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Modeling and Stack Simulation of CMP 
Cache Capacity and Accessibility 

X. Shi, F. Su, J.-K. Peir, Y. Xia, and Z. Yang 

Abstract— Performance tradeoffs between fast data access by local data replication and cache capacity maximization by 

global data sharing have been extensively studied for many-core Chip-Multiprocessors (CMPs). Costly simulations over a wide 

spectrum of the design space are generally required to gain insight for a sound design. To lower the cost, we develop an 

abstract model for understanding the performance impact of data replication on CMP caches. To overcome the lack of real-time 

interactions among multiple cores in the model, we further develop an efficient single-pass stack simulation to study the 

performance of CMP cache organizations with various degrees of data replication. The global stack logically incorporates a 

shared stack and per-core private stacks; shared/private reuse (stack) distances can be collected in a single-pass simulation. 

With the reuse distances, one can calculate the performance of CMP cache organizations with various degrees of data 

replication. We verify both the model and the stack simulation against execution-driven simulations with commercial 

multithreaded workloads. The results show that the abstract model provides accurate information about performance tradeoffs 

of data replication. The stack simulation accurately predicts the performance of various cache organizations with 2-9% error 

margins using only about 8% of the simulation time. 

Index Terms— Cache memories, Chip-multiprocessors, Performance Modeling, Stack simulation. 
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1 INTRODUCTION

ow to balance between fast data access and efficient 
use of the on-chip storage capacity has been studied 
extensively for CMPs [2, 18, 9, 24, 31, 8, 3, 26, 15, 14, 

17]. A shared cache organization provides the maximum 
cache capacity that leads to the least off-chip traffic. How-
ever, in such a design, data blocks are usually stored 
across multiple banks, resulting in an increase in the 
cache access delay due to a high percentage of remote 
bank accesses. A private cache organization, on the other 
hand, reduces the cache access delay by storing the re-
cently-accessed blocks in the local cache. However, mul-
tiple copies of a single block may exist in multiple caches, 
which decreases the effective cache capacity and increases 
off-chip memory traffic.  

As a CMP memory hierarchy almost always includes 
small, private instruction/data L1 caches for fast accesses, 
the unsettled interesting issue is the organization of the 
on-die L2 cache. Recently, there have been several re-
search papers [2, 18, 9, 24, 31, 8, 3] proposing variously 
combined private/shared L2-cache organizations follow-
ing two general directions. The first is to organize the L2 
as a shared cache for maximizing the effective capacity. 
To reduce the access time, a portion of the L2 can be set 
aside for replication [31]. The second is to organize the L2 
as private caches for minimizing the access time. To 
achieve a higher effective capacity, data replications 

among multiple L2s are constrained and different private 
L2s can steal each other’s capacity by block migration [24, 
3, 8].  

CMP cache studies must examine a wide spectrum of 
the design space to yield an accurate and comprehensive 
view of the cache design. Due to the lack of an efficient 
methodology for performance evaluation, near-sighted 
conclusions can potentially be drawn as a result of ex-
periments with the design parameters that fall in a nar-
row range. Analytical models can provide quick perform-
ance estimation [1, 13]. However, they usually depend on 
statistical or other simplifying assumptions, and cannot 
accurately model systems with complex real-time interac-
tions among multiple processors [7]. For fast simulation, 
the stack-based technique proposed in [21] simulates mul-
tiple cache sizes in a single pass under the LRU replace-
ment policy. Several extensions and enhancement have 
been made to improve the speed of the single-pass stack 
simulation or the applicability to variable set-
associativities [21, 4, 27, 13, 16, 25]. However, these stack 
simulation methods target only uniprocessor caches 
where the complex cache-coherence issue is not involved 
and the memory access delay hardly affects the order of 
memory requests. Extensions of the stack simulation to 
multiprocessors are reported in [29, 30]. Those studies 
focus on solving the problem of multiprocessor cache 
invalidations for general set-associative caches. However, 
the remote cache hit, an important measure on CMPs, is 
not considered. Moreover, the accuracy of using traces to 
simulate different multiprocessor cache organizations is 
not evaluated. 

In this paper, we present a general framework for fast 
projection of CMP cache performance [23]. Four L2 cache 
organizations - shared, private, shared with data replica-
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tion, and private without data replication - are studied. 
We focus on understanding the performance tradeoff be-
tween fast data access and cache capacity loss due to data 
replication. Both analytical modeling and fast stack-based 
simulation techniques are considered. The outline and 
contributions of our approach are as follows. 

1) Modeling Data Replication:  We first develop an ana-
lytical model to assess general performance effects of data 
replication. The model considers injecting replicas (repli-
cated data blocks) into a generic cache. Based on the block 
reuse-distance histogram obtained from a real applica-
tion, a precise equation is derived to evaluate the per-
formance impact of the replicas. We also derive an ex-
pression to calculate the optimal degree of data replica-
tion. The results demonstrate that whether data replica-
tion helps or hurts cache performance are a function of 
the working set of the application and the available cache 
size. Existing CMP cache studies may have not examined 
a large enough design space and have overlooked impor-
tant tradeoffs. 

