliance on a central
node that might fail. In Section V, we will show a small
example of how our algorithm successfully adapts to the
departure and arrival of receivers.

D. Scalability and Hierarchical Partition of Sessions

In each overlay network, the sources know the complete
information of all overlay links and need to run the expensive
centralized MDSP algorithm (There is a distributed MDSP
algorithm [23]. But the price to pay is the potentially slower
speed due to the coordination overhead of distributed op-
eration.). Thus, our gradient algorithm can only deal with
distribution sessions with limited size, say several thousands
of members in each session. In order to improve the scalability
of our algorithm, we shall partition each session and run the
algorithm hierarchically, as most scalable network algorithms
would do. Though currently we don’t have a well-defined way
to partition the session, we will show one naive approach to
partition a large session in Section V.
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E. Asynchronous Algorithm

Time synchrony is usually difficult to maintain in a large
network. An asynchronous version of the scaled gradient algo-
rithm (17)-(19) (or (23)-(25), respectively) could be developed
and the corresponding convergence result could be stated
following the approach in [26] [24].

V. PERFORMANCEEVALUATION

In this section, we show performance evaluation results
about our optimal swarming algorithm and compare the op-
timal swarming with other interesting swarming techniques.
To fully appreciate these results, it is important to recall
that the application setting of our algorithm is infrastructure-
based content distribution networks. Unlike the end-system-
based P2P file-sharing networks, these infrastructure overlay
networks are generally managed, moderate in size (up to tens
of thousands of nodes instead of millions), and relatively stable
with low node arrival and departure dynamics.

We will compare the performance of our gradient algorithm
(GP) with known theoretical bounds, BitTorrent (BT) and
Adaptive FastReplica (AFR) [6]. We select BitTorrent because
its techniques are interesting and it is very popular in end-
system-based distribution. The techniques of BitTorrent can
certainly be applied to infrastructure-based distribution and
we would like to see how they compare with our algorithm.
Since infrastructure-based content distribution is a relatively
stable environment, we will do experiments with BitTorrent
under low node arrival and departure dynamics. We select AFR
because it can be thought as using multiple multicast trees for
distribution. But only a subset of the trees are allowed, which
we call two-level two-phase trees. In each of these trees, the
source is connected to one receiver at level 1, and then the
level 1 receiver is connected to all other receivers at level2. It
might appear that such a collection of trees is quite enough for
achieving near optimal performance. In an access-constrained
network, this is indeed true. However, we will show this is not
the case for networks with interior bottlenecks. In that case, a
different, maybe larger, collection of trees is needed.

Although we are more interested in network interior bot-
tlenecks, our algorithm can equally deal with bottlenecks at
the access links, at the ISP backbone or at the cross-ISP
links. Hence, we will consider all these cases. The commercial
ISP backbone and cross-ISP topologies are obtained from the
Rocketfuel project [27]. In the terminology of BitTorrent,a
seed is a source, and a leecher is a receiver. In the previous
sections, our objective function is the worst network utilization
||~µ||∞. In the evaluation part, we will focus on the source
throughputRs = rs/||~µ||∞, wherers is the scaled sending
rate, and the downloading timet = Ls/Rs, since these are
what BitTorrent experiments yield directly. However, recall
that the two measures are the two sides of the same coin.

The regulation termκ should be selected small enough
so that ~κ does not dominate~µ. Recall thatκ is used to
guarantee globally geometric convergence. Even ifκ = 0, the
proposed algorithm still converges and has a locally geometric
convergence rate. In practice,κ = 0 often works well enough.

A. The Performance Evaluation Metrics

1) BitTorrent Simulation:We use the Bittorrent simulator
developed by Bharambe et. al. [28]. Since the original sim-
ulator only supports access link constraint, we modified the

simulator so that it supports general physical network topolo-
gies. The overlay link bandwidth, which is the per-connection
bandwidth at the underlay, is determined by the max-min
bandwidth allocation [17]. In the BitTorrent simulation, we
use the following simulation environment.

• Each peer opens 5 uploading connections and one of them
is selected by optimistic unchoking, which means that it
connects to a random neighbor.

• The seed uses the smart seed policy, which is introduced
in [28]. Seeds are with distinct files.

• All the peers join the network at time 0 and continue to
be in the network until all of the leechers complete the
download.

• All the other parameters follow the regular BitTorrent
environment.

Table I summarizes the simulation environment for our tests.

