Modeling and Stack Simulation of CMP
Cache Capacity and Accessibility

X. Shi, F. Su, J.-K. Peir, Y. Xia, and Z. Yang

Abstract— Performance tradeoffs between fast data access by local data replication and cache capacity maximization by
global data sharing have been extensively studied for many-core Chip-Multiprocessors (CMPs). Costly simulations over a wide
spectrum of the design space are generally required to gain insight for a sound design. To lower the cost, we develop an
abstract model for understanding the performance impact of data replication on CMP caches. To overcome the lack of real-time
interactions among multiple cores in the model, we further develop an efficient single-pass stack simulation to study the
performance of CMP cache organizations with various degrees of data replication. The global stack logically incorporates a
shared stack and per-core private stacks; shared/private reuse (stack) distances can be collected in a single-pass simulation.
With the reuse distances, one can calculate the performance of CMP cache organizations with various degrees of data
replication. We verify both the model and the stack simulation against execution-driven simulations with commercial
multithreaded workloads. The results show that the abstract model provides accurate information about performance tradeoffs
of data replication. The stack simulation accurately predicts the performance of various cache organizations with 2-9% error

margins using only about 8% of the simulation time.

Index Terms— Cache memories, Chip-multiprocessors, Performance Modeling, Stack simulation.

1 INTRODUCTION

How to balance between fast data access and efficient
use of the on-chip storage capacity has been studied

extensively for CMPs [2, 18, 9, 24, 31, 8, 3, 26, 15, 14,
17]. A shared cache organization provides the maximum
cache capacity that leads to the least off-chip traffic. How-
ever, in such a design, data blocks are usually stored
across multiple banks, resulting in an increase in the
cache access delay due to a high percentage of remote
bank accesses. A private cache organization, on the other
hand, reduces the cache access delay by storing the re-
cently-accessed blocks in the local cache. However, mul-
tiple copies of a single block may exist in multiple caches,
which decreases the effective cache capacity and increases
off-chip memory traffic.

As a CMP memory hierarchy almost always includes
small, private instruction/data L1 caches for fast accesses,
the unsettled interesting issue is the organization of the
on-die L2 cache. Recently, there have been several re-
search papers [2, 18, 9, 24, 31, 8, 3] proposing variously
combined private/shared L2-cache organizations follow-
ing two general directions. The first is to organize the L2
as a shared cache for maximizing the effective capacity.
To reduce the access time, a portion of the L2 can be set
aside for replication [31]. The second is to organize the L2
as private caches for minimizing the access time. To
achieve a higher effective capacity, data replications

o X. Shi is with the Google Inc., Mountain View, CA 94043. E-mail: xushi@
cise.ufl.edu.
o |.-K. Peir and Y. Xia are with the Department of Computer Information

and Science and Engineering, University of Florida, Gainesville, FL 32611.

E-mail: {peir, yx1}@cise.ufl.edu.
e F. Suand Z. Yang are with the Nvidia Inc., Santa Clara, CA 95050. E-
mail: {fsu, zhyangj@cise.ufl.edu.

Manuscript received on July 30, 2008.

among multiple L2s are constrained and different private
L2s can steal each other’s capacity by block migration [24,
3, 8].

CMP cache studies must examine a wide spectrum of
the design space to yield an accurate and comprehensive
view of the cache design. Due to the lack of an efficient
methodology for performance evaluation, near-sighted
conclusions can potentially be drawn as a result of ex-
periments with the design parameters that fall in a nar-
row range. Analytical models can provide quick perform-
ance estimation [1, 13]. However, they usually depend on
statistical or other simplifying assumptions, and cannot
accurately model systems with complex real-time interac-
tions among multiple processors [7]. For fast simulation,
the stack-based technique proposed in [21] simulates mul-
tiple cache sizes in a single pass under the LRU replace-
ment policy. Several extensions and enhancement have
been made to improve the speed of the single-pass stack
simulation or the applicability to variable set-
associativities [21, 4, 27, 13, 16, 25]. However, these stack
simulation methods target only uniprocessor caches
where the complex cache-coherence issue is not involved
and the memory access delay hardly affects the order of
memory requests. Extensions of the stack simulation to
multiprocessors are reported in [29, 30]. Those studies
focus on solving the problem of multiprocessor cache
invalidations for general set-associative caches. However,
the remote cache hit, an important measure on CMPs, is
not considered. Moreover, the accuracy of using traces to
simulate different multiprocessor cache organizations is
not evaluated.