2) Single-Pass Stack Simulation:  To overcome the limita-
tions of the analytical model, we develop a single-pass 
stack simulation technique for more accurate perform-
ance assessment. The stack algorithm can handle interac-
tions among multiple private caches. The technique can 
produce performance results of shared or private cache 
organizations with the invalidation-based coherence pro-
tocol. For instance, it can provide local/remote hit ratios 
and the effective cache sizes for a range of physical cache 
capacities. 

3) Performance Impact of Data Replication:  We demon-
strate that we can use the multiprocessor stack simulation 
results to estimate the performance of other interesting 
CMP cache organizations. For example, given different 
percentages of the L2 cache reserved for data replication, 
we can derive the average L2 access time under a shared 
L2 cache organization. Such a cache organization closely 
resembles the L2 cache with victim replication [31]. 

4) Performance Projection and Verification:  We verify the 
accuracy of the stack simulation in predicting perform-
ance against the detailed execution-driven simulation for 
each individual cache configuration using three multi-
threaded workloads. We observe that both the model and 
the single-pass stack simulation produce consistent per-
formance views of the CMP caches under different de-
grees of data replication. We also show that the single-
pass stack simulation produces small error margins of 2-
9% for all simulated cache organizations. 

5) Reduction of Simulation Time:  The total simulation 
times for the single-pass stack simulation and the indi-
vidual execution-driven simulations are compared. For 
the four studied cache organizations, the stack simulation 
takes about 8% of the execution-driven simulation time. 

The paper is organized as follows. Section 2 describes 
the analytical model. Section 3 introduces the CMP sin-
gle-pass stack simulation. Section 4 describes the simula-
tion methodology. This is followed by a comparison 
against execution-driven simulations in section 5. Further 
related work and the conclusion are given in Section 6 
and Section 7. 

2 MODELING DATA REPLICATION 

We first develop an abstract model independent of pri-
vate/shared organizations to evaluate the tradeoff be-
tween the access time and the miss ratio of CMP caches 
under various degrees of data replication. This model can 
provide a uniform understanding of the central issues in 
CMP caching that are present in most cache organiza-
tions. This study also highlights the importance of exam-
ining a wide range of system parameters in any CMP 
cache organization, which is time-consuming and costly. 
The model-based analysis and the stack simulation intro-
duced later are complimentary approaches for studying 
CMP cache performance. The former makes simplifying 
assumptions but can provide high-level, panoramic views 
about the performance behavior of a broad class of cache 
organizations. It gives important insights and intuitive 
guidance for cache design. The latter provides more de-
tailed, more accurate performance evaluation for each 
specific cache organization. 

In Figure 1, a generic histogram of block reuse dis-
tances is plotted, where the reuse distance is measured by 
the number of distinct blocks between two adjacent ac-
cesses to the same block. A distance of zero indicates a 
request to the same block as the previous request. The 
histogram is denoted by f(x), which represents the num-
ber of block references with reuse distance x. For a cache  

size S, the total cache hits can be computed by  , 
which is equal to the area under the histogram curve from 
0 to S. This well-known stack distance histogram can pro-
vide hit/miss information of all cache sizes with a fully-
associative organization and the LRU replacement policy. 

To model the performance impact of data replication, 
we consider injecting replicas into the cache. Note that 
regardless the cache organization, replicas help to im-
prove the local hit ratio since they are created and stored 
close to the requesting cores, and hence, enable a short 
access time. On the other hand, having replicas reduces 
the effective capacity of the cache, and hence, increases 
cache misses. We need to compare the effect from the in-
crease of local hits against that from the increase of cache 
misses. 

Suppose we take a snapshot of the L2 cache and find a 
total of R replicas. As a result, only S-R cache blocks are 
distinct, effectively reducing the capacity of the cache. 
Note that in developing the abstract model, we do not 
make reference to any specific cache organization and 
management scheme. Moreover, the model does not state 
where precisely the replicas are stored, nor it intends to 
capture the cache coherence interactions. A simple ratio 
of data replication is used to derive extra cache misses vs. 
additional local hits, as will be described next. 

We will compare the data replication scenario with the 
baseline case where all S blocks are distinct. On one hand, 

the cache misses are increased by  , since the total 

number of hits is now   . On the other hand, the 
replicas help to improve the local hits. Assuming data 
references are evenly distributed among all cache blocks, 
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Fig. 1. Cache performance impact with replica.  

within  hits, a fraction R/S of them are targeting 
the replicas. However, depending on the specific cache 
organization, not all accesses to the replicas result in local 
hits. For example, a requesting core may find a replica in 
the local cache of another remote core, resulting in a long-
er remote hit. We assume that a fraction of accesses to the 
replicas are actually local hits and denote the fraction by 
L. Therefore, compared with the baseline case, the total 
change of memory access cycles due to the creation of R 
replicas can be calculated by: 
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where Pm is the penalty cycles of a cache miss; and Gl is 
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Now the key is to obtain the reuse distance histogram 

f(x) to fit into this equation. In [12], an analytical cache 
miss model was developed based on the power law of 
block reuses. Instead of deriving f(x) analytically; we use 
the curve-fitting tool of Matlab [20] to obtain the best fit 
f(x). Note that the curve-fitting approach is capable of 
handling a wider array of workloads, such as those with 
cyclical program behavior where it is difficult to apply a 
pure analytical approach [12]. We conduct an experiment 
using an OLTP workload [22] and collect its generic reuse 
distance histogram. With the curve-fitting tool, we obtain 
the equation (3): 