TABLE I
BITTORRENTSIMULATION PARAMETERS

#Seeds File Size per Seed Neighborhood Size
Profiles 1-3 1 62.765 MB 38 - 80

Profile 4 1 128 MB 18 - 40
Profile 5 2 64 MB 18 - 40
Profile 6 1 128 MB 38 - 80
Profile 7 1 32 MB 38 - 80

2) Adaptive FastReplica:AFR supports single source. To
compare with AFR, we partition the physical network into
several overlay networks, each for one source according to
max-min fairness allocation. AFR constructs two-phase trees
as described earlier. From [6], the theoretical throughputof
AFR in its best behavior can be computed as

∑

i=1,··· ,m

min{cn0ni
, min
j=1,··· ,m,j 6=i

{cninj
}}, (27)

wheren0 is the source,ni, i = 1, · · · ,m are the receivers, and
cninj

is the end-to-end path (overlay link) capacity between
ni andnj .

3) Theoretical Bounds:Some theoretical results are used
as performance benchmark in our performance comparison. In
several studies [29]–[31], researchers have analyzed a model
of P2P file sharing among residential users in low access-
speed environment. Each participating end-system has an
uplink (to the network) and a downlink with limited capacity.
The capacity of the network is considered unlimited. The
source is to distribute a file toL receivers. Let the uplink
(downlink) bandwidth of receiveri be ui (di, respectively),
for i = 1, · · · , L. Let the uplink capacity of the source beus.
Then, the maximum distribution speed is shown to be

min(us, min
1≤i≤L

di,
us +

∑

1≤i≤L ui

L
). (28)

In (28), the three terms are the optimal speeds when the
bottleneck is at the source upload link, at a download link,
or due to the aggregate upload bandwidth, respectively.

By two-phase distribution, we mean each distribution tree
has a depth at most 2. The following fact is known to be true.

Fact 4: In a network with only access-speed constraint,
the two-phase distribution [29] achieves the (overlay-network)
routing capacity [29], which is (28).

In the single source case, there is a maximum flow from the
source to each receiver. The minimum of all these maximum
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flows will be called themax-flow limit(MFL). The max-flow
limit is a throughput (total distribution rate) upper bound. If
all nodes but the source are receivers, the max-flow limit is
achievable, a result known as Edmond’s Theorem [32] [33].

B. Bottleneck at the Access Links (Profiles 1 to 4)

In this case, we assume the network has infinite capacity
but the access links have finite capacities. We also assume that
all access links are deployed with our gradient algorithm. In
the four test cases (profile 1-4), we have a single source with
uploading bandwidthus. Let ui and di be leecher (receiver)
i’s upload and download bandwidth, respectively.

• Profile 1: ui = di = 360 Kbps for all 299 receivers,
us = 640 Kbps. The download link is the bottleneck.

• Profile 2: ui = di = 360 Kbps for all 299 receivers,
us = 280 Kbps. The source upload link is the bottleneck.

• Profile 3: di = 360 Kbps, ui = 200 Kbps for all 299
homogeneous receivers,us = 640 Kbps. The aggregate
upload bandwidth is the bottleneck.

• Profile 4: di = 360 Kbps for all 100 receivers,ui =
100 Kbps for half of receivers, andui = 1 Kbps for
the rest receivers.us = 100 Kbps. The aggregate upload
bandwidth is the bottleneck.

TABLE II
COMPARISON OF DOWNLOADING TIME(MINUTES) AND NUMBER OF

ACTIVE TREES.

Profile 1 Profile 2 Profile 3 Profile 4
Optimum 23.8 30.6 42.4 331.4
BT(50%) 27.6 41.0 44.9 264.8
BT(95%) 28.5 41.3 49.7 428.6
BT(100%) 30.4 41.5 51.0 441.8
BT(avg) 27.7 41.0 44.6 296.0

AFR 23.8 30.6 42.7 337.9
GP 23.9 30.6 43.5 333.1

GP #trees 3 2 3 53
AFR #trees 299 299 299 100

In Table II, the optimal downloading time is computed from
by (28). The results indicate that the gradient algorithm obtains
near the theoretically optimal solution.

