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Abstract—A distinct trend has emerged that the Internet is In this paper, swarming is viewed not just as a casual
used to transport data on a more and more massive scale. Ca-technique for end-user file-sharing applications. Insteael
pacnyb_sl_?ortaﬂe o thl‘le tt)’aCkbO“e ne_tworks_tp]afs_bbect?me S 9enuiNeenvision it as an advanced technique to be employed byatritic
possibility, which will be more serious with fiber-based access. o o i
The problem addressed in this paper is how to conduct massive _Coment distribution applications or other n_etvyork_ Sersitn
content distribution efficiently in the future network environment  infrastructure networks, such as content distributiorwoeks
where the capacity limitation can equally be at the core or the or networks. We will see that the benefits of swarming res

here th ity limitati _ lly be at th th ISP networks. We will that the benefits of g rest
edge. We propose a novel technique as a main content transport ypon the fact it is an advanced form of networking mechanism,
mechanism to achieve efficient network resource utilization. The more advanced and more powerful than all previous distribu-

technique uses multiple trees for distributing different file pieces, .. - . - .
which at the heart is a version of swarming. In this paper, we 10N schemes, including IP or application-level multicgsg.

formulate an optimization problem for determining an optimal  [11]), network cache systems and existing content distiobu
set of distribution trees as well as the rate of distribution on networks (e.g., Akamai [12]). We will argue that swarming ca
each tree under bandwidth limitation at arbitrary places in the  pe thought as distributing content omultiple multicast trees.
network. The optimal solution can be found by a distributed \yhen done properly, it provides the most efficient utilizatio

algorithm. The results of the paper not only provide stand-alone : .
solutions to the massive content distribution problem, but should of the network capacity, a remedy for backbone congestion,

also help the understanding of existing distribution techniques Or gives the fastest distribution.

such as BitTorrent or FastReplica. The earlier description of swarming does not specify the
Index Terms—Content Distribution, Peer-to-Peer Networks, Precise manner at which the chunks are initially spread out o
Multicast, Optimization, Bandwidth Allocation the manner at which the peers exchange them later. In fact,
many different ways of swarming have been proposed, such as
. INTRODUCTION BitTorrent [4], FastReplica [5], [6], Bullet [7], [8], ChlkTast

One of the distinct trends is that the Internet is being us ’or?otBr:lgn Ei%e%r}?To\]rlrjtlalr?t [%ggc') cglhqrhmeooSttir%c;FI)il\;av;r(r)nr;r?
to transfer content on a more and more massive scale. This pa 9 P ) P 9

made capacity shortage in the backbone networks a genu%(g]r."que prop(_)sed In the paper can be contrasted W'th. the
existing swarming techniques. First, the optimal swarming

possibility, which will become more serious with f|ber—bdseis specifically designed for infrastructure networks arsl it

ggg@s&\] :fp)st';\r? gﬁ:gg{pféxv gg%so??gybﬁﬁggﬁg ?]LEJ;E'U? ISrformance objective is network-centric, i.e., how to _imin
' e the worst-case network congestiérin contrast, being

. . ; . |
being from residential users to users, which was consumed Dy . : ; s
content downloading or P2P file sharing; the fiber users Wecgre}élnally designed for end-system file-sharing applias,

responsible for 86% of the inbound traffic; and the traffic WaLQDQZESC'eS;'nSgui\évagsrn&%vsz) S'E:eorpns Teet\elzeirlegi?/ ?a%eaqtggveﬁlgmtﬂgs
rapidly increasing, by 45% that year [3]. J ' P

The problem addressed in this paper is how to condu%?cond’ in existing systems, thg bandwidth bottlenecktenof
massive content distribution efficiently in the future netiv assumed to be at the access links, rather than throughout the

environment where the capacity limitation can equally bibat network. The optimal swarming will be able to automatically

core or the edge. The proposed solution is a class of impI’O\%]%aSFt)t égi;ﬁ]paztit%%]:tﬂgt k?gg;livsr}cﬁ:retelghmeuneiwrﬁgi a;[rzlrgot
swarming technigues, known agtimal swarming Swarming 9 sy q

L . derstood well enough regarding how well they work or
was ongma_dly invented by the user and research cor_nmunﬁgw much improvemer% rem%ins p%ssible On the ):)ther hand
as a technique for large-scale peer-to-peer file sharimg, e ) '

[4]-[10]. In a swarming session, the file to be distributed {he optimal swarming is designed systematically based en th
! ! ptimization theory and algorithms. As a result, it achgeve

broken into many chunks at the original source, which are th best performance with respect to the our chosen obiectiv
spread out across the peers in a fashion that the sets of€h R pertor P : o

at different peers are substantially different. Subsetiyethe e optimization framework_n_ot only su_pphes _sophlsthme
peers can exchange the chunks with each other to speeoa rithms, which are very difficult to re-invent, it alsovgs

the distribution process. Swarming enables content peosid permosrrgﬁgfeogtuhanr]agé?]e\z/zrat;%légtzee%lgonthms, for instdnce
with poor capacity to reach a large number of audience, 8||O\}\? 9 9 peed.

; P : e For illustration of the main ideas in this paper, consider th
rapid deployment of a large distribution system with minimu S . ' .
infrastructure support. toy example in Fig. 1. The numbers associated with the links

1At the present, telecom companies are aggressively rollindiloer-to-the 2|t will be shown later that minimizing the worse-case link cestion is
home (FTTH) or its variants. Verizon is building a nationwlETH network equivalent to minimizing the distribution time of a file, or maxainig the
in the US, to be completed by 2010. Japan had 5.6 million FTTHailters distribution throughput. The equivalence is in the sens¢ ¢ime can recover
by June, 2006, is on an exponential upward ramp to have 30 milyo2010 the solution with respect to one objective from the solutiorder another
[1]. The speed of the access fiber is currently at 100 Mbpswerpheading objective. In the subsequent discussion, we will use thbssetobjectives
to 1 Gbps by 2020 and is likely to reach 10 Gbps thereafter [2]. interchangeably.



are their capacities. Suppose a large file is split into manyulticast session as a group of nodes (members) exchanging
chunks at source node 1. We wish to find the fastest w#ye same file. In a session, some members own some distinct
to distribute all chunks to receivers 2 and 3. We impose mhunks of a large file (The case of overlapping content at
restriction on how peers can help each other in the distabut different nodes requires a minor extension, which will be
process. Let us focus on a fixed chunk and consider howdiscussed in Section IV-A.) and we call those memlisersces

can be distributed to the receivers. With some thoughtsrit cof the session. A reasonable assumption about a sessiat is th
be argued that, when the delay is not modeled, the path shoalldmembers in the session are interested in the file, anckat th
be a tree rooted at the source and covering both receivdrs. éid of file distribution, every member in the session will dnav
possible distribution trees are shown in Fig. 2. The quasti@a complete copy of the file.

becomes how to assign the chunks to different distributionLet M be the set of all multicast sessions. For each session
trees so that the distribution time is minimized, subjecthi® m € M, let V(") C V represent the set of members in session
link capacity constraint. For this simple example, it isyetts  m, and letS(™) C V(™) be the set of sources in session

see that distributing the chunks in 1:2 ratio on the secomtl aFor each source € S(™), let L™ be the total size of the file
third tree, while leaving the first unused, is optimal. chunks at source for sessionm. Let the set of all possible
multicast trees spanning all members in the session rodted a
sources € S(™ be denoted by™. A multicast tree may
contain nodes not in the session, in which case the tree is
called aSteiner tree In the case where all nodes on the tree
belong to the session, the multicast tree is callespanning

tree, meaning it spans the multicast session (rather than the

whole networkV’). For thei'" tree tg’;‘) e 7™, where the
Fig. 1. Node 1 sends the file to node 2 and 3. order of indexing is arbitrary, denote”” to be the sending

rate on treeti’f;) from the roots.
A straightforward objective is to minimize the overall down
loading time for all multicast sessions, which is to minimiz

B00
the worst downloading time associated with any sourde
0 D[] any sessiomn. With some thought, we see that no difference
is made in terms of the achievable downloading time if we
® i @W@D assume that all sources in all sessions finish their digtobu

at the same time. We can then minimize this common duration
_ S ' t. Let the total rate on a link € E be denoted byc.. It is
Fig. 2. All possible distribution trees for the example in .Fig equal to the sum of all the rates on all the trees passingghrou

) ] ] ) link e, across all sessions and all sources. That is,
The ideas contained in the toy example are also given in

[14]. That work focuses on how to compute the maximum o= > > 2,
throughput, which leads to the fastest distribution. Oun-co mMEM s€S(m) 4.ocym) '
tribution in this paper is on developing distributed algfums

to identify and use the optimal distribution trees, and & th The optimization problem is as follows.
same time, allocate correct bandwidth on the selected.trees