                           Bx
eAxf

−
×=)(                                   (3) 

where 610084.6 ×=A , and 310658.2 −
×=B . This is shown 

in Figure 2, where the cross marks represent the actual 
reuse frequencies from OLTP and the solid line is the fit-
ted curve. We can now substitute f(x) into equation (2) to 
obtain the delta of the average memory cycles as: 
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Equation (4) provides the change in L2 access time as a 
function of the cache space being occupied by the repli-
cas. In Figure 3, we plot this delta of the average memory 
access time for three cache sizes, 2, 4, and 8 MB, as we va- 

 

Fig. 2. Curve fitting of reuse distance histogram of OLTP.  
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Fig. 3. Performance with replicas for different cache sizes.  

ry the replicas’ occupancy from none to the entire cache. 
In this figure, we assume Gl=15, Pm= 400, and we vary L 
with 0.25, 0.5 and 0.75 for each cache size. Note that nega-
tive values mean performance gain. We can observe that 
the performance of allocating L2 space for replicas for the 
OLTP workload varies with different cache sizes. For in-
stance, when L = 0.5, the results indicate no replication 
provides the shortest average memory access time for a 
2MB L2 cache, while for larger 4MB and 8MB L2 caches, 
allocating 40% and 68% of the cache for the replicas has 
the smallest access time. These results are consistent with 
the reuse histogram curve shown in Figure 2. The reuse 
count approaches zero when the reuse distance is equal to 
or greater than 2MB. It increases significantly when the 
reuse distance is shorter than 2MB. Therefore, it is not 
wise to allocate space for the replicas when the cache size 
is 2MB or less. Increasing L favors data replication 
slightly. For instance, for a 4MB cache, allocating 34%, 
40%, 44% of the cache for the replicas achieves the best 
performance improvement of about 1, 3, and 5 cycles on 
the average memory access time for L = 0.25, 0.5 and 0.75 
respectively. The performance improvement with data 
replication would be more significant when Gl increases. 

The general behavior due to data replication is consis-
tent with the detailed simulation results given in Section 
5. Note that the fraction of replicas cannot reach 100% 
unless the entire cache is occupied by a single block. 
Therefore, in Figure 3, the average access time increase is 
not meaningful when the fraction of replicas is approach-
ing the cache size. 

From equation (4), we can also derive the optimal frac-
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tion of replication under different cache sizes for OLTP 
based on its reuse distance histogram f(x). The number of 
replicas R is optimal when the derivative of equation (4) 
with respect to R is zero. We can obtain the following 
equation: 

            .)1( BReee
LG
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 when R is smaller 
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can get the optimal replication R as: 
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By plugging the aforementioned OLTP parameters 
into equation (6), we get the optimal factions of replica-
tion under cache sizes from 2MB to 8MB and L from 0.25 
to 0.75, as shown in Figure 4. For the 2MB caches, 0%, 0% 
and 3.2% of replication are the best for L = 0.25, 0.5, 0.75; 
the optimal fractions are 35%, 41%, 45% for the 4MB 
caches, and 64%, 67%, 69% for the 8MB caches, respec-
tively. We also run the same experiment for two other 
workloads, Apache and SPECjbb. The same behavior can 
be observed for both Apache and SPECjbb, i.e. larger 
caches favor more replications. For example, with L = 0.5, 
allocating 13%, 50%, 72% space for replicas has the best 
performance for Apache, and 28%, 59%, 78% for SPECjbb. 
Furthermore, increasing L also favors more replication. 
Due to its smaller working set, SPECjbb benefits the most 
with data replication among the three workloads. 

The analysis shows that it is essential to study a set of 
representative workloads with different cache sizes to 
understand the tradeoff of accessibility vs. capacity on 
CMP caches. A fixed replication policy may not work 
well for a wide variety of workloads on different CMP 
caches. 

3 SINGLE-PASS STACK SIMULATION 

Although our analytical model can provide understand-
ing of the general performance trend, its inability to mod-
el sufficiently detailed interactions among multiple cores 
limits its capability for accurate performance prediction. 
To remedy this problem, we develop a single-pass, glob-
al-stack based simulation method for studying the CMP 
caches. 

In our stack simulation, a single global stack is built to 
record the history of requested block addresses from all 
cores. Multiple double-link lists are established in the 
global stack for simulating the generic stack algorithm for 
both a shared and per-core private caches. Figure 5 
sketches an entry of the global stack data structure; each 
entry records one memory reference. In the CMP context, 
a block address and its core-id uniquely identify a refer-

ence, where the core-id indicates from which core the 
request is issued. We maintain one logical private stack 
for each core, which is organized as a doubly linked list. 
(Note that for simplicity, we only show one private list in 
Figure 5.) Each global stack entry is linked by the Private 
prev and Private next pointers in exactly one of the logical 
private stacks determined by the core-id. We also main-
tain one logical shared stack also as a doubly linked list. 
The global stack entries are linked together for the shared 
stack by the Shared prev and Shared next pointers. Each 
entry may or may not be in the logical shared stack de-
pending on the recency of the reference, since only a sin-
gle copy of a block address exists in the shared cache. In 
addition, a block address-based hash list is also estab-
lished in the global stack for fast searches. 
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Fig. 4. Optimal fraction of replication.  

 

Fig. 5. Global stack organization.  