1) Comparison with BitTorrent:Table II shows the time
when 50%, 95% and 100% receivers finish downloading,
and the average downloading time in BitTorrent, respectively.
The average downloading time is defined as the sum of
the receiver downloading times divided by the number of
receivers. Alternatively speaking, the BT(50%) time is the
median of the downloading times, the BT(100%) time is
the maximum of the downloading times and the BT(avg)
time is the mean of the downloading times. The gradient
algorithm outperforms BitTorrent with respect to the worst-
case (maximum) downloading time. In Profile4, where the
receiver-side upload bandwidth is extremely heterogeneous,
the average downloading time of BitTorrent is37 minutes
shorter than that of the gradient algorithm; however, the
worst-case downloading time of BitTorrent is more than100
minutes longer than that of the gradient algorithm. This
means in the case when BitTorrent suffers from the last-
chunk problem severely, the gradient projection algorithm
can sacrifice the average downloading time to improve the
worst-case downloading time greatly. In all other profiles,the
gradient algorithm is always better than BitTorrent with respect
to the average downloading time.

BitTorrent’s performance is not bad compared with the
optimal value. This was explained in [34], which models the
downloading time of BitTorrent. It shows that, in the case
that a flash crowd arrives at the same time, the bandwidth
constraint is at the access links, and the receivers stay after
they finish downloading, BitTorrent achieves near optimal
distribution speed. In Fig. 3 and 4, we show the performance
comparison of different distribution schemes under profile1
and 4. The results under profile 2 and 3 are omitted for brevity.
The download percentage refers to the total amount of data
downloaded at each time instance normalized against the total
data downloaded at the end of the distribution. Since the two
lines have different slopes, we can extrapolate the lines and
expect the gradient algorithm to do much better if the file
size becomes larger. This observation seems to contradict the
conclusion in [34].

BitTorrent has the advantage that it does not need to main-
tain the routing tables and the trees explicitly. However, since
we are dealing with infrastructure-based content distribution
networks with low network dynamics and moderate sizes,
configuring routing tables and maintaining trees in such an
environment are infrequent events; they are not necessarily
the difficult part in such networks, as long as the number
of trees is not too large. The costs of the algorithm can be
justified by the economic gains from better network utilization
or performance.
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Fig. 3. Profile 1: (a) number of leechers that have completed download over
time; (b) download percentage over time.
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Fig. 4. Profile 4: (a) number of leechers that have completed download over
time; (b) download percentage over time.

2) Comparison with AFR:The AFR downloading time is
given by (27). Table II shows that AFR’s two-phase approach
achieves the optimal downloading time when the bottleneck
is either at the download link or at the source. But when
the bottleneck is due to the aggregate upload bandwidth,
AFR fails to achieve the optimum, although we know that
some other two-phase solution is optimal. The reason is that,
in AFR, every receiver is required to relay all chunks it
receives from the source to other receivers. This unnecessary
constraint leads to a sub-optimal solution. AFT doesn’t allow
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the breadth-first search tree, but an optimal two-phase tree
does. Nevertheless, AFR achieves good performance in this
access-limited situation.

Tree 3: Two−phase Tree

s

2
3

n1

n−1

Tree 2: Breadth First Search Tree (BFS)

s1

2

n

n−1

Tree 1: Depth First Search Tree (DFS)

s 1 2 nn−1

Fig. 5. Structures of trees on the overlay network

We also compare the number of active trees AFR and the
gradient algorithm eventually use. The gradient algorithmuses
fewer trees than AFR. We inspected the active trees. With the
access-link constraint, the gradient algorithm uses threekinds
of trees, the depth-first search tree (DFS), the breadth-first
search tree (BFS), and a two-phase tree. Fig. 5 shows the
structures of the three types of trees on the overlay network.
In general, there exists an optimal solution that uses only
two-phase trees for networks with such a star topology. But
it seems that the gradient algorithm prefers the chain-like
DFS tree. It may appear counter-intuitive that such a chain-
like distribution path is preferred because the chain seemsto
involve largest delay. However, this is in fact not true because
of our fluid model of traffic and because we do not consider
propagation delay. The bit that arrives at node 1 from the
source can immediately be transmitted to node 2, and to node
3, so on. We leave it to future work on how to incorporate the
propagation delay in optimal tree selection.

Furthermore, transmitting chunks by a chain-like DFS tree
can ensure fairness, i.e., a receiver downloads the same amount
of chunks as it uploads to others. It is well known that
BitTorrent incorporates a tit-for-tat (TFT) incentive mechanism
to encourage contribution or prevent a node from downloading
much more content than it can upload [28]. Table III shows
that, when the bottleneck is at either the download links or
the source (i.e., in Profiles1 and 2), the gradient algorithm
naturally prefers the DFS tree while other unfair solutions
might also exist. When the aggregate upload bandwidth is the
bottleneck, the algorithm tries to distribute the chunks over
the two-phase trees. In addition, the more heterogenous the
receivers are, the more two-phase trees we need and the more
bandwidth is allocated to the two-phase trees. We can see that
a two-phase tree apparently allows unfairness by inspecting
its structure. In Profile4, the receiver-side upload bandwidth
is extremely heterogeneous. The optimal solution with respect
to the worst-case downloading time has to give up fairness:
Half of the receivers serve others at100 Kbps and half of the
receivers serve others at1 Kbps, while all of them download
at the same rate. The key conclusion here is that the gradient
algorithm is able to find the best distribution trees for the
particular network environment, and try to ensure fairnessif
at all possible. Without the help of the gradient algorithm,
what types of trees are selected is not always obvious.