The paper is organized as follows. The models and problem min ¢ 1)
formulations are given in Section Il. The distributed algon |T(™)|
is given in Section Ill. In Section IV, we discuss practical ¢ Z LM pm) e e §m) e M @)
issues in applying our algorithm to realistic settings,hsas — s ’

scalability and coping with network dynamics and churn. In

; . <
Section V, we evaluate the performance of our algorithm, TeS e, VeEE (3)
including a comparison with BitTorrent and FastReplica. In z{7) >0, Vi=1,---,|T(™| Vs € (™), ¥m € M.
Section VI, we discuss additional related work. The coriolus " . .
is drawn in Section VILI. Condition (2) says that, if one looks at all the multicasese

rooted at a sourcefor a sessionn, the sum of the distribution
rates on all these trees, multiplied by the distributionetim
. I _PROBLEM DE.SCR'PT'ON_ ~ should be equal to the total size of all the file chunks stored
‘We will start with a formulation for optimal content dis-at sources for sessionn. This means that every bit of the file
tribution on a generic network. It turns out the problendtored ats must travel along exactly one tree (and hence, be
is difficult on an arbitrary network. However, for overlayreceived by each receiver exactly once). A moment of thigkin
content distribution, the problem is far easier. We will @ivreveals that nothing is gained by sending the bit on more than
formulations for two possible scenarios of overlay disttion.  one tree. Condition (3) is the link capacity constraint. Atle
link e, the flow rate on the link should be no greater than the
A. Optimal Multicast Tree Packing link capacity,c.. _ _ S
Let the network be represented 6y — (V, E), whereV’ Itturn; out the above pro'ble'm is eguwa]ent toa m|n|)m|2|ng—
is the set of nodes andl is the set of links. The capacity Congestion problem. This is immediate if we defipl) =

associated with each link € E is ¢.. The utilization of link tzg?) and make the substitution of variables. But, we will
e, a measure of link congestion, is denotedihy We define a do this a little differently for ease of interpretation. Let



2™ = zﬁ”" ng) be the total sending rate at a sourcat this point, the bandwidth of each overlay link has not been
node s of sessionr;z. Select a set of constan{&ﬁm)}, each determined. We will consider two possibilities about how to
|determine the overlay bandwidth in Section II-B and 1I-C.

Since the overlay network of each session consists of gxactl

. (m) (m) ; . (m) fiose nodes in the session, any Steiner tree that covers all
solution {z,;"} andt. By (2), 2" is proportional toLs™,  nqes of the session is in fact a spanning tree. We will show
the total size of the chunks atfor sessionn. Then,={"’ = later that our optimization algorithm involves a minimum-
fw»g"”, for some constant > 0. Next, definex = 1/+. We cost spanning tree subproblem in each iteration. Shouldesom
then make the substitution of variables by= L™ /r(™ ~ Steiner node exist, it would have involved a minimum-cost
and redefinezg’?) to beuzg’?). Now, z. is the aggregate link Steiner tree problem. The former is far more tractable than t

flow rate of link e under thé redefined tree rates. Then, we gldtter NP-hard problem. One should be reminded that, athou

being proportional tcL,(sm) with the same constant proportiona
factor. Eachrém) is understood as a rate. Consider a feasib{

the following minimizing-congestion formulation. the computation for the overlay network case is far eagier, t
achievable performance is sub-optimal since the overlgged
min (4) are determined by the fixed underlay routing.
|T£7n)|
st > 2 =M vse S vme M _ _ ,
=1 B. Fixed Overlay Link Bandwidth

Te S pce, Ve €E In this case, the bandwidth of each overlay link is a
2™ >0, Vi=1,-- [T Vs € S™ Ym € M. fixed constarit determined by a bandwidth allocation scheme
external to our problem. For instance, the bandwidth may be
In the above formulation;™ can be understood as thedetermined by the end-to-end TCP control, or by bandwidth
demanded rate, and is the maximum link utilization, which allocation algorithms that enforce other allocation pebc
also measures the worst link congestion. The problem is 39ch as the max-min fairness [17]. We assume the overlay
minimize the worst link congestion subject to the fulfill-nodes know about the bandwidth on each overlay link. For
ment of all demanded rates. Léf*, #*, /i*) be an optimal instance, in the case of TCP, the overlay link bandwidth
solution of the congestion minimization problem (4). Therfan be measured. When the overlay link bandwidth is fixed,
(/|| |loos @ /||ji*||oo) is optimal to the original problem different distribution sessions become decoupled. We then
(1). In the minimization problem (4); andZ are redefined as have|}M| totally independent overlay networks. The original
the vector of tree rates and the vector of aggregate links ra@ptimization problem becomes separated |id| identical
under the fixed demand rate vectrrespectively. but independent optimization problems. The solution t@ thi

Thus, we have two equivalent views of optimal multicagiroblem will require running algorithms only at the overlay
tree packing. In the first, the objective is to minimize themy nodes, making deployment easy.
all distribution time (or maximize the distribution througut) We llustrate this by focusing on one of the overlay net-
while satisfying the link capacity constraint. In the sed¢oie works, which corresponds to one session. Let= (V, E)
objective is to best balance the network load while satigfyi represent the overlay network. For all other notationsgesin
the rate demand for all sources and all sessions. there is no danger of confusing them with earlier definitjons
Another minor reformulation will be helpful later. Let. we will re-define them. The bandwidth associated with each
stand for the utilization of linke, and leti denote the vector overlay linke € E is c., which is allocated already and is a
of p. over all links. Let||/i||» denote the maximum norm, constant. The utilization of overlay link is denoted byp..
i.e., ||f]lco = maxe.cr pe. The above minimizing-congestionAssumeS C V is the set of sources. Lef, represent the

formulation is equivalent to the following. set of all possible (overlay) multicast trees rooted at seur
i . spanning all overlay nodes. Lét; € T, be thei'" (overlay)
min  |fi]o () multicast tree and;, ; be the associated sending rate on tree
|78 ts. The rate on the overlay link € E is

s.t. Z zg?) =r™ vse 8™ vmeM (6)
i=1

Te = E E Zs,i-

Te = heCe, Ve EE (7) s€S i€ty ;
2™ >0, Vi=1,-- [T, Vs € S vm e M. (8)

s, =

The optimization problem is now

The optimization problem proposed so far is equivalent to
the problem of packing Steiner trees [15], [16], which is eom min ||| o 9)
putationally intractable. Fortunately, for content disition T, |
on overlay networks, the problem becomes simpler. For each st ZZ o VseS
session, an overlay network is constructed over exactlgetho - S
nodes (members) in the session. For any noded nodej in .
the overlay network, there is a directed overlay link frond@o Te = fleCe, Ve € F
1 to nodej. This overlay link is in fact the path in the underlay zs; >0, Yi=1,--- |Ts|], VseS.
network from node to nodej, which contains a known set of
physical links. Hence, the overlay network is directed andlyf  ,_ , .
connected. Given an underlay network aid| diStribution yer fime. we simply mean that the cveriay ik banduidth is refodvined:
sessions, M | such overlay networks are constructed. Howevesy our algorithm and is known at the time of running the aldwnit

i=1



C. Optimally Allocated Overlay Bandwidth algorithm’s convergence time. Our computational expegsn

In this subsection, we consider an alternative scenarib wif@ve shown that the scaled gradient algorithm is much faster
better performance. Instead of relying on TCP to allocatBan the unscaled one or the subgradient algorithm. Therlatt
the overlay bandwidth, leading to the partition of the olleraS Oftén used in network optimization problems. .
network into multiple independent overlay networks, wel wil Another difficulty is the large number of possible spanning
incorporate overlay bandwidth allocation into the optiatian trées, and hence, the large number of variables. Fortynatel
problem. Note that different sessions are coupled togdiper the algorithm does not maintain all possible spanning trees
the sharing of the underlay links. The solution to this peabl The following steps take place for every source at the oyerla
will require cooperation from the physical links. But, it isn€twork level. The algorithm starts out with one or few span-
possible to modify the problem slightly and run the algarith Ning trees. In each iteration, a cost is assigned to eachlggye
at only bottleneck links, such as the inter-ISP slow links. ink to reflect the current link congestion. Then, a minimum-

Let G(™ = (V™) (™) represent theverlay networkor cost spanning tree can be computed. The algorithm shifts
each sessiom. For each overlay link € £ the notation & appropriate amount of traffic (rate) from each currently
¢ € ¢ for some underlay linke € E means that linke is mgmtamed spanning tree to the minimum-cost tree. The new
on overlay linké, which is itself an underlay path. For eac Inimum-cost tree enters th_e current collection of spaginin
sessionm, let 7™ be the set of all possible spanning tree rees. Some previous spanning tree may leave the collection

on G0 rooted at source . andi™ be theit® tree inT™  its distribution rate is reduced to zero.
: 5,0 5 We next illustrate some details. L&t = |J,.q T be the

Then, the total rate on a physical liake E, x., is given by  ¢ollection of all multicast trees rooted at any source. L&

_ (m) the vector(z, ;) wheres € S,i = 1,...,|Ts|, with an arbitrary
Te = Z Z Z Z Foii indexing order for the sources. In problem (10), let theifdas
mEM seS(m) eeBm)ece ety set defined by (11) and (12) be denoted By

For each overlay link € E, recall thatz. is the aggregate
flow rate it carries. Let¥ be the vector(z.), ;. Let H
denote the|E| x |T| link-tree incidence matrix associated
with the trees inT (i.e. [H].s = 1 if link e lies on tree
o ) o t; and lH]et = 0 otherwise). Obviouslyz = Hz. Now
Note thatmin ||ji||- has the same solution asin||Z + define f.(z.) = (zc/cc +1)? and f(z) = 3,5 f(x.). The

R||so, Wheres = (k,...,x) for some small constant > 0. iective functi t ey
We replace the objective functigiyi||sc by ||fi + &]|so in (5) objective function, denoted by(z), is given by

and keep the same constraings.serves as a regularization _ 7 _ ; — Le q
term. Th% strictly positive vectok (i.e., k > 0) g%arantees J(2) = J(Hz) = Z fe(we) = Z(ce )",
that our gradient projection algorithm has a global geoimetr
convergence rate; ik = 0, we can only claim that our and (10) can be written as
algorithm converges to one optimal solution globally. ] .

min  f(z) = f(Hz) (13)

S.t. z € Z.