Since only a set of discrete cache sizes are of interest 
for cache studies, both the shared and the private stacks 
are organized as groups, each consisting of multiple cache 
blocks, for fast search during the stack simulation and for 
easy calculations of cache hits under various interesting 
cache sizes after the simulation [16]. For example, assum-
ing the cache sizes of interest are 16KB, 32KB, and 64KB. 
The groups can then be organized according to the stack 
sequence starting from the MRU entry with 256, 256, 512 
blocks for the first three groups, respectively, assuming 
the block size is 64B. The first group with 256 blocks is to 
simulate the 16KB cache. The first two groups of (256 + 
256) blocks are to simulate the 32KB cache and so on. The 
hits to a particular cache size are equal to the sum of the 
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hits to all the groups accumulated up to that cache size. 
Each group maintains a reuse counter, denoted by G1, G2, 
and G3. After the simulation, the cache hits for the three 
cache sizes can be computed as G1, G1+G2, and 
G1+G2+G3 respectively. 

Separate shared and private group tables are maintained 
to record the reuse frequency count and other useful in-
formation for each group in the shared and private cach-
es. A shared and a private group-id are kept in each global 
stack entry as a pointer to the corresponding group in-
formation in the shared and the private group table. The 
group bound in each entry of the group table links to the 
last block of the respective group in the global stack. 
These group bounds provide fast links for adjusting en-
tries between adjacent groups. The associated counters 
are accumulated on each memory request, and will be 
used to deduce cache hit/miss ratios for various cache 
sizes after the simulation. The following subsections pro-
vide detailed stack operations for both shared and private 
caches. 

3.1 Shared Caches 

Each memory block can be recorded multiple times in 
the global stack, one from each core according to the or-
der of the requests. Intuitively, only the first-appearance 
of a block in the global stack should be in the shared list 
since there is no replication in a shared cache. A first-
appearance block is the one that is most recently used in 
the global stack among all blocks with the same address. 
The shared stack is formed by linking all the first-
appearance blocks from MRU to LRU. Figure 6 illustrates 
an example of a memory request sequence and the opera-
tions to the shared stack. Each memory request is denoted 
as a block address, A, B, C, …, etc., followed by a core-id. 
The detailed stack operations when B1 is requested are 
described as follows. 

1. Address B is searched by the hash list of the 
shared stack. B2 is found with the matching ad-
dress. In this case, the reuse counter for the shared 
group where B2 resides, group 3, is incremented. 

2. B2 is removed from the shared list, and B1 is in-
serted at the top of the shared list. 

3. The shared group-id for B1 is set to 1. Meanwhile, 
the block located on the boundary of the first 
group, E1, is pushed to the second group. The 
boundary adjustment continues to the group 
where B2 was previously located. 

4. If a requested block cannot be located through the 
hash list, (i.e. the very first access of the address 
among any cores), the stack is updated as above 
without incrementing any reuse counters. 

5. After the simulation, the total number of cache hits 
for a shared cache that include exactly the first m 
groups is the sum of all shared reuse counters 
from group 1 to group m. 

3.2 Private Caches 

The construction and update of the private lists are es-
sentially the same as those of the shared list, except that 
accesses from the same core are linked together. We col-

lect crucial information such as the local hits, remote hits, 
and number of replicas, with the help of the local, remote, 
and replica counters in the private group table. For sim-
plicity, we assume these counters are shared by all the 
cores, although per-core counters may provide more in-
formation. Figure 7 draws the contents of the four private 
lists and the private group table, where we extend the 
memory sequence (Figure 6) with three additional re-
quests. 

1) Local/Remote Reuse Counters 
The local counter of a group is incremented when a re-

quest falls into the respective group in the local private 
stack. In this example, only the last request, A1, encoun-
ters a local hit, and in this case, the local counter of the 
second group is incremented. After the simulation, the 
sum of all local counters from group 1 to group m repre-
sents the total number of local hits for private caches with 
exactly m groups. 

 

Fig. 6. Shared cache example.  

 

Fig. 7. Private cache example.  

Counting the remote hits is somewhat tricky, since a 
remote hit may only happen when a reference is a local 
miss. For example, assume that a request is in the third 
group of the local stack; meanwhile, the minimum group 
id of all the remote groups where this address appears is 
the second. When the private cache size is only large 
enough to contain the first group, neither a local nor a 
remote hit happens. If the cache contains exactly two 
groups, the request is a remote hit. Finally, if the cache is 
extended to the third group or larger, it is a local hit. 
Formally, if an address is present in the local group L and 
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the minimum remote group that contains the block is R, 
the access can be a remote hit only if the cache size is 
within the range from group R to L-1. We increment the 
remote counters for groups R to L-1 (R <= L-1). Note that 
after the simulation, the remote counter m is the number 
of remote hits for a cache with exactly m groups. To dif-
ferentiate them from the local counters, we call them ac-
cumulated remote counters. 

In the example, the first highlighted request, B1, en-
counters a local miss, but a remote hit to B2 in the first 
group. We accumulate the remote counters for all the 
groups. The second request, A2, is also a local miss, but a 
remote hit to A1 in the second group. The remote counter 
of the first group remains unchanged, while the counters 
are incremented for all the remaining groups. Similar to 
B1, all the remote counters are incremented for C1. Fi-
nally, the last request, A1, is a local hit in the second 
group and is also a remote hit to A2 in the first group. In 
this case, only the remote counter of the first group is in-
cremented since A1 is considered as a local hit if the cache 
size extends to more than the first group. 