In this paper, we present a general framework for fast
projection of CMP cache performance [23]. Four L2 cache
organizations - shared, private, shared with data replica-

XXXX-XXxx/0x/$xx.00 © 200x [EEE

tion, and private without data replication - are studied.
We focus on understanding the performance tradeoff be-
tween fast data access and cache capacity loss due to data
replication. Both analytical modeling and fast stack-based
simulation techniques are considered. The outline and
contributions of our approach are as follows.

1) Modeling Data Replication: We first develop an ana-
lytical model to assess general performance effects of data
replication. The model considers injecting replicas (repli-
cated data blocks) into a generic cache. Based on the block
reuse-distance histogram obtained from a real applica-
tion, a precise equation is derived to evaluate the per-
formance impact of the replicas. We also derive an ex-
pression to calculate the optimal degree of data replica-
tion. The results demonstrate that whether data replica-
tion helps or hurts cache performance are a function of
the working set of the application and the available cache
size. Existing CMP cache studies may have not examined
a large enough design space and have overlooked impor-
tant tradeoffs.

2) Single-Pass Stack Simulation: To overcome the limita-
tions of the analytical model, we develop a single-pass
stack simulation technique for more accurate perform-
ance assessment. The stack algorithm can handle interac-
tions among multiple private caches. The technique can
produce performance results of shared or private cache
organizations with the invalidation-based coherence pro-
tocol. For instance, it can provide local/remote hit ratios
and the effective cache sizes for a range of physical cache
capacities.

3) Performance Impact of Data Replication: We demon-
strate that we can use the multiprocessor stack simulation
results to estimate the performance of other interesting
CMP cache organizations. For example, given different
percentages of the L2 cache reserved for data replication,
we can derive the average L2 access time under a shared
L2 cache organization. Such a cache organization closely
resembles the L2 cache with victim replication [31].

4) Performance Projection and Verification: We verify the
accuracy of the stack simulation in predicting perform-
ance against the detailed execution-driven simulation for
each individual cache configuration using three multi-
threaded workloads. We observe that both the model and
the single-pass stack simulation produce consistent per-
formance views of the CMP caches under different de-
grees of data replication. We also show that the single-
pass stack simulation produces small error margins of 2-
9% for all simulated cache organizations.

5) Reduction of Simulation Time: The total simulation
times for the single-pass stack simulation and the indi-
vidual execution-driven simulations are compared. For
the four studied cache organizations, the stack simulation
takes about 8% of the execution-driven simulation time.

The paper is organized as follows. Section 2 describes
the analytical model. Section 3 introduces the CMP sin-
gle-pass stack simulation. Section 4 describes the simula-
tion methodology. This is followed by a comparison
against execution-driven simulations in section 5. Further
related work and the conclusion are given in Section 6
and Section 7.

2 MODELING DATA REPLICATION

We first develop an abstract model independent of pri-
vate/shared organizations to evaluate the tradeoff be-
tween the access time and the miss ratio of CMP caches
under various degrees of data replication. This model can
provide a uniform understanding of the central issues in
CMP caching that are present in most cache organiza-
tions. This study also highlights the importance of exam-
ining a wide range of system parameters in any CMP
cache organization, which is time-consuming and costly.
The model-based analysis and the stack simulation intro-
duced later are complimentary approaches for studying
CMP cache performance. The former makes simplifying
assumptions but can provide high-level, panoramic views
about the performance behavior of a broad class of cache
organizations. It gives important insights and intuitive
guidance for cache design. The latter provides more de-
tailed, more accurate performance evaluation for each
specific cache organization.

In Figure 1, a generic histogram of block reuse dis-
tances is plotted, where the reuse distance is measured by
the number of distinct blocks between two adjacent ac-
cesses to the same block. A distance of zero indicates a
request to the same block as the previous request. The
histogram is denoted by f(x), which represents the num-
ber of block references with reuse distance x. For a cache

5
size S, the total cache hits can be computed by -‘-o Jix)de ,
which is equal to the area under the histogram curve from
0 to S. This well-known stack distance histogram can pro-
vide hit/miss information of all cache sizes with a fully-
associative organization and the LRU replacement policy.