The optimization problem is exactly written as in (5)-(8).

IIl. DISTRIBUTED ALGORITHM: DIAGONALLY SCALED
GRADIENT PROJECTION

eck eck

A. Fixed Overlay Link Bandwidth

The goal of minimizing|/i+&|| is to balance the network The derivative of the objective functiofi(z) with respect to
load. The same objective can be achieved by minimizing.: is given by
> ecp Je(we), where f. is some convex increasing function .
on z. > 0. Such an objective function discourages large 0f(2) _ Z Of (ze) _ Z i(ﬁJrH)q—l.
link rate. One such function is the norm ||i + ||, = Ozsi & Oxe G~
(3 ocis(pe +£))Y4. In fact, ||ji+ 7|« can be approximated A -
by [Ifi + Ellg: @sq — oo, [|fi + Ellg — || + El[oc. We Will  Note that 2L(2<) s the so-called first-derivative link cost of
assumey > 2 throughout. Sincemin ||i + £||, is equivalent |ink ¢ [18], [20]. It reflects the current congestion level at link
to min ||ji + &]|g, after a substitution ofic with z. /c., we get , 9/G) ig the first-derivative cost of the tref;, which is

' € B
an approximation of problem (9) as equal to the sum of the first-derivative costs of the links on
: Le q 10) the tree. It reflects the current congestion level of the trge
i Z( Ce ) (10 The first-derivative tree cost is an important quantity. Wi w
cel see later that our algorithm is to shift flows from trees with
|7 higher costs to the minimum-cost tree. The second deriativ
Sty zyi=rs, Vse€S (11)  of f(z) will be used in the scaling of the algorithm. With
i=1 respect toz, ; andz; ;, it is given by
250 >0, Yi=1,---,|Ts|, Vs€S. (12) P f(2) ( 0
Lo . . . ) _ q\q Le -2
For optimization problems with the simplex constraint (11) G Z 2 (? + k)% (14)
S, 5,7 e e

the optimality condition is especially simple [18]. It hasem e€ts,iNts,

shown in [19] and [20] that there exists a special gradieply eachs ¢ S, let i, be the index of a minimum-cost tree

projection algorithm. For our case, the gradient projectiq,gied ats (i.e., with s as the source). That is
algorithm can also be easily extended to an equally simple ’ » ’
af(z

scaled version. The latter overcomes the issue that outgrmob i,(2) = argmin { !
may be ill-conditioned, and hence, drastically improves th s(2) = aMiNar, ey D25~




If there are multiple minimum-cost trees, we choose dreti;(k) be a short hand foi,(z(k)). It is easy to show, for
arbitrary one. Since the feasible sétis a convex set and thes € S andi # is(k),
objective function is a convex function, we can characeeriz

an optimal solutionz* to the problem (10) by the following 0g(2(k)) _ 0f(=(k)) _ Of(x(k))
optimality condition. 0zs.i 0zs.i 025, (k)
af (=) The first derivatives are given in (14).
Z Z 3 (25— 25;) =20, Vz € Z. (15) The algorithm in (16) is actually the constrained steepest-
Zs,i ’

descent algorithm. It is well-known that the steepest-eesc
) o N _ ) algorithm can be slow if the optimization problem is ill-
This optimality condition can be equivalently written asr f conditioned. It happens that the minimizing-congestiopety

se€S ity €T

any sources € .S, of network problems is often ill-conditioned. In our cadee t
af(=*) _ af(=) prc_)blem becomes more ill-conditioned w_hen the pa_rameter
zE.>0onlyif | > ,Vts; € T g in the ¢ norm becomes larger. An ultimate solution to
' 0z, 0zsi ' an ill-conditioned problem is Newton’s algorithm. However

ewton'’s algorithm is generally very complex since it reqsi

That is, for every source, only those trees with the minimuﬁﬂI X fthe Hessi trix of the obiective functiear
first-derivative cost carry positive amount of flow. Thistint - c INVErS€ OT Ihe Hessian matrix of the objective functeor.
large problems, this computation is generally impractivéd

itively suggests that, in the algorithm, we should shift flmw *. : : ;
the minimum-cost trees from other trees will next develop the diagonally scaled gradient algorithm
' Iylvhich is a much simpler alternative and a good approxima-

It turns out this is_ exactly what the gradient projectiotlon of Newton’s algorithm. The scaled gradient projection
algorithm does. We will develop the gradient projectionoalg : 9 : 9 Proj
algorithm can be written as

rithm following the proposal in [20] to solve the problem {10

But we will adq diagonal scaling to speed up the algorithm’s 2k +1) = [2(k) — 6(k)D(k)Vg(2(k)]4,

convergence time. ] N o ] i ]
The equality constraint in (11) implies that, for each Sewcwhere'D(k:) is a positive dgflnlte matrlx.. For diagonal scaling,

one of the variables depends completely on the rest of thik) is chosen to be a diagonal matrix.

ve_lrlables. We can eliminate this variable and ha_ve a problem D(k) = diag(d, i(k))_l]ses’@;éis(k’y

with fewer variables. To be concrete, at a feasible veetor

let's eliminate the variable; ;, for eachs € S. Define a new That is, the diagonal entry correspondingzto; (k) is chosen

objective functiong(2) on RI7I=I5I, where 2 consists of the to be(d.i(k))~'. For eachs € S andi # i.(k), the value of

remainingz, ;'s after z, ;. is eliminated for eachs. Without ds,i(k) is chosen to be

loss of generality, suppose, for each sousce, corresponds 02g(2(k))
to the tree with the largest index, i.é,,= |7Ts|. Also suppose ds (k) = 9 ;
the sources are index from 1 t§|. Then, 923,

This way, the matrixD(k) approximates the inverse of the

2 =(21,05 -5 21|70 =15 22,15 - -+ 22, Ty | 15 Hessian ofg at z(k). For eachs € S andi # is(k), the
L3S 28T )- second derivative of is further given by
We will call the domain ofy where? lies the reduced domain. 9%g(2(k))  0*f(z(k)) | 9*f(z(k)) _y 0% f(z(k))
We let 022, 022, 022, 025024 i (1)
s,1 s,1 s,1s (k) > Jis (k)
. Tl The second derivatives are given in (14).
93) =f(z10se - 2umn T = Y A We can now collect different pieces of the development
j=1 above and formally give the diagonally scaled gradient pro-
T2 -1 jection algorithm in the original domain whetdlies. A slight
B0y BTy -1 T2 — D Z2gi e generalization is present in (17). .
i=1 Diagonally Scaled Gradient Projection Algorithm
[T)si-1
z(k+1)=alk)z(k) + (1 — a(k))z(k 17
e s s = S ). (k+1) = a(k)z(k) + (L —a(k))=(k) (A7)
j=1 Zs,i(k) = (18)
Th timizati lem in (10)- (12) i ivalent t (k) — (d. (BN . (2LG(R) _ 9f(2(k))
e optimization problem in (10)- (12) is equivalent to [26.4(k) — 6(k) (ia?(i)-) (k)( 5 e N4,
min g(2). Rk N
220 Ts = Da<<iml ot k) 7 ()i 0= 0s(K),
This problem can be solved by the gradient projection algesth
rithm.
q(qg —1) jxe(k) 2
5k + 1) = [5(k) — 6(k)Vg(2(k))]-, (16) dsilk) = > F (TR
e€ts iUty iy (k) \ts,iNts iy (k) €
where §(k) is a positive step size and], is the projection (29)
operator oré > 0. In this case[y],; just means that, if; is a In (17), a(k) is a scalar orfa, 1], for somea, 0 < a < 1.

component ofj, we takemax(y;, 0) as the corresponding com-(17) says that the new rate vector at tfiet- 1) iteration,
ponent of the vectofy];. The key is to computd/g(2(k)). =z(k + 1), is on the line segment betwee(k) and z(k).