2) Measuring Replica 
The effective cache size is an important factor for 

shared and private cache comparisons [2, 9, 31, 8]. The 
single-pass stack simulation counts each block replication 
as a replica for calculating the effective cache size along 
the simulation. Similar to the remote hit case, we use ac-
cumulated replica counters. As shown in Figure 7, the 
first highlighted request, B1, creates a replica in the first 
group, as well as any larger groups because of the pres-
ence of B2. The second highlighted request, A2, does not 
create a new replica in the first group. But it does create a 
new replica in the second group because of A1. Mean-
while, A2 pushes B2 out of the first group, thus reduces a 
replica in the first group. This new replica applies to all 
the larger groups too. Note that the addition of B2 in the 
second group does not alter the replica counter for group 
2, since the replica was already counted when B2 was first 
referenced. Similar to B1, the third highlighted request, 
C1, creates a replica to all the groups. Lastly, the refer-
ence, A1, extends a replica of A into the first group be-
cause of A2. The counters for the remaining groups stay 
the same. 

3) Handling Memory Writes 
In private caches, memory writes may cause invalida-

tions to all the replicas. During the stack simulation, write 
invalidations create holes in the private stacks where the 
replicas are located. These holes will be filled later when 
the adjacent block is pushed down from a more-recently-
used position by a new request. No block will be pushed 
out of a group when a hole exists in the group. To accu-
rately maintain the reuse counters in the private group 
table, each group records the total number of holes for 
each core. The number of holes is initialized to the respec-
tive group size, and is decremented whenever a valid 
block joins the group. The hole-count for each group 
avoids searching for existing holes. 

4 SIMULATION METHODOLOGY 

We use the full-system Virtutech Simics 2.2 simulator [19] 
to simulate an 8-core CMP system with Linux 9.0 and x86 
ISA. The processor module is based on the Simics Mi-
croarchitecture Interface (MAI) and models timing-
directed processors in detail. Each core has its own in-
struction and data L1 cache. The global stack runs behind 
the L1 caches and simulates every L1 misses, essentially 
replacing the role of L2 caches. During simulations, stack 
distances and other related statistics are collected as de-
scribed in Section 3. The results of the single-pass stack 
simulation are used to derive the performance of shared 
or private caches with various cache sizes and the sharing 
mechanisms for understanding the accessibility-vs.-
capacity tradeoff in CMP caches. 

The results from the stack simulation are verified 
against execution-driven simulations, where detailed 
cache models with proper access latencies are inserted. In 
those simulations, we assume the shared L2 has eight 
banks, with one local and seven remote determined by 
the least-significant three bits of the block address. For the  

TABLE 1 
SIMULATION PARAMETERS 

CMP: 8 cores, 3.2GHz, 128 entry ROB 

Branch predictor: g-share, 64K, 4K BTB 

Branch misprediction penalty: 10 cycles 

L1-I: 32KB, 4-way, 64B line, MESI 

L1-D: 32KB, 4-way, 64B line, MESI 

L1-I/L1-D latency: 0/2 cycles 

L2: 16-way, 64B line, MESI 

Private L2 size (KB): 128/256/512/1024/2048 per core 

Private L2 local/remote latency: 15/30 cycles 

Shared L2: 8 banks, 1 local/7 remote 

Shared L2 size (MB): 1/2/4/8/16 

Shared L2 local/remote latency: 15/30 cycles 

Memory latency: 400 cycles 

Stack: 16KB / group, 1024 groups (16MB maximum) 

 
TABLE 2 

WORKLOAD DESCRIPTIONS 

OLTP (Online Transaction Processing): It is built upon the 

OSDL-DBT-2 [22] and MySQL database server 5.0. We build a 

1GB, 10-warehouse database. To reduce the database disk activ-

ity, we increase the size of the MySQL buffer pool to 512MB. We 

further stress the system by simulating 128 users with no keying 

and thinking time. We simulate 1024 transactions after bypass-

ing 2000 transactions and warming up caches (or stack) for an-

other 256 transactions. 

Apache (Static web server): We run apache 2.2 as the web serv-

er, and use Surge to generate web requests from a 10,000 file, 

about 200MB repository. We simulate 8 clients with 50 threads 

per client. We collect statistics for 8192 transactions after bypass-

ing 2500 requests and warming up for 2048 transactions.  

SPECjbb (java server): We simulate 8 warehouses. We first fast-

forward 100,000 transactions. Then we simulate 20480 transac-

tions after warming up the structures for 4096 transactions. 

private L2, we model both local and remote accesses. The 
MOESI coherence protocol is used to maintain data co-
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herence among private L2s. For comparison, we use the 
hit/miss information and average memory access times 
to approximate the execution time behavior because the 
single-pass stack simulation cannot provide IPCs. Table 1 
summarizes important simulation parameters. 

We use three multithreaded commercial workloads, 
OLTP, Apache, and SPECjbb, as described in Table 2. We 
consider the variability of these multithreaded workloads 
by running multiple simulations for each configuration of 
each workload and inserting small random noises (per-
turbations) in the memory system timing for each run. 