C. Bottleneck at the Internal of ISP Backbone (Profile 5)

In this case, we assume all access links have unlimited
bandwidth, and congestion happens at the core network. We

TABLE III
THE DISTRIBUTION OFBANDWIDTH ALLOCATED FOR DIFFERENT TREES

Profile 1 Profile 2 Profile 3 Profile 4
DFS 99.4% 99.999% 98.91% 1.93%
BFS 0.26% 0 0.754% 0.95%

Two-phase 0.33% 0.001% 0.333% 97.1%

wish to see how our algorithm performs in infrastructure-
mode content distribution. We did experiments with the ISP
Sprintlink’s backbone obtained from [27]. The network has
315 backbone nodes and 1944 links. It is the largest backbone
ISP with the highest node degree among the six commercial
backbone networks that the RocketFuel project provides. We
attach 100 peers with unlimited access bandwidth randomly
to some backbone nodes, with at most one peer per backbone
node. One may think a peer is a large content distribution
server cluster. Among the 100 peers, we choose 2 sources
with the normalized sending ratesrs = 1.0 (dimensionless).

We did several experiments with the link capacities uni-
formly distributed in some range. The actual link capacity
data is unavailable. We find the gradient algorithm often gives
trivial optimal solutions. After inspecting the solutionsand the
network graphs, it turns out that the ISP backbone is poorly
connected. There are many links that lies on all the routing
paths between one peer and all other peers, which means if
any one of these critical links is removed, at least one peer
will be disconnected. If these critical links do not have much
larger capacity than other links, they are likely to become
the bottleneck. The gradient algorithm is able to locate the
bottleneck immediately. Other five ISP backbones show the
same property. Presumably in reality, the ISPs are aware of
such links and would ensure they have very large bandwidth so
that they are never the bottleneck. In order to test our algorithm
in this non-trivial scenario, we assign the same bandwidth,
1000, to all backbone links. Then, we scale up the bandwidth
of all critical links (those links that, when removed, will leave
some peers disconnected in the overlay) to be large enough so
that they are not the bottleneck.

We did three tests on Profile5.
• (Test a) Our algorithm is deployed at all links. This is

the case of optimally-allocated overlay bandwidth.
• (Test b) Our algorithm is deployed only at the peers. The

overlay bandwidth between each pair of peers is fixed
by the max-min allocation. The 100 peers form a single
overlay network.

• (Test c) Our algorithm is deployed only at the peers. In
order to compare with AFR, we partition the backbone
into two overlay networks, one for each source. Note that
the max-flow limit is achievable in this case.

1) Comparison with BitTorrent:Fig. 6 shows that, in Test a,
the downloading time in the gradient algorithm is only30% of
that in BitTorrent. The average downloading time of BitTorrent
is 14.8 minutes, and is about6 minutes longer than that of the
gradient algorithm. BitTorrent is unable to give good perfor-
mance when the core network is congested. But in Test b,
after the overlay bandwidth is fixed, the optimal downloading
time is much higher than that of Test a, and almost equal to
BitTorrent’s time. In the figure, the download percentage refers
to the total amount of data downloaded at each time instance
normalized against the total data downloaded at the end of
the distribution. Since the lines have different slopes, wecan
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Fig. 6. Profile 5. (a) Number of receivers that have completed download
over time; (b) download percentage over time.

extrapolate the lines and expect the gradient algorithm to do
much better if the file size becomes larger.

2) Comparison with AFR:Fig. 6 also shows that, in Test
c, the gradient algorithm approaches the max-flow limit while
AFR achieves something far from the optimum. When the
congestion happens at the core network, the two-phase trees
alone fail to give good solution.