The main part of the algorithm is expression (18), whickach iteration, at most one more tree becomes active. For the
computes the end point of a feasible directiaf¥), entry by original linear model (9), there are at mddt| + |S| active
entry. There are three cases. trees in any extreme point solution. But since this gradient

case 11If a tree,; is not the chosen minimum-cost treedlgorithm is a kind of interior point method, strictly spéat,

(with indexi(k)) andt, ; has a positive flow, its rate || +[S| is not really an upper bound. Nevertheless, it should
will be reduced (more precisely, if ; is a minimum- give a rough sense on what the bound might be.
cost tree with positive flow rate but not the chosen We stress that the reason to apply the scaling factor is to
minimum-cost tree, its rate will keep the same). counter the ill-conditioned problem whenis large. Though
case 2 If a tree, ; is not the chosen minimum-cost tree an¢he steepest-descent gradient projection algorithm haeearl
the tree has zero flow rate, then the rate stays at i.€., ggeometric) converge rate asymptotically, in piagtit is
case 3 Ift,; is the chosen minimum-cost tree, the rate giften slow if the optimization problem is ill-conditioneBiag-
the tree is increased so that the total rates of all treegal scaling often significantly outperforms the plain ptes-
rooted ats will be equal to the demanded rate. descent algorithm. In an ill-conditioned problem, singtat
Note that the description in case 3 ensures thj is feasible Changes of different variables have disproportionatecefen
(in 2). Sincez(k) is also feasible, by (17), the new rate vectoi€ oSt (objective value) change [18]. For convergence, th
2(k+1) is feasible. Hence, if we start with a feasible solutio§t€P Size in the iterative algorithm must be tuned accorting
in 2, z(k) is in 2 for all . 4 the va_rlables that cause large cost cha_nges. However, such a

What remains to be said is how much the rate is reduc8ifP size can be too small for other variables, and as a result
in case 1. Note that the expressigé(z(’“)) _ 9/G(R) s the their values hardly change from !teration to itera_tion. The
difference in the first-derivative cost Zt;étweenzfﬁfa(ktz)rgﬁand diagonally scaled algorithm essentially re-scales theis

the chosen minimum-cost tree, and the difference is alwag(% that single-unit changes in the scaled variables havitasim

non-negative. Intuitively, the amount of reduction shoblel hagctthgnsi;?elecﬁiro?é?;:ilgﬁ tr'l:;[r d?;fjerrgr:??rlgerg Jzeeeé%?“ng
proportional to this difference. Indeed, if we ignore thetfa P P

(d,;(k))~" in (18), the rate reduction is proportional to thi step sizes, each roughly being proportional to a power of

Yhe worst link utilization on the tree. Note that by (19), the
difference with a proportional constant (step siZg):) > 0. . -1 - '
The factor (d, i?k;))p—l does diagonal(scaﬁing W%ich Canscallng factor(ds ;(k))~! is roughly inversely related to the

effectively deal with our ill-conditioned problem. Scajipy ~COSt dlfference*%s(f’)) - giv(#(lzzz Thus when the step size is
(ds,i(k))~* can be understood as allowing different compd00 small for a tree (i.e., the cost difference between the tr
nents of the vectoe to use different step sizes. Note that th@nd the minimum-cost tree is also small), the scaling factor
expression foi, ;(k) in (19) corresponds to th&" tree; the (ds,i(k))~" will be large and can compensate the small step
sum is over the non-overlapping links between ifietree and Size. The resulting scaled algorithm is far superior to laénp
thei,(k)'" tree, the latter being the minimum-cost tree. ~ gradient projection algorithm.

The algorithm in (17)-(19) is a distributed one. In order to
compute the tree cos§LZ in (14), and the scaling factor, B. Optimally Allocated Overlay Bandwidth

(ds,(k))~" in (19), each linke can independently compute The problem described in Section II-C can be worked
its corresponding term based on the local aggregate rate, out in a similar way, Iea_dlng to a scaled gradient projection
passing through the link. Then, the tree cost and the scalidigorithm. Substitutg:. with z./c., the problem becomes

factor can be accumulated by the souscbased on the link . Te p

values along the tree. To find the minimum-cost tigg:), ™I Z(* +) (20)
each source needs to compute the minimum-cost directed c€B ¢

spanning tree (MDSP). Both centralized and distributed al- 7™

gorithms exist for computing the MDSP [21] [22] [23]. Both s.t. Z 2 =My e 50 vm e M (21)
achieveO(n?) time complexity for a complete graph witi =

nodes. In the distributed version, the amount of informmatio _(m) - 0, Vi=1,---,|T™| Vs € S Vm € M. (22)

exchanged is als®(n?). In our implementation, each source 5% =
collects the (overlay) link costs from all the receivers asds L s€8™) 1 (m) . .
) . etT = {J,,en Ts'~ be the collection of all multicast
acentral_|zed algor.lthmlto compute the MDSP. _Other than th%es rooted at any source for any sessionmn. Let z be
the gradient algorithm is completely decentralized. e vector(=™) wheres € S(™ m e M.i— 1 7(m)
In addition to fast convergence, another strength of thﬁgth an ar%friar) e :Sn o de’rT]%r the Zs; s ’||n5 ro|E)Iem
gradient algorithm lies in that it avoids the enumeration ' Itrary indexing u -np

all possible spanning trees. The source only needs to man -(22), let the feasible set defined by (21) and (22) be

the set of active multicast trees, i.e., those trees witlitipes hoted byz. f(m) . .
flows. At each iteration, the source computes a new minimum-Let E :_UmeM £ be the collection of all over.lay links
cost tree. A non-active tree won’t become active unless itif all sessions. Letl denote the £| x [T'| overlay link-tree
the minimum-cost tree. The source only adjusts the flow raté@sidence matrix associated with the treedirfi.e. [H]z; = 1
among the set of active trees. The set of active trees usuallypverlay link ¢ lies on treet; and [H],; = 0 otherwise).
is not very large if the algorithm converges fast, since, &ecallE is the set of underlay links, Idf denote théE| x | E|
407y canb ced with updter 1) — A()(0) underlay link-overlay link incidence matrix associatedhithe
can be replaced with a more general up 1) = A(k)z(k)+  overlay links inE (i.e. [H].c = 1 if underlay link e lies on
I— where A i Ts| x Ts| di nal matrix . . .
\(Nith giggg)gﬁgf)éntriees?n t(:g iitgrgﬁfﬁ,|for| so%esge,%L ‘gdgaglj.ng enzhre Overlay link (underlay_ path&, and [H]eé = O_OtherW|se).
feasibility of 2(k+1) in Z, itis required thaf® | -, | 1| as,i(k)(Zs,i (k) — For eac_h undgrlay link € E, recall thatz.. is the aggregate
z5.4(k)) = 0, wherea, ;(k) is a corresponding diagonal entry df(k). flow rate it carries. Letz be the vector(z.).cg. It is easy



to seez = HHz. Note that an underlay link might carry continuous and positive of), co). Assuming the links are in-

multiple copies of the same file chunk distributed by one tregsxed fromt to | £|, the Hessiav?2f = diag 2%, - - - | 0*f ]
2 Defmef@(xe) - ( C/C‘3 + H)q and f( ) ZeEE fe( e) o2 8.35‘ 2
The objective function, denoted bf(z), is glven by is an |E| x |E| diagonal matrix with nonnegative diagonal
entries. Furthermore, it > 0, the diagonal entries o¥? f
f(z) = f(HH?z) ZEfe o) = 2 o + k)7, are positive and bounded below lyin, . {44+ k121,
ee ec

We assume there |s at Ieast one feasible solutionz{@),c

and (20) can be written as Z satlsfymgH 2(0 ), and define a compact set
) PN ={z € Z|f f } Smce this set is compact,

min  f(z) = f(HHz) f ‘must attain a mlnlmum on this set. Hence, there is' &

S.t. z€Z. 2, satisfying f(z*) = f*, where f* = min,cz, f(z). We

call any suchz* an optimal solution. Denote b¢* the set

The derivative of the objective functiofi(z) with respect to ¢ optimal solutions (there may be more than one optimal

(m)

Z,; s given by solutions since, althouglfi is strictly convex,f is not), i.e.,
0f(z) 8f ) Z" ={z € Z|f(2) = min f(2)}.
(m) Z Z #€20
Zs.i eet(m) e€é For simplicity, we assume the scaling factty; (k) = 1.0.
q , Te g—1 The convergence results still hold for other scaling fator
- Z Co ' Co +8)1 as long as{d, ;(k)} are bounded between two fixed positive
eet(m) ece scalars [24] [18]. Note thafd, ;(k)} is bounded below by

min,_ ;{9 k9-2} and can be bounded above by a fixed

constant if tﬁe demand rate vectois carefully chosen so that
a feasible solutio®? is achieved after a few steps.

For eachs € S(™ in sessionm, let i'™ be the index of
a minimum-cost tree rooted at(i.e., with s as the source).