5 EVALUATION AND VALIDATION 

The accuracy of the CMP memory performance projection 
can be assessed from two different angles, the accuracy of 
predicting individual performance metrics, and the accu-
racy of predicting general cache behavior. By verifying 
the results against the execution-driven simulation, we 
demonstrate that the stack simulation can accurately pre-
dict cache hits and misses for the targeted L2 cache or-
ganizations, and more importantly, it can precisely pro-
ject  
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Fig. 8. Miss ratios for shared caches.  

the sharing and replication behavior of the CMP caches. 
One inherent difficulty of stack simulation is its inabil-

ity to insert accurate timing delays for variable L2 cache 
sizes. The fluctuation in memory delays may alter the 
sequence of memory accesses among multiple processors. 
We try a simple approach to insert memory delays based 
on a single discrete cache size. In the stack simulation, we 
inserted memory delays based on five cache sizes 1MB, 
2MB, 4MB, 8MB, and 16MB, denoted as stack-1, stack-2, 
stack-4, stack-8, and stack-16 respectively. An off-chip 
cache miss latency is charged if the reuse distance is long-
er than the selected discrete cache size. 

5.1 Hits/Misses for Shared and Private L2 Caches 

Figure 8 shows the projected and real miss rates for 
shared caches, where “real” represents the results from 
individual execution-driven simulations. In general, the 
stack results follow the execution-driven results closely. 
For OLTP, stack-2 shows only about 5-6% average error.  
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Fig. 9. Miss ratio, remote hit ratio for private caches.  

For Apache and SPECjbb, the difference among different 
delay insertions is less apparent. The stack results predict 
the miss ratios with about 2-6% error, except for Apache 
with a small 1MB cache. 

Two major factors affect the accuracy of the stack re-
sults. One is cache associativity. Since we use a fully-
associative stack to simulate a 16-way cache, the stack 
simulation usually underestimates the real miss rates. 
This effect is more apparent when the cache size is small, 
due to more conflict misses. The issue can be resolved by 
more complicated set-associative stack simulations [21, 
13]. For simplicity, we keep the stack fully-associative. 
More sensitivity studies are also helpful to evaluate L2 
with smaller set associativity. The other factor is inaccu-
rate delay insertions. For example, in the stack-1 simula-
tion of OLTP, a cache miss latency is inserted whenever 
the reuse distance is longer than 1MB. Such a cache miss 
delay is inserted wrongly for caches larger than the 1MB. 
These extra delays for larger caches cause more OS inter- 
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Fig. 10. Average effective size for private caches.  

ference and context switches that may lead to more cache 
misses. At 4MB cache size, the overestimate of cache 
misses due to the extra delay insertion exceeds the under-
estimate due to the full associativity. The gap becomes 
wider with larger caches. On the other hand, the stack-16 
simulation for smaller caches mistakenly inserts hit la-
tency, instead of miss latency, for accesses with reuse dis-
tance from the corresponding cache size to 16MB, causing 
less OS interferences, thus less misses. In this case, both 
the full cache associativity and the delay insertion lead to 
underestimate of the real misses, which makes the stack-
16 simulation the most inaccurate. 

For private caches, Figure 9 shows the overall misses 
and the remote hits. Note that the horizontal axis shows 
the size of a single core. With eight cores, the total sizes of 
the private caches are comparable to the shared cache 
sizes in Figure 8. We can make three important observa-
tions. First, comparing with the shared cache, the simula 
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Fig. 11. Average L2 access time ratio (private / shared Caches).  

tion results show that the overall L2 miss ratios are in-
creased by 14.7%, 9.9%, 4.3%, 1.1%, and 0.5% for OLTP 
for the private cache sizes from 128KB to 1MB. For 
Apache and SPECjbb, the L2 miss ratios are increased by 
11.8%, 4.4%, 1.1%, 1.0%, 2.2%, and 7.3%, 3.1%, 2.9%, 0.6%, 
0.5%, respectively. Second, the estimated miss and remote 
hit rates from the stack simulation match closely to the 
results from the execution-driven simulations, with less 
than 10% margin of errors. 

We also simulate the effective capacity for the private-
caches as shown in Figure 10. The effective cache size is 
the average over the entire simulation period. In general, 
the private cache reduces the cache capacity due to repli-
cated and invalid cache entries. The effective capacity is 
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reduced to 45-75% for the three workloads with various 
cache sizes. We also observe that the estimated capacity 
from the stack simulation is almost identical to the result 
from the execution-driven results. Note that due to its 
higher accuracy, we use the stack-2 simulation in the fol-
lowing discussion. 

For comparison, Figure 11 further plots the average L2 
access time ratio between the private caches and the 
shared caches with equal capacity. When the total capac-
ity is small, although the private-cache cases have more 
local hits, they also encounter more L2 misses. The pri-
vate cache may have up to 50% longer average L2 access 
time. However, when the total capacity is large, the pri-
vate cache becomes better. With larger caches, the differ-
ence of L2 misses diminishes, but the private L2s have 
much more local hits, which makes the average L2 access 
time shorter.  

5.2 Shared Caches with Replication 

To balance accessibility and capacity, victim-replication 
[31] creates a dynamic L1 victim cache for each core in the 
local slice of the L2 to trade capacity for fast local access. 
In this section, we show a quick estimation of the per-
formance of a static victim-replication scheme. We allo-
cate 0% to 50% of the L2 capacity as L1 victim caches with 
variable L2 sizes from 2MB to 8MB. For performance 
comparison, we use the average memory access time, 
which is calculated based on the local hits to victim cach-
es, the hits to shared portion of L2, and L2 misses. 