3) Convergence Speed:Fig. 7 shows the convergence of
the algorithm in Test a, b and c respectively. The time spent
on one iteration is about one round trip time plus the time to
compute the MDSP. It seems that the algorithm that optimally
allocates the overlay bandwidth converges much faster thanthe
algorithm with fixed overlay bandwidth. This has to do with
the fact that, in the final solution, Test a has 92 active trees,
while Test b has totally 4746 active trees, more than 2000 trees
for each source. The reason that Test b has much more trees
than Test a might have to do with the fact that Test b has much
more constraints than Test a. In Test a, we need to satisfy
the physical link capacity constraints, while in Test b, we
need to satisfy the overlay link capacity constraints; there are
much more overlay links than physical links. According to the
discussion at the end of Section III-A, the number of links plus
the number of sources serves as a rough bound of the number
of active trees. It is possible that Test b has another optimal
or nearly optimal solution that has much fewer trees. Finding
solutions with fewer trees should improve convergence speed,
and is an important direction to pursue.
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Fig. 7. Profile 5. Convergence of throughput. Two sources with rs = 1.0
(a) Test a; (b) Test b and c.

D. Bottleneck at the Cross-ISP Links (Profile 6-7)

In reality, the cross-ISP links are often the bandwidth
bottleneck. The goal here is to evaluate the effectiveness of
our algorithm in handling the bottleneck at cross-ISP links
when it is deployed at ISP gateways. We did experiments
both on an artificial small cross-ISP network and the cross-
ISP network obtained from the RocketFuel project. We created

scenarios where congestion happens at the cross-ISP links.Our
algorithm is deployed at all access links and cross-ISP links.
Hence, we’re able to run the algorithm to optimally allocate
the overlay bandwidth.

• Profile 6 (P6): 6 completely connected ISPs with30
cross-ISP links. Each cross-ISP link has a capacity of
1000. 300 peers are attached to the ISPs,50 per ISP, with
sufficient access bandwidth. A single source is attached
to one ISP.

• Profile 7 (P7): (RocketFuel topology):69 ISPs con-
nected with1336 links. The cross-ISP link capacities
are uniformly distributed on(100, 1000). 500 peers are
randomly attached to the ISPs with sufficient bandwidth.
A single source is attached to one ISP.

Note that, in the case of a single source, congestion at the
cross-ISP links and each ISP containing some peers, the max-
flow limit is achievable.

TABLE IV
DOWNLOADING TIME (MINUTES) COMPARISON OFPROFILE 6 AND 7

BT(50%) BT(95%) BT(100%) BT(avg)
P6 16 19.5 19.6 14.7
P7 5.83 26.5 90 10.9

GP AFR MFL
P6 3.8 142.7 3.4
P7 8.74 131.2 8.72
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Fig. 8. Profile 6. (a) Number of receivers that have completed download
over time; (b) download percentage over time.
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Fig. 9. Profile 7. (a) Number of receivers that have completed download
over time; (b) download percentage over time.

In both profiles 6 and 7, the gradient algorithm approaches
the max-flow limit and beats BitTorrent and AFR by a large
amount, up to a factor of 10 (Tabel IV:50%, 95% and100%
are the percentage of the peers that have finished downloading.
With respect to the average downloading time, the gradient
algorithm is also better than BitTorrent. Also see Fig. 8 and9.).
We found, with more peers per ISP, BitTorrent’s performance
deteriorates. FastReplica’s performance is far worse thanboth
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the gradient algorithm and BitTorrent, and we didn’t even
show it in Fig. 8 and 9.

Usually, cross-ISP traffic is more expensive. We investigated
the traffic redundancy over the cross-ISP links. With neither
inside ISP congestion nor access speed constraint, ideally, each
destination ISP should receive only one copy of each chunk
from other ISPs and the source ISP should not receive any
copy from other ISPs. In Profile 6, we inspected the active
(optimal) trees the algorithm constructed and found that each
destination ISP indeed only received one copy from other
ISPs, but the source ISP might receive some copies from other
ISPs. Suppose the normalized cross-ISP traffic under the ideal
distribution is1.0. We found the cross-ISP traffic was1.103 in
the gradient algorithm and5.982 in BitTorrent. But in Profile
7, we found the destination ISPs received multiple copies from
other ISPs in the gradient algorithm. This is because, in Profile
6, each max-flow between the source ISP and the destination
ISP has the same value. This is not the case in Profile 7. Thus,
the optimal solution does allow multiple copies to be sent to
one destination ISP. Again, if the normalized cross-ISP traffic
under the ideal distribution is1.0, then the traffic is2.22 in
the gradient algorithm and9.72 in BitTorrent.