That is, Let &, = a/(Lmax.cs |Ts|), where L > 0 is an upper
(m) _ af(2) bound of the norm o2 f over Z,.
is™(2) = argm'”{i;tgﬁpeﬂmq{a (m)} Lemma 1:For 0 < ¢ < 4¢;, we have for allk such that
' 5,8 z(k) € 2o
Let i{™ (k) be a short hand oft™ (z(k)). a L N2
Diagonally Scaled Gradient Projection Algorithm Fla(k+1)) = f(2(k)) < _(Jmaxses T, | _5)‘|Z(k)_z(k)” ‘
(26)
z2(k+1) =a(k)zZ(k) + (1 — a(k))z(k) (23) The proof of Lemma 1 follows the proof for a similar lemma
(m) in [24]. The only change involves substitution of approfia
Z,; (k) = (24)  constants.

m m " ; Therorem 2:(Globally Convergence) Suppose> 0. For
(207 (k) — 8 (k) - (a7 ()~ (22500 — a‘zf( ®L)]4, anys, 0 < & < 8y, every limit point of {=(k)} generated by

_ ) o i) (k) the synchronous gradient projection algorithm (17)-(1&%hw
if i a5 (k); 2(0) € Z, is optimal.
rm _ S LT 2 () 5£f;‘)(k), if i =™ (k), Proof: With the constant step size< %, the
_ right-hand side of the inequality (26) is non-positive. iden
with if {z(k)} has a limit point, the left-hand side tends@oThe
d(m)(k) _ (25) algorithm (17)-(19) can be denoted as a functié(x), i.e.,
ot z(k + 1) = A(z(k)). Therefore,||z(k) — z(k)|| — 0, which
Z Z q( q -1) ]f) + )2, implies that for every limit pointz of {z(k)} we havez =
o () ) gy A( ). It is easy to show i = A(2), for any s € S, we have
EELLTVE "ty )\ O o) z5 >0 only if 2L < 920G - T, which is exactly the
The resulting algonthm is still fully distributed. gpé'rznill% g’(gﬂ%ﬁ’g 2'”1 (21%21 [fg]z) is stationary (Proposn:)n
When the regularization vectot is strictly positive, the
C. Convergence Results diagonal entrles ofv2f are positive and bounded below by

We will show the convergence results of the synchronousin €E{q 91 a-2} > (. Wheng = 2, the diagonal entries
gradient projection algorithm under constant step size, i.
d(k) = ¢ for all k. We will adapt the results from [24] to find
an upper bound on the step sizehat guarantees the global
convergence of the synchronous gradient projection dtguari
to an optimal solution. Furthermore, with the strictly pivs
regularization vector (i.e., x > 0), the convergence speed is
linear (i.e., geometric). The same convergence resultsbean
said for the case of optimally allocated bandwidth.

In the optimization problem (13), we assumpe> 2, so that

fe(ze) is continuous on the intervdD, o), tends toco @S s feasible solution means that the aggregate link flow rateimore than
x. approacheso, and its derivative and second derivative arae link capacity for each link.

of V2f are posmve and bounded below hyin EE{“(qc2 Dy >

0 for all & > 0. In these two cases, all conditions for global
geometric convergence required by [24] are satisfied. We hav
a global geometric convergence rate for algorithm (17)-(19
Therorem 3:(Globally Geometric Convergence Rate)
Supposex > 0. Let § satisfy0 < ¢ < §;. The sequence
{z(k)} generated by the synchronous gradient projection algo-

rithm (17)-(19) converges to an element&f with an initial



feasiblez(0) and the convergence rate is linear (i.e., geometria)most certainly impossible. There is an alternative fraoré

in the sense that for ak, in which some routers or devices attached to the routers are
. . deployed with our algorithm, while others not. For instance

fG(E+1) = 7 < (1= Dsd)(f(2(k) — f7)- our algorithm can be deployed at the cross-ISP links and
Furthermore, whem = 2, the above conclusion holds for all2CCess links, where the bandwidth is more likely to be small.
k> 0. In this framework, for those physically directly connected
The constants and parameters are as follows. — router pai_rs deployed with our algorithm_s, we model the
a/(Dy + &), Di = ((50 + 1)(D3)® + 1 + 201 + p_hy5|cal links between_ them exactly; while for those not
6L(51)2/a) max,es |T;| and D3 = Dmax{l,6;} for directly connected devices, routers a_nd end-systems, e le

some D > 0. Moreover, D is bounded above by TCP allocate the end-to-end bandwidth bgtvveen then_1 and

Di(Dy + (\/m + 1)i‘|HT||)/6., Where D, = model these end-to-end paths as overlay links. Thus, in our

graph of the network, some links are real physical links and

otpers are overlay links with TCP-allocated bandwidth. The
orithm applies as usual.

éﬂg ithm appli I

max{||Q~ Y| | @ an invertible submatrix off}. & < L are
any two positive scalars such that the diagonal entries
V2f(Hz) lie inside [, L] for all z € Z,, whereV2f(Hz) is

a positive diagonal matrix.
P g C. Network Dynamics and Churn

Thus far, we assume that the network is stable and no
) ) i ) ) members depart or join until all existing members finish

The formulations in the previous sections omit some detaﬂﬁywnloading. Since we are mostly considering the distidout
that may be required in practice. The purpose of the omissigh massive content on managed infrastructure networks, the
is for ease of presentation. The simplified formulationstatn  assumption is reasonable for the most part. However, we do
the teChr"CaI core, or the most dlfflCUlt aSpect, Of the FEDbl need to dea' with |0w_degree member Churn and network
For the most part, these formulations are without loss g{namics such as link capacity variations and failures.

IV. PRACTICAL CONSIDERATIONS

generality. Practical details can be easily incorporatéd the | any source owning unique chunks leaves before it finishes
formulations. We now address several of them. disseminating them, those chunks are no longer available

in the network. To minimize such risk, in the optimization
A. Overlapping Content formulation, we can adjust the requested sending ratesf

We introd rtual handle the situat h the sources. If any source is expected to leave the network
e Introduce virtual sources to handle the situation Whetg, it may request (or be assigned) a higher sending rate so
some sources share overlapping (common) chunks. For egely i can spread its chunks to network more quickly.

group of chunks that exist at multiple sources, we creaté anher types of network and member dynamics include link

longer contain overlapping chunks. If, initially, the waymks i, the rest of the network. Such adaptive ability is intiniate
overlap at different original sources is not very complé6 t connected with the algorithm's speed of convergence in the

number of resulting virtual sources will be small. Othe®yis gaiic case. Since our algorithm is the result of conscious

we can alws_;lys neglect some redundant sources to reduce dhe 1o improve the convergence speed (by diagonal sgalin
number of virtual sources. We have conducted a separatg sty o gradient algorithm), we believe it is superior in cupi

on how to do this systematically. %éith network and member dynamics compared to other similar
At each iteration, each virtual source computes the MDSfsyribyted algorithms. In addition, our distributed aigam is

tree, updates the tree rates and allocates chunks to tve agibyra)ly robust because of the lack of reliance on a central

trees. Since the capacity of a virtual link is infinite, itssfir o4a that might fail. In Section V, we will show a small

derivative link cost must be zero. In the resulting MDSRyample of how our algorithm successfully adapts to the
tree rooted at the virtual source, the virtual source isctliye departure and arrival of receivers.

connected to all the original sources that contain the over-
lapping chunks in question. The virtual source can inform t . . . . .
orliaginzgl sources ab?)ut the chunk allocation and leave ttlmhcrb' Scalability and Hierarchical Partition of Sessions
transmission to the original sources. The original soudms In each overlay network, the sources know the complete
not actually receive the chunks from the virtual source, biftformation of all overlay links and need to run the expeesiv
only the control signals. In actual operation, one of thgiodl centralized MDSP algorithm (There is a distributed MDSP
physical sources will act as the virtual source and run ti@égorithm [23]. But the price to pay is the potentially slowe
algorithm assigned to the virtual source. speed due to the coordination overhead of distributed op-
eration.). Thus, our gradient algorithm can only deal with
) ) i , distribution sessions with limited size, say several tlaoals
B. Mixed Architecture of Fixed and Allocated Bandwidth ot members in each session. In order to improve the scalabili
In Section 1I-B and II-C, we see two content distributiorof our algorithm, we shall partition each session and run the
scenarios with either fixed or optimally-allocated overlaglgorithm hierarchically, as most scalable network altonis
bandwidth. The latter should achieve better downloadimgeti would do. Though currently we don’t have a well-defined way
than the former. However, the latter requires the deploymen partition the session, we will show one naive approach to
of our algorithms to all network element, i.e. routers, whis partition a large session in Section V.