The average memory access time of the static victim 
replication can be derived directly from the results of the 
stack simulation described in the previous sections. As-
suming the inclusion property is enforced between the 
shared potion of the L2 and the victim potion plus the L1. 
Suppose the L1 and L2 sizes are denoted by CL1, and CL2, 
r is the percentage of the L2 allocated for the victim cache, 
and n is the number of the cores. Then, each victim-cache 
size is equal to (r*CL2)/n, and the remaining shared por-
tion is equal to (1-r)*CL2. The average memory access 
time includes the following components. First, since the 
L1 and the victim cache are exclusive, the total hits to the 
victim cache can be estimated from the private stacks 
with the size of the L1 plus the size of the victim: 
CL1+(r*CL2)/n. Note that this estimation may not be pre-
cise due to the lack of the L1 hit information that alters 
the sequence in the stack. Second, the total number of L2 
hits (including the victim portion) and L2 misses can be 
calculated from the shared stack with the size (1-r)*CL2. 
Finally, the hit to the shared portion of L2 can be calcu-
lated by subtracting the hits to the victim from the total 
L2 hits.   

Figure 12 demonstrates the average L2 access time 
with static victim replication. Generally, large caches fa-
vor more replications as expected. For a small 2MB L2, 
except that Apache has a slight performance gain at low 
replication levels, the average L2 access times increase 
with more replications. The optimal replication levels for 
OLTP are 12.5%, and 37.5% respectively for 4MB and 
8MB L2. This general performance behavior with respect 
to data replication is consistent with what we have ob-

served from the analytical model in section 2. However, 
the analytical model without cache invalidations should 
apply lower L for the optimal replication level. 

For SPECjbb, 12.5% replication shows the best per-
formance for both 4MB and 8MB L2. For Apache, the best 
performance is with replications as large as 50% except 
for 8MB L2s. This seemly contradiction comes from the 
fact that the number L2 misses is reduced drastically 
around 8M caches as shown in Figure 8. Providing larger 
effective capacity for 8M caches is more beneficial than 
adding replicas. We can also observe that the optimal 
replication levels match perfectly between the stack simu-
lations and the execution-driven simulations. With re-
spect to the average L2 access time, the stack results are 
within 2%-8% error margins. 

In the above studies, we assume a fixed L1 size of 
32KB for the instruction and the data caches. Since the L1 
cache size plays an important role in victim replications at 
the L2 level, we run two more stack simulations with 
16KB and 64KB L1 sizes. Figure 13 shows the breakdown 
of L1 hit, L2 local hit, L2 remote hit and L2 miss with dif-
ferent L1 sizes from 16KB to 64KB and different replica-
tion levels. Since the general behavior is similar for all 
three workloads, we only show the results for SPECjbb 
with an 8MB L2 cache. Generally, the L1 size does not 
significantly changed the replication behaviors. For this 
configuration, 50% of victim space is the best for all of the 
three L1 sizes. However, with smaller L1 caches, victim 
replication of various degrees has larger fraction of L2 
local hits, potentially more performance improvement. 
This is due to the fact that the number of L1 misses is 
much more for smaller L1 cache. Hence, victim replica-
tion can generate more local L2 hits. 
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Fig. 12. Average L2 access time with different replication.  

5.3 Private Caches without Replication 

Private caches sacrifice capacity for fast access time. It 
may be desirable to limit replications in the private 
caches. To understand the impact of the private L2 with-
out replication, we run a separate stack simulation in 
which the creation of a replica causes the invalidation of 
the original copy.  

Figure 14 demonstrates the L2 access delays of the pri-
vate caches without replication, shown as the ratio to 
those of the private caches with full replication. As ex-
pected, with small 128KB and 256KB private caches per 
core, the average L2 access times without replication are 
about 5-17% lower than those with full replication for all 
the three workloads. This is because the benefit of the 
increased capacity more than compensates the loss of lo-
cal accesses. With large 1MB or 2MB caches per core, the 
average L2 access time of the private caches without rep- 

 

Fig. 13. Effects of L1 size on replication for SPECjbb with 8MB L2. 

lication is 12-30% worse than the full-replication counter-
part, suggesting that increasing local accesses is beneficial 
when enough L2 capacity is available. The stack simula-
tion results follow this trend perfectly. They provide very 
accurate results with only 2-5% margin of error. 

5.4 Simulation Time Comparison 

We run the full-system Virtutech Simics 2.2 simulator [19] 
to simulate an 8-core CMP system with Linux 9.0 and x86 
ISA on Intel Xeon 3.2 GHz 2-way SMP. The simulation 
time of each stack or execution-driven simulation is 
measured on a dedicated system without other interfer-

ence. A timer was inserted at the beginning and the end 
of each run to calculate the total execution time. Detailed 
descriptions of the three workloads have been given in 
Table 2. In the single-pass stack simulation, each stack is 
partitioned into 16KB groups with a total of 1024 groups 
for the 16MB cache. This small 16KB groups are necessary 
in order to study shared caches with variable percentage 
of replication areas as shown in Figure 12. The stack 
simulation time can be further reduced for cache organi-
zations that only require a few large groups. 