E. Arrival and Departure Dynamics (Profile 8)

Here, we wish to examine how well the distributed gradient
algorithm copes with the peer arrival and departure dynamics.
We applied the algorithm with optimally allocated overlay
bandwidth on a star network with receivers arrive and depart
randomly. All peers have sufficient download capacities; the
receivers each have upload bandwidth200 Kbps; and the
source has upload bandwidth640 Kbps. At the beginning,
we have one source and 299 receivers; at iteration 100, 50
receivers leave; at iteration 200, 50 new receivers arrive;at
iteration 300, 50 receivers leave (40 receivers are from the
receivers that were present at the beginning, and the other
10 are from the new arrivals); at iteration 400, another 50
new receivers arrive; at iteration 500, 50 receivers leave (30
receivers are from the receivers present at the beginning, 10
receivers are from those that joined at iteration 200, and the
other 10 are from the those that joined at iteration 500); at
iteration 600, 50 more receivers arrive. In the interval between
iteration 0 and 200, we have one session consisting of either
299 or 249 receivers. In the interval between iteration 200
and 300, we have two sessions: One consists of one original
source and 299 receivers and the other consists of 250 sources
with overlapping chunks and the 50 new receivers. We assume
the two sessions have equal demand rates (though this might
be unfair). In the interval between iteration 300 and 400, we
still have two sessions but with fewer receivers. In the interval
between iteration 400 and 500, we have three sessions with
equal demanded rates: The first consists of one original source
and 299 receivers, the second consists of 210 sources with
overlapping chunks and 90 receivers, and the third consistsof
250 sources with overlapping chunks and 50 receivers. In the
interval between iteration 500 and 600, we have three sessions
with fewer receivers. From iteration 600, we have four sessions
with equal demanded rates: The first consists of one original
source and 299 receivers, the second consists of 180 sources
with overlapping chunks and 120 receivers, the third consists
of 210 sources with overlapping chunks and 90 receivers, and
the fourth consists of 250 sources and 50 receivers. Fig. 10
shows the algorithm adapts to the dynamics quickly.
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Fig. 10. Dynamic departure and arrival of receivers

VI. A DDITIONAL RELATED WORK

In our optimization-based approach, we follow the tradition
of Kelly et. al. [35] and Low et. al. [36] on optimal flow
control/bandwidth allocation. Many recent papers extended
this approach and solved networking problems by collective
actions taken across networking layers, especially in wireless
networks e.g., [37]–[40]. Several other related studies, either
in topics or methods, are [41]–[44].

The authors of [45] formulate several optimization prob-
lems related to swarming with different objectives such as
minimizing the server load, maximizing the distribution rate,
or minimizing the depth of the distribution trees. Some of
the formulations have the constraint that the node degree
on the distribution trees must be limited. They assume that
the bottleneck is the uplinks and the optimal solutions are
obtained by exploiting this special condition. Their approach
does not seem to be extensible to general networks where
bottleneck can be anywhere. The authors of [46] consider
similar optimization problems under the users’ uplink capacity
constraint. They present a(1+ǫ)-approximation algorithm for
solving various problems with different topology constraints:
full or non-full mesh graph, limited or unlimited tree degree,
with or without helpers. The main part of their algorithm
comes from the technique for solving the maximum concurrent
flow problem given in In [48], the authors study the problem
of minimizing the average distribution time across the peers
in an upload-constrained P2P system. The average distribution
time is a useful metric to evaluate the performance of a file
distribution system. However, their approach does not seemto
be extensible to general networks.

VII. C ONCLUSION

This paper represents a systematic study on how best to con-
duct content distribution using advanced swarming techniques
over infrastructure networks. In response to growing content
that threatens to congest the core network, our objective is
to manage the network congestion not only at the access
links but throughout the network, especially at cross-ISP links.
We showed that this objective is “equivalent” to speeding up
content distribution. The main contribution of this paper is
that we envision optimal content distribution as a multicast
tree packing problem, and we derive a distributed algorithm
for solving the problem. The tree-packing framework is
also useful for contemplating existing swarming/collaborative
downloading techniques, by asking the questions: What kind
of trees do existing algorithms use? How are the trees selected?
And how is bandwidth assigned to the trees? Hence, our
framework has the potential to provide a unified understanding
of advanced distribution techniques. Finally, our distributed al-
gorithm is based on a specialized gradient projection algorithm
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for optimization under simplex constraints and we develop a
scaled version of it. Our computation experiences show that
it has much faster convergence than the more frequently used
subgradient algorithm.
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