E. Asynchronous Algorithm simulator so that it supports general physical network lmpo
Time synchrony is usually difficult to maintain in a largedi€s: T_he overlay link bandw@th, Wh|ch_ is the per-conreatti _
network. An asynchronous version of the scaled gradiem-algf@ndwidth at the underlay, is determined by the max-min

rithm (17)-(19) (or (23)-(25), respectively) could be dieyed andwidth allocation [17]. In the BitTorrent simulation,ew

and the corresponding convergence result could be statti§ the following simulation environment..
following the approach in [26] [24]. « Each peer opens 5 uploading connections and one of them

is selected by optimistic unchoking, which means that it
connects to a random neighbor.
_ Vj PERFORMANCEEVALUATION . o The seed uses the smart seed policy, which is introduced

In this section, we show performance evaluation results in [28]. Seeds are with distinct files.
about our optimal swarming algorithm and compare the op-. All the peers join the network at time 0 and continue to
timal swarming with other interesting swarming techniques  be in the network until all of the leechers complete the
To fully appreciate these results, it is important to recall download.
that the application setting of our algorithm is infrasture- o All the other parameters follow the regular BitTorrent
based content distribution networks. Unlike the end-syste environment.
based P2P file-sharing networks, these infrastructurelayerraple | summarizes the simulation environment for our tests
networks are generally managed, moderate in size (up to tens
of thousands of nodes instead of millions), and relativeiple TABLE |
with low node arrival and departure dynamics. BITTORRENTSIMULATION PARAMETERS

We will compare the performance of our gradient algorithm

(GP) with known theoretical bounds, BitTorrent (BT) and S #Sifeds F”eGg'%gSD&TBSee Nelghggfhggd Size]
Adaptlve_FastRephc_a (AFR_) [6]. We _se_lect BitTorrent b_enau Profile 4 I 128 VB 1840
its techniques are interesting and it is very popular in ends profile 5 2 64 MB 18- 40
system-based distribution. The techniques of BitTorream c Profile 6 1 128 MB 38-80
certainly be applied to infrastructure-based distributand Profile 7 1 32 MB 38-80

we would like to see how they compare with our algorithm.

Since infrastructure-based content distribution is atinedly . o .
stable environment, we will do experiments with BitTorrent 2) Adaptive FastReplicaAFR supports single source. To

under low node arrival and departure dynamics. We select AFRMPare with AFR, we partition the physical network into

because it can be thought as using multiple multicast trees §everal overlay networks, each for one source according to

distribution. But only a subset of the trees are allowedcivhi &% in faimess allocation. AFR constructs two-phasesire
we call two-level two-phase trees. In each of these trees, s described earlier. From [6], the theoretical throughgfut

source is connected to one receiver at level 1, and then ER in its best behavior can be computed as

level 1 receiver is connected to all other receivers at |8véd Z min{cngn,,  min  {cnn, (27)
might appear that such a collection of trees is quite enoagh f = O = mt

achieving near optimal performance. In an access-constiai o ] )

network, this is indeed true. However, we will show this i¢ ngvhereny is the sourcen;, i = 1,--- , m are the receivers, and
the case for networks with interior bottlenecks. In thategas Cnin, IS the end-to-end path (overlay link) capacity between
different, maybe larger, collection of trees is needed. n; andn;.

Although we are more interested in network interior bot- 3) Theoretical Bounds:Some theoretical results are used

tlenecks, our algorithm can equally deal with bottlenecks &S performance benchmark in our performance comparison. In
the access links, at the ISP backbone or at the cross-I&peral studies [29]-{31], researchers have analyzed &lmod
links. Hence, we will consider all these cases. The comrakrcPf P2P file sharing among residential users in low access-
ISP backbone and cross-ISP topologies are obtained from &R¢€d environment. Each participating end-system has an
Rocketfuel project [27]. In the terminology of BitTorrers, UPlink (to the network) and a downlink with limited capacity
seed is a source, and a leecher is a receiver. In the previdii® capacity of the network is considered unlimited. The
sections, our objective function is the worst network méition SOUrce is to distribute a file td receivers. Let the uplink
||ills. In the evaluation part, we will focus on the sourcédownlink) bandwidth of receivef be u; (d;, respectively),
throughputR, = r,/||jil|-, Wherer, is the scaled sending fori=1,--- . L. Let th_e u_plln_k capacity _of the source bg.
rate, and the downloading time= L,/R,, since these are Then, the maximum distribution speed is shown to be
what BitTorrent experiments vyield directly. However, riéca Us + Y 1ejeq Wi
that the two measures are the two sides of the same coin. min(us, min d;, ===). (28)
The regulation termx should be selected small enough 1=k L
so that < does not dominatgi. Recall thatx is used to In (28), the three terms are the optimal speeds when the
guarantee globally geometric convergence. Even-f 0, the bottleneck is at the source upload link, at a download link,
proposed algorithm still converges and has a locally gedmetor due to the aggregate upload bandwidth, respectively.
convergence rate. In practice = 0 often works well enough. By two-phase distribution, we mean each distribution tree
has a depth at most 2. The following fact is known to be true.
. . Fact 4: In a network with only access-speed constraint,
A. The Performance Evaluation Metrics the two-phase distribution [29] achieves the (overlaywoek)
1) BitTorrent Simulation:We use the Bittorrent simulator routing capacity [29], which is (28).
developed by Bharambe et. al. [28]. Since the original sim- In the single source case, there is a maximum flow from the
ulator only supports access link constraint, we modified tls®urce to each receiver. The minimum of all these maximum
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flows will be called themax-flow limit(MFL). The max-flow BitTorrent’s performance is not bad compared with the
limit is a throughput (total distribution rate) upper bounfl optimal value. This was explained in [34], which models the
all nodes but the source are receivers, the max-flow limit downloading time of BitTorrent. It shows that, in the case
achievable, a result known as Edmond’s Theorem [32] [33]that a flash crowd arrives at the same time, the bandwidth
constraint is at the access links, and the receivers stay aft
they finish downloading, BitTorrent achieves near optimal
istribution speed. In Fig. 3 and 4, we show the performance
mparison of different distribution schemes under pradfile

d 4. The results under profile 2 and 3 are omitted for brevity
e download percentage refers to the total amount of data
wnloaded at each time instance normalized against the tot

B. Bottleneck at the Access Links (Profiles 1 to 4)

In this case, we assume the network has infinite capac
but the access links have finite capacities. We also assuahe
all access links are deployed with our gradient algorithm.
the four test cases (profile 1-4), we have a single source WH

uploading bandwidth.,. Let u; andd; be leecher (receiver) . qownloaded at the end of the distribution. Since the two
'S uploagl and download bandwidth, respectively. ) lines have different slopes, we can extrapolate the lines an
« Profile 1:u; = d; = 360 Kbps for all 299 receivers, gypact the gradient algorithm to do much better if the file
us = 640 Kbps. The download link is the bottleneck. gj;e hecomes larger. This observation seems to contramict t
o Profile 2:u; = d; = 360 Kbps for all 299 receivers, sgnclusion in [34].
u; = 280 Kbps. The source upload link is the bottleneck. giiTorrent has the advantage that it does not need to main-
o Profile 3:d; = 360 Kbps, u; = 200 Kbps for all 299 5in the routing tables and the trees explicitly. Howeverce
homogeneous receivers, = 640 Kbps. The aggregate ye are dealing with infrastructure-based content distidiou
upload bandwidth is the bottleneck. _ networks with low network dynamics and moderate sizes,
o Profile 4:d; = 360 Kbps for all 100 receiversu; = configuring routing tables and maintaining trees in such an
100 Kbps for half of receivers, and; = 1 Kbps for gnyironment are infrequent events; they are not necegsaril
the rest receivers:; = 100 Kbps. The aggregate uploadine gifficult part in such networks, as long as the number
bandwidth is the bottleneck. of trees is not too large. The costs of the algorithm can be
justified by the economic gains from better network utiliaat

TABLE |
or performance.

COMPARISON OF DOWNLOADING TIME(MINUTES) AND NUMBER OF
ACTIVE TREES.

300 100

g o,
] [} P
Profile 1 [[ Profile 2 || Profile 3 ][ Profile 4 = 250 £ w80
Optimum 23.8 30.6 42.4 3314 g 200 ¢ o
BT(50%) 27.6 41.0 449 264.8 § 150 s
BT(95%) 28.5 41.3 49.7 428.6 S 100 8 4
BT(100%) 304 415 51.0 441.8 5 % 20
BT(avg) 27.7 41.0 446 296.0 g % e p 8o
AgPR ggg ggg 35; gg;g = 023 24 25 26 27 28 29 30 31 00( 5 10 15 20 25 30 35
GP #irees 3' 2' 3' 53' Time (minutes) Time (minutes)
AFR #irees|| 299 299 299 100 () (b)

Fig. 3. Profile 1: (a) number of leechers that have completechti@d over

In Table II, the optimal downloading time is computed fromi™®: (P) download percentage over time.

by (28). The results indicate that the gradient algorithraiis
near the theoretically optimal solution.