Table 3 summaries the simulation times for the stack 
and the execution-driven simulations using the three 
workloads. For each workload, two stack simulation runs 
are needed. One run is for producing the results for 
shared caches, private caches, and shared caches with 
replication, and the other run is for the private L2 without 
replication. In execution-driven simulations, it requires a 
separate run for each cache size resulting in five runs for 
each cache organization. In studying the shared cache 
with replication, five separate runs are needed for each 
cache size in order to simulate five different replication 
percentages. No separate stack simulation is required for 
the shared cache with replication. Similarly, no separate 
execution-driven simulation is needed for shared caches 
with 0% area for data replication. Therefore, we need 20 
runs for the shared cache with replication for the execu-
tion-driven simulation. The total number of simulation 
runs is also summarized in Table 3. The total stack simu-
lation time is measured to be about 4751 minutes, while 
the execution-driven simulation takes 58016 minutes, a 
ratio of over 12 times. This gap can be much wider if 
more cache organizations and sizes are simulated. 
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Fig. 14. Average L2 access time ratio of private caches without repli-
cation.  

TABLE 3 
SIMULATION TIMES COMPARISON (IN MINUTES) 

Measurement Workload Stack Execution-

Driven 

OLTP 1 Run: 835 (5+5) Runs: 6252 

Apache 1 Run: 901 (5+5) Runs: 6319 

Shared / 

Private 

(Section 5.1) SPECjbb 1 Run: 582 (5+5) Runs: 4220 

OLTP 0 Run: 0 20 Runs: 11976 

Apache 0 Run: 0 20 Runs: 12211 

Shared with 

replication 

(Section 5.2) SPECjbb 0 Run: 0 20 Runs: 8210 

OLTP 1 Run: 872 5 Runs: 3257 

Apache 1 Run: 948 5 Runs: 3372 

Private no 

replication 

(Section 5.3) SPECjbb 1 Run: 613 5 Runs: 2199 

Total  4751 58016 

6 RELATED WORK 

Optimizing on-chip storage space on CMPs has been 

studied extensively [2, 18, 9, 24, 31, 8, 3, 26, 15, 14, 17]. 

The goal is to dynamically allocate data blocks for fast 

access without adversely increasing off-chip traffic due 

to the L2 misses. With many CMP cache organizations, 

these studies must examine a wide-spectrum of the 

design space, which requires costly simulations.  

There have been several techniques for speeding up 

cache simulations. Mattson, et al. [21] presents a stack 

algorithm to measure cache misses for multiple cache 

sizes in a single pass. For fast search through the stack, 

tree-based stack algorithms [4, 28] are proposed. Kim, 

et al. [16] provides a much faster simulation by main-

taining the reuse distance counts only to a few poten-

tial cache sizes. All-associativity simulations [7, 2] and 

generalized forest simulations [13, 25] allow a single-

pass simulation for variable set-associativities. Mean-

while, various prediction models have been proposed 

to provide quick cache performance estimation [1, 11, 

10, 28, 5, 6, 12]. They apply statistical models to ana-

lyze the stack reuse distances. But, it is generally diffi-

cult to precisely model systems with complex real-time 

interactions among multiple processors. StatCache [5] 

estimates capacity misses using sparse sampling and 

static statistical analysis. 

All above techniques target uniprocessor systems 

where there is no interference between multiple 

threads running on different processors. Several works 

aim at modeling multiprocessor systems [29, 30, 7, 6]. 

StatCacheMP [6] extends StatCache to incorporate 

communication misses. It assumes a random replace-

ment policy for the statistical model. Chandra, et al [7] 

propose three analytical models based on the L2 stack 

distance or circular sequence profile of each thread to 

predict inter-thread cache contentions on the CMP for 

multiprogrammed workloads that do not have inter-

ference with each other. Two other works [29, 30] ex-

tends stack simulations to multiprocessors. However, 

they pay attention only to miss ratios, update ratios, 

and invalidate ratios. The proposed single-pass stack 

simulation method aims at the L2 caches on CMPs 

where the remote cache hits are an important perform-

ance metric. The single-pass stack simulator creates a 

global stack to simulate both shared and private L2 

caches. The results can be used to project the cache 

performance for various CMP shared, private, and a 

combination of both cache organizations with different 

degrees of data sharing. 

7 CONCLUSION 

In this paper, we developed an abstract analytical 

model for understanding the general performance be-

havior of data replication on CMP caches. The model 

showed that data replication could degrade cache per-

formance without a sufficiently large cache capacity. 

We then developed a global stack simulation method 

for more detailed study on the issue of balancing ac-

cessibility and capacity for on-chip storage space on 

CMPs. With the stack simulation, we can evaluate a 

wide-spectrum of the cache design space in a single 

simulation pass. Based on the stack simulation results, 

we can estimate performance of regular shared / pri-

vate caches, shared caches with data replication, and 

private caches without data replication of various 

cache sizes. We verified the modeling and stack simu-

lation results against detailed execution-driven simula-

tions using commercial multithreaded workloads. We 

showed that the analytical model and the single-pass 

stack simulation can characterize the CMP cache per-

formance with high accuracy. Our results also demon-

strated that the effectiveness of various techniques to 

optimize the CMP on-chip storage is closely related to 

the total L2 cache size. 
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