To model the performance impact of data replication,
we consider injecting replicas into the cache. Note that
regardless the cache organization, replicas help to im-
prove the local hit ratio since they are created and stored
close to the requesting cores, and hence, enable a short
access time. On the other hand, having replicas reduces
the effective capacity of the cache, and hence, increases
cache misses. We need to compare the effect from the in-
crease of local hits against that from the increase of cache
misses.

Suppose we take a snapshot of the L2 cache and find a
total of R replicas. As a result, only S-R cache blocks are
distinct, effectively reducing the capacity of the cache.
Note that in developing the abstract model, we do not
make reference to any specific cache organization and
management scheme. Moreover, the model does not state
where precisely the replicas are stored, nor it intends to
capture the cache coherence interactions. A simple ratio
of data replication is used to derive extra cache misses vs.
additional local hits, as will be described next.

We will compare the data replication scenario with the
baseline case where all S blocks are distinct. On one hand,

F{x)dx

5
the cache misses are increased by IS—R , since the total

S—-R
number of hits is now J.0 Fas . On the other hand, the
replicas help to improve the local hits. Assuming data
references are evenly distributed among all cache blocks,

Increase Local Hits
Increase Cache Ilisses

Reusze Frequency

Replica

(R Sk «————— 3 Reuse Distance

Fig. 1. Cache performance impact with replica.

SR

within [e hits, a fraction R/S of them are targeting
the replicas. However, depending on the specific cache
organization, not all accesses to the replicas result in local
hits. For example, a requesting core may find a replica in
the local cache of another remote core, resulting in a long-
er remote hit. We assume that a fraction of accesses to the
replicas are actually local hits and denote the fraction by
L. Therefore, compared with the baseline case, the total
change of memory access cycles due to the creation of R
replicas can be calculated by:

Px [flodx - Gx g x Lx [f(x)dx M)

where P, is the penalty cycles of a cache miss; and G; is
the cycle gain from a local hit. With the total number of

memory accesses r f(x)dx , the average delta of mem-
0

ory access cycles is equal to:
(Bn x J‘; f@dx-G xg x Lx J: - f(x)dx) / [foax @

Now the key is to obtain the reuse distance histogram
f(x) to fit into this equation. In [12], an analytical cache
miss model was developed based on the power law of
block reuses. Instead of deriving f(x) analytically; we use
the curve-fitting tool of Matlab [20] to obtain the best fit
f(x). Note that the curve-fitting approach is capable of
handling a wider array of workloads, such as those with
cyclical program behavior where it is difficult to apply a
pure analytical approach [12]. We conduct an experiment
using an OLTP workload [22] and collect its generic reuse
distance histogram. With the curve-fitting tool, we obtain
the equation (3):

f(0)=Axe™ ®)
where A = 6.084x10°, and B = 2.658%107>. This is shown
in Figure 2, where the cross marks represent the actual
reuse frequencies from OLTP and the solid line is the fit-
ted curve. We can now substitute f(x) into equation (2) to
obtain the delta of the average memory cycles as:

) R)
P x(e " —e)—g, XX LX (1—e?e®). (@)
Equation (4) provides the change in L2 access time as a
function of the cache space being occupied by the repli-
cas. In Figure 3, we plot this delta of the average memory
access time for three cache sizes, 2, 4, and 8 MB, as we va-

* Criginal data | |
fitted curwe

Feuse frequency

0 1024 2048 3072 4096 5120 6144 7168 8192
Feuse distance (KB

Fig. 2. Curve fitting of reuse distance histogram of OLTP.

—~=-2M-10.25 —— 4M-L0.25 ---¢---8M-L0.25
—==-2M-105 ——4M-L0.5 -~ 8M-10.5
—+—-2M-10.75 —=— 4M-L0.75 ---a--- 8M-L0.75

40 —

383
(=)

—_
o

Ave. access time increases
(Cycles)

R SRR
-10 . . .
0 8 14 38 12 58 34 I8

Fraction of replication

Fig. 3. Performance with replicas for different cache sizes.

ry the replicas” occupancy from none to the entire cache.
In this figure, we assume G;=15, P,= 400, and we vary L
with 0.25, 0.5 and 0.75 for each cache size. Note that nega-
tive values mean performance gain. We can observe that
the performance of allocating L2 space for replicas for the
OLTP workload varies with different cache sizes. For in-
stance, when L = 0.5, the results indicate no replication
provides the shortest average memory access time for a
2MB L2 cache, while for larger 4MB and 8MB L2 caches,
allocating 40% and 68% of the cache for the replicas has
the smallest access time. These results are consistent with
the reuse histogram curve shown in Figure 2. The reuse
count approaches zero when the reuse distance is equal to
or greater than 2MB. It increases significantly when the
reuse distance is shorter than 2MB. Therefore, it is not
wise to allocate space for the replicas when the cache size
is 2MB or less. Increasing L favors data replication
slightly. For instance, for a 4MB cache, allocating 34%,
40%, 44% of the cache for the replicas achieves the best
performance improvement of about 1, 3, and 5 cycles on
the average memory access time for L = 0.25, 0.5 and 0.75
respectively. The performance improvement with data
replication would be more significant when G; increases.

The general behavior due to data replication is consis-
tent with the detailed simulation results given in Section
5. Note that the fraction of replicas cannot reach 100%
unless the entire cache is occupied by a single block.
Therefore, in Figure 3, the average access time increase is
not meaningful when the fraction of replicas is approach-
ing the cache size.

From equation (4), we can also derive the optimal frac-

tion of replication under different cache sizes for OLTP
based on its reuse distance histogram f(x). The number of
replicas R is optimal when the derivative of equation (4)
with respect to R is zero. We can obtain the following
equation:

(% +De® = +e ™ BR. (5)
1

Since ¢ ® BR is far less than e °* when R is smaller
than S, we can approximate the above equation as

BSP - -
(—2 +1)e™® = e Now, solving equation (5), we

G.L

can get the optimal replication R as:

1 eBS
R=—In——7——. (6)
B (BSPm)
GL

By plugging the aforementioned OLTP parameters
into equation (6), we get the optimal factions of replica-
tion under cache sizes from 2MB to 8MB and L from 0.25
to 0.75, as shown in Figure 4. For the 2MB caches, 0%, 0%
and 3.2% of replication are the best for L = 0.25, 0.5, 0.75;
the optimal fractions are 35%, 41%, 45% for the 4MB
caches, and 64%, 67%, 69% for the SMB caches, respec-
tively. We also run the same experiment for two other
workloads, Apache and SPECjbb. The same behavior can
be observed for both Apache and SPECjbb, i.e. larger
caches favor more replications. For example, with L = 0.5,
allocating 13%, 50%, 72% space for replicas has the best
performance for Apache, and 28%, 59%, 78% for SPECjbb.
Furthermore, increasing L also favors more replication.
Due to its smaller working set, SPECjbb benefits the most
with data replication among the three workloads.

The analysis shows that it is essential to study a set of
representative workloads with different cache sizes to
understand the tradeoff of accessibility vs. capacity on
CMP caches. A fixed replication policy may not work
well for a wide variety of workloads on different CMP
caches.

3 SINGLE-PASS STACK SIMULATION

Although our analytical model can provide understand-
ing of the general performance trend, its inability to mod-
el sufficiently detailed interactions among multiple cores
limits its capability for accurate performance prediction.
To remedy this problem, we develop a single-pass, glob-
al-stack based simulation method for studying the CMP
caches.

In our stack simulation, a single global stack is built to
record the history of requested block addresses from all
cores. Multiple double-link lists are established in the
global stack for simulating the generic stack algorithm for
both a shared and per-core private caches. Figure 5
sketches an entry of the global stack data structure; each
entry records one memory reference. In the CMP context,
a block address and its core-id uniquely identify a refer-

ence, where the core-id indicates from which core the
request is issued. We maintain one logical private stack
for each core, which is organized as a doubly linked list.
(Note that for simplicity, we only show one private list in
Figure 5.) Each global stack entry is linked by the Private
prev and Private next pointers in exactly one of the logical
private stacks determined by the core-id. We also main-
tain one logical shared stack also as a doubly linked list.
The global stack entries are linked together for the shared
stack by the Shared prev and Shared next pointers. Each
entry may or may not be in the logical shared stack de-
pending on the recency of the reference, since only a sin-
gle copy of a block address exists in the shared cache. In
addition, a block address-based hash list is also estab-
lished in the global stack for fast searches.

§0 | O1=025 mL=05 mL=075]

60 F-----

40

20

Opt. Fraction of Replication (%

OLTP

Fig. 4. Optimal fraction of replication.

Global Stack Entry

Hash |Shared|Private

Shared|Private| prev | prev | prev

Block Core
address Id grlc:jup grlodup

Hash
| next

W_I

(to last block in—fro p)
count | — local

Shared Group Table

Shared|Private
next next

group bound
(to last block in group)

remote| replica | hole | —

Private Group Table

Fig. 5. Global stack organization.

Since only a set of discrete cache sizes are of interest
for cache studies, both the shared and the private stacks
are organized as groups, each consisting of multiple cache
blocks, for fast search during the stack simulation and for
easy calculations of cache hits under various interesting
cache sizes after the simulation [16]. For example, assum-
ing the cache sizes of interest are 16KB, 32KB, and 64KB.
The groups can then be organized according to the stack
sequence starting from the MRU entry with 256, 256, 512
blocks for the first three groups, respectively, assuming
the block size is 64B. The first group with 256 blocks is to
simulate the 16KB cache. The first two groups of (256 +
256) blocks are to simulate the 32KB cache and so on. The
hits to a particular cache size are equal to the sum of the

hits to all the groups accumulated up to that cache size.
Each group maintains a reuse counter, denoted by G1, G2,
and G3. After the simulation, the cache hits for the three
cache sizes can be computed as GI1, GI+G2, and
G1+G2+G3 respectively.

Separate shared and private group tables are maintained
to record the reuse frequency count and other useful in-
formation for each group in the shared and private cach-
es. A shared and a private group-id are kept in each global
stack entry as a pointer to the corresponding group in-
formation in the shared and the private group table. The
group bound in each entry of the group table links to the
last block of the respective group in the global stack.
These group bounds provide fast links for adjusting en-
tries between adjacent groups. The associated counters
are accumulated on each memory request, and will be
used to deduce cache hit/miss ratios for various cache
sizes after the simulation. The following subsections pro-
vide detailed stack operations for both shared and private
caches.

3.1 Shared Caches

Each memory block can be recorded multiple times in
the global stack, one from each core according to the or-
der of the requests. Intuitively, only the first-appearance
of a block in the global stack should be in the shared list
since there is no replication in a shared cache. A first-
appearance block is the one that is most recently used in
the global stack among all blocks with the same address.
The shared stack is formed by linking all the first-
appearance blocks from MRU to LRU. Figure 6 illustrates
an example of a memory request sequence and the opera-
tions to the shared stack. Each memory request is denoted
as a block address, A, B, C, ..., etc., followed by a core-id.
The detailed stack operations when B1 is requested are
described as follows.

1. Address B is searched by the hash list of the
shared stack. B2 is found with the matching ad-
dress. In this case, the reuse counter for the shared
group where B2 resides, group 3, is incremented.

2. B2 is removed from the shared list, and B1 is in-
serted at the top of the shared list.

3. The shared group-id for Bl is set to 1. Meanwhile,
the block located on the boundary of the first
group, El, is pushed to the second group. The
boundary adjustment continues to the group
where B2 was previously located.

4. If a requested block cannot be located through the
hash list, (i.e. the very first access of the address
among any cores), the stack is updated as above
without incrementing any reuse counters.

5. After the simulation, the total number of cache hits
for a shared cache that include exactly the first m
groups is the sum of all shared reuse counters
from group 1 to group m.

3.2 Private Caches

The construction and update of the private lists are es-
sentially the same as those of the shared list, except that
accesses from the same core are linked together. We col-

lect crucial information such as the local hits, remote hits,
and number of replicas, with the help of the local, remote,
and replica counters in the private group table. For sim-
plicity, we assume these counters are shared by all the
cores, although per-core counters may provide more in-
formation. Figure 7 draws the contents of the four private
lists and the private group table, where we extend the
memory sequence (Figure 6) with three additional re-
quests.

1) Local/Remote Reuse Counters

The local counter of a group is incremented when a re-
quest falls into the respective group in the local private
stack. In this example, only the last request, Al, encoun-
ters a local hit, and in this case, the local counter of the
second group is incremented. After the simulation, the
sum of all local counters from group 1 to group m repre-
sents the total number of local hits for private caches with
exactly m groups.

Memory Request Sequence: A1, B2,C3,D4,E1,F2,B1.

Shared Group Shared List Hash List
Count Bound Address Group Address Group List 0 List 1
Group1 0 2 F2 1 B1 1 F2 B1
Group2 0 4 ,j’ E1 