1) Comparison with BitTorrent:Table Il shows the time
when 50%, 95% and 100% receivers finish downloading,
and the average downloading time in BitTorrent, respelstive
The average downloading time is defined as the sum

100

80

60

oeompleled leechers
[o2]
o

40
30 BT ——

Download percentage

the receiver downloading times divided by the number ot % s 20 -
receivers. Alternatively speaking, the BU() time is the 5 % oGP O o GP -~
0 50 100150200250300350400450

median of the downloading times, the BT(0%) time is 200 250 300 350 400 450 502002
the maximum of the downloading times and the BT(avg) Time (minutes) Time (minutes)

time is the mean of the downloading times. The gradient @) (0)

algorithm (?Utperforms B|thrren_t with reSpe.Ct to the WorStFig. 4. Profile 4: (a) number of leechers that have completechtimd over
case (maximum) downloading time. In Profile where the time; (b) download percentage over time.

receiver-side upload bandwidth is extremely heterogesieou

the average downloading time of BitTorrent 3§ minutes 2) Comparison with AFR:The AFR downloading time is
shorter than that of the gradient algorithm; however, thgiven by (27). Table Il shows that AFR’s two-phase approach
worst-case downloading time of BitTorrent is more thid) achieves the optimal downloading time when the bottleneck
minutes longer than that of the gradient algorithm. This either at the download link or at the source. But when
means in the case when BitTorrent suffers from the ladtie bottleneck is due to the aggregate upload bandwidth,
chunk problem severely, the gradient projection algorith®FR fails to achieve the optimum, although we know that
can sacrifice the average downloading time to improve tlseme other two-phase solution is optimal. The reason is that
worst-case downloading time greatly. In all other profikb&® in AFR, every receiver is required to relay all chunks it
gradient algorithm is always better than BitTorrent witegect receives from the source to other receivers. This unnegessa
to the average downloading time. constraint leads to a sub-optimal solution. AFT doesntvall
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. . TABLE Il
the breadth-first search tree, but an optimal two-phase tr&®e pistriIBUTION OF BANDWIDTH ALLOCATED FOR DIFFERENT TREES

does. Nevertheless, AFR achieves good performance in this
access-limited situation.

Profile 1 [[ Profile 2 [[ Profile 3 ][ Profile 4
DFS 99.4% 99.999% || 98.91% 1.93%
BFS 0.26% 0 0.754% 0.95%

Two-phase|| 0.33% 0.001% 0.333% 97.1%

A wish to see how our algorithm performs in infrastructure-
O mode content distribution. We did experiments with the ISP

Sprintlink’s backbone obtained from [27]. The network has

Tree 2: Breadth First Search Tree (BFS) ~Tree 3: Two—phase Tree 315 backbone nodes and 1944 links. It is the largest backbone
ISP with the highest node degree among the six commercial
Fig. 5. Structures of trees on the overlay network backbone networks that the RocketFuel project provides. We

attach 100 peers with unlimited access bandwidth randomly

We also compare the number of active trees AFR and tiesome backbone nodes, with at most one peer per backbone
gradient algorithm eventually use. The gradient algoritses Node. One may think a peer is a large content distribution
fewer trees than AFR. We inspected the active trees. With th@rver cluster. Among the 100 peers, we choose 2 sources
access-link constraint, the gradient algorithm uses thiegs With the normalized sending rates = 1.0 (dimensionless).
of trees, the depth-first search tree (DFS), the breadth-firsWe did several experiments with the link capacities uni-
search tree (BFS), and a two-phase tree. Fig. 5 shows tREMIy distributed in some range. The actual link capacity
structures of the three types of trees on the overlay netwoflata is unavailable. We find the gradient algorithm ofteregiv
In general, there exists an optimal solution that uses orifjvial optimal solutions. After inspecting the solutioasd the
two-phase trees for networks with such a star topology. Bagtwork graphs, it turns out that the ISP backbone is poorly
it seems that the gradient algorithm prefers the chain-li@nnected. There are many links that lies on all the routing
DFS tree. It may appear counter-intuitive that such a chaipaths between one peer and all other peers, which means if
like distribution path is preferred because the chain selemsany one of these critical links is removed, at least one peer
involve largest delay. However, this is in fact not true hesea Will be disconnected. If these critical links do not have imuc
of our fluid model of traffic and because we do not considétrger capacity than other links, they are likely to become
propagation delay. The bit that arrives at node 1 from tHBe bottleneck. The gradient algorithm is able to locate the
source can immediately be transmitted to node 2, and to nd¥itleneck immediately. Other five ISP backbones show the
3, so on. We leave it to future work on how to incorporate th&@me property. Presumably in reality, the ISPs are aware of
propagation de'ay in Opt|ma| tree selection. such links and would ensure they have Very |arge ban.dW|dth SO

Furthermore, transmitting chunks by a chain-like DFS trdBat they are never the bottleneck. In order to test our élgor
can ensure fairness, i.e., a receiver downloads the samenamén this non-trivial scenario, we assign the same bandwidth,
of chunks as it uploads to others. It is well known that000, to all backbone links. Then, we scale up the bandwidth
BitTorrent incorporates a tit-for-tat (TFT) incentive namism Of all critical links (those links that, when removed, widdve
to encourage contribution or prevent a node from downlagadigome peers disconnected in the overlay) to be large enough so
much more content than it can upload [28]. Table Il show#at they are not the bottleneck.
that, when the bottleneck is at either the download links or We did three tests on Profile
the source (i.e., in Profile$ and 2), the gradient algorithm « (Test a) Our algorithm is deployed at all links. This is
naturally prefers the DFS tree while other unfair solutions the case of optimally-allocated overlay bandwidth.
might also exist. When the aggregate upload bandwidth is thes (Test b) Our algorithm is deployed only at the peers. The
bottleneck, the algorithm tries to distribute the chunkgrov overlay bandwidth between each pair of peers is fixed
the two-phase trees. In addition, the more heterogenous the by the max-min allocation. The 100 peers form a single
receivers are, the more two-phase trees we need and the more overlay network.
bandwidth is allocated to the two-phase trees. We can see tha (Test ¢) Our algorithm is deployed only at the peers. In
a two-phase tree apparently allows unfairness by insgectin - order to compare with AFR, we partition the backbone
its structure. In Profilet, the receiver-side upload bandwidth into two overlay networks, one for each source. Note that
is extremely heterogeneous. The optimal solution witheesp the max-flow limit is achievable in this case.

to the worst-case downloading time has to give up fairness:l) Comparison with BitTorrentFig. 6 shows that, in Test a,
Half .of the receivers serve othersl_ﬂﬁ Kbps and half of the e downloading time in the gradient algorithm is ofly% of
receivers serve others atkbps, while all of them download that in BitTorrent. The average downloading time of BitEort
at the same rate. The key conclusion here is that the gradignf, s minutes, and is abowt minutes longer than that of the
algorithm is able to find the best distribution trees for th@radient algorithm. BitTorrent is unable to give good perfo
particular network environment, and try to ensure fairnéss mance when the core network is congested. But in Test b,
at all possible. Without the help of the gradient algorithmytter the overlay bandwidth is fixed, the optimal downloadin
what types of trees are selected is not always obvious.  time is much higher than that of Test a, and almost equal to
i BitTorrent’s time. In the figure, the download percentadense
C. Bottleneck at the Internal of ISP Backbone (Profile 5) {5 the total amount of data downloaded at each time instance
In this case, we assume all access links have unlimitedrmalized against the total data downloaded at the end of
bandwidth, and congestion happens at the core network. Ye distribution. Since the lines have different slopes,car
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e & X 100 ? scenarios where congestion happens at the cross-ISPQoks.

80 algorithm is deployed at all access links and cross-ISPslink
Hence, we're able to run the algorithm to optimally allocate
the overlay bandwidth.

60

Download percentage

Number of completed leechers
(2]
o

40 BT —— 40
f X . .
% Cpt of Teste () 20 BT o Profile 6 (P6):6 completely connected ISPs witB0
10 GPof Testa O GP of Test a @ . . .
o GPofTestb & 0 GP of Test br--d-- cross-ISP links. Each cross-ISP link has a capacity of
0 1020 30 40 50 60 70 80 90100 0 5 1015 20 25 30 35 1000. 300 peers are attached to the ISB8 per ISP, with
Time (minutes) Time (minutes) .. . . .
(a) (b) sufficient access bandwidth. A single source is attached
to one ISP.
Fig. 6. Profile 5. (a) Number of receivers that have completedntmad o Profile 7 .(P7): (ROCketFuel topologyﬁQ_ ISPs an_'
over time; (b) download percentage over time. nected with1336 links. The cross-ISP link capacities

are uniformly distributed or{100,1000). 500 peers are
randomly attached to the ISPs with sufficient bandwidth.
extrapolate the lines and expect the gradient algorithmoto d A single source is attached to one ISP.
much better if the file size becomes larger. Note that, in the case of a single source, congestion at the
2) Comparison with AFR:Fig. 6 also shows that, in Testcross-ISP links and each ISP containing some peers, the max-
c, the gradient algorithm approaches the max-flow limit @hilflow limit is achievable.
AFR achieves something far from the optimum. When the
congestion happens at the core network, the two-phase trees,,,nLoaninG Tive (MINU
alone fail to give good solution.
3) Convergence Speed:ig. 7 shows the convergence of

TABLE IV
TES) COMPARISON OFPROFILE 6 AND 7

the algorithm in Test a, b and ¢ respectively. The time spent [ 21C0%0) [ BTES0) [[ BTCOWE) | BT(ave)
on one iteration is about one round trip time plus the time to p7 583 565 90 109
compute the MDSP. It seems that the algorithm that optimally GP AFR MFL

allocates the overlay bandwidth converges much fasterttiean E? ;;34 igg 83;12

algorithm with fixed overlay bandwidth. This has to do with
the fact that, in the final solution, Test a has 92 active frees
while Test b has totally 4746 active trees, more than 20@stre

for each source. The reason that Test b has much more tregs,
than Test a might have to do with the fact that Test b has much .,
more constraints than Test a. In Test a, we need to satisly ,q
the physical link capacity constraints, while in Test b, weg i
need to satisfy the overlay link capacity constraints; eheme
much more overlay links than physical links. According te th

100

BT
Max-Flow Limit ]
GP O

gy

80

60

0

404+ §
100

50

Download percentage

20 BT ——

Number of ¢

discussion at the end of Section IlI-A, the number of linksspl 0 oG GP -0

0 2 4 6 8 1012 14 16 18 20 0 2 4 6 8 10121416 18 20
the number of sources serves as a rough bound of the number Time (minutes) Time (minutes)
of active trees. It is possible that Test b has another optima @) (b)

or nearly optimal solution that has much fewer trees. Figdin
solutions with fewer trees should improve convergence gpeegig. 8.  Profile 6. (a) Number of receivers that have completednémad

and is an important direction to pursue. over time; (b) download percentage over time.
2 2
S 1000 g 300 [4)
< < £ 500 B 100 —©
g 800 g 20 S asol ) 7
3 2 200 = 400 £ g
® 600 ® 7 3 as0 g ;
g g 150 Y 5 s
aQ a o 300 @ 60 r [
5 40 2 E 250 =
2 a 100 Testb O S B
£ 2 T S 200 8 40
2 200 = estc Source 1 O 5 k=
3 3 50 Testc Source 2 & = 150 B B
= GP —— £ o Opt. of Test ¢~ 2 1‘5)8 Max-Flow Limit  [J 8§ 2 BT ——
5 10 15 20 25 30 35 40 45 0 500 100015002000250030003500 E 0 GP O o GP =@
#lteration #lteration 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
(a) (b) Time (minutes) Time (minutes)
(a) (b)

Fig. 7. Profile 5. Convergence of throughput. Two source$ wit = 1.0
(a) Test a; (b) Test b and c. Fig. 9. Profile 7. (a) Number of receivers that have completednézad
over time; (b) download percentage over time.

. ) In both profiles 6 and 7, the gradient algorithm approaches
D. Bottleneck at the Cross-ISP Links (Profile 6-7) the max-flow limit and beats BitTorrent and AFR by a large
In reality, the cross-ISP links are often the bandwidthmount, up to a factor of 10 (Tabel N30%, 95% and 100%
bottleneck. The goal here is to evaluate the effectivenéssave the percentage of the peers that have finished downgpadin
our algorithm in handling the bottleneck at cross-ISP link#/ith respect to the average downloading time, the gradient
when it is deployed at ISP gateways. We did experimeraggorithm is also better than BitTorrent. Also see Fig. 8 &nd
both on an artificial small cross-ISP network and the crosg/e found, with more peers per ISP, BitTorrent’s performance
ISP network obtained from the RocketFuel project. We crkatdeteriorates. FastReplica’s performance is far worse iiodim
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the gradient algorithm and BitTorrent, and we didn’'t even 20

show it in Fig. 8 and 9.

Usually, cross-ISP traffic is more expensive. We investidat
the traffic redundancy over the cross-ISP links. With neithe
inside ISP congestion nor access speed constraint, ideati

Gradient Algorithm ——
200

150

100

Throughput (Kbps) per Session

destination ISP should receive only one copy of each chunk % /
from other ISPs and the source ISP should not receive any 0100 200 300 400 500 600 700 800
copy from other ISPs. In Profile 6, we inspected the active Hiteration

(optimal) trees the algorithm constructed and found thahea

destination ISP indeed only received one copy from othElg- 10. Dynamic departure and arrival of receivers

ISPs, but the source ISP might receive some copies from other

ISPs. Suppose the normalized cross-ISP traffic under ttaé ide

distribution is1.0. We found the cross-ISP traffic wasl03 in VI. ADDITIONAL RELATED WORK

the gradient algorithm andl.982 in BitTorrent. But in Profile In our Optimization_based approach, we follow the traditio
7, we found the destination ISPs received multiple copies\fr of Kelly et. al. [35] and Low et. al. [36] on optimal flow
other ISPs in the gradient algorithm. This is because, ifilBro control/bandwidth allocation. Many recent papers extende
6, each max-flow between the source ISP and the destinatigy approach and solved networking problems by collective
ISP haS the Sam_e value. This is not the Case-|n Profile 7. Th&éﬁions taken across networking |ayers1 especia”y inlesse
the optimal solution does allow multiple copies to be sent {gatworks e.g., [37]-[40]. Several other related studiébee
one destination ISP. Again, if the normalized cross-ISHitra iy topics or methods, are [41]-[44].

under the ideal distribution i$.0, then the traffic is2.22 in The authors of [45] formulate several optimization prob-

the gradient algorithm anfl.72 in BitTorrent. lems related to swarming with different objectives such as
minimizing the server load, maximizing the distributiortera
E. Arrival and Departure Dynamics (Profile 8) or minimizing the depth of the distribution trees. Some of

. . L ._the formulations have the constraint that the node degree
Here, we wish to examine how well the distributed gradief, the distribution trees must be limited. They assume that

algorithm copes with the peer arrival and departure dynamig,e pottleneck is the uplinks and the optimal solutions are
We applied the algorithm with optimally allocated overlay,hained by exploiting this special condition. Their agmio
bandwidth on a star network with receivers arrive and depgfes not seem to be extensible to general networks where
randomly. All peers have sufficient download capacitie®; thhoitieneck can be anywhere. The authors of [46] consider
receivers each have upload bandwidib0 Kbps; and the gimjjar optimization problems under the users’ uplink witya
source has upload bandwiddi0 Kbps. At the beginning, constraint. They present(a -+ ¢)-approximation algorithm for

we have one source and 299 receivers; at iteration 100, g{ying various problems with different topology consttai
receivers leave; at iteration 200, 50 new receivers arae; t1l or non-full mesh graph, limited or unlimited tree degre

iteration 300, 50 receivers leave (40 receivers are from thgin or without helpers. The main part of their algorithm

receivers that were present at the beginning, and the ot@gfes from the technique for solving the maximum concurrent
10 are from the new arrivals); at iteration 400, another Sfb,y problem given in In [48], the authors study the problem
new receivers arrive; at iteration 500, 50 receivers 1682 (of minimizing the average distribution time across the peer
receivers are from the receivers present at the beginnibg, i1 5y ypload-constrained P2P system. The average distribut
receivers are from those that joined at iteration 200, aed thme is a useful metric to evaluate the performance of a file
other 10 are from the those that joined at iteration 500); gistribution system. However, their approach does not seem
iteration 600, 50 more receivers arrive. In the intervallg®n o ovtensible to general networks.

iteration 0 and 200, we have one session consisting of either

299 or 249 receivers. In the interval between iteration 200

and 300, we have two sessions: One consists of one original VII. CONCLUSION

source and 299 receivers and the other consists of 250 sourceThis paper represents a systematic study on how best to con-
with overlapping chunks and the 50 new receivers. We assuthect content distribution using advanced swarming teaiesq
the two sessions have equal demand rates (though this migier infrastructure networks. In response to growing aunte
be unfair). In the interval between iteration 300 and 400, what threatens to congest the core network, our objective is
still have two sessions but with fewer receivers. In therirde to manage the network congestion not only at the access
between iteration 400 and 500, we have three sessions wittks but throughout the network, especially at cross-Iigksl
equal demanded rates: The first consists of one originatsouvWe showed that this objective is “equivalent” to speeding up
and 299 receivers, the second consists of 210 sources vdtimtent distribution. The main contribution of this paper i
overlapping chunks and 90 receivers, and the third consiststhat we envision optimal content distribution as a multicas
250 sources with overlapping chunks and 50 receivers. In tltee packing problem, and we derive a distributed algorithm
interval between iteration 500 and 600, we have three sessifor solving the problem. The tree-packing framework is
with fewer receivers. From iteration 600, we have four sessi also useful for contemplating existing swarming/collatiive

with equal demanded rates: The first consists of one origirddwnloading techniques, by asking the questions: What kind
source and 299 receivers, the second consists of 180 souldgsees do existing algorithms use? How are the trees select
with overlapping chunks and 120 receivers, the third cassifAnd how is bandwidth assigned to the trees? Hence, our
of 210 sources with overlapping chunks and 90 receivers, aindmework has the potential to provide a unified understandi
the fourth consists of 250 sources and 50 receivers. Fig. @Dadvanced distribution techniques. Finally, our disttddl al-
shows the algorithm adapts to the dynamics quickly. gorithm is based on a specialized gradient projection élgar



for optimization under simplex constraints and we develop[ar]
scaled version of it. Our computation experiences show t

it has much faster convergence than the more frequently u &
subgradient algorithm. [29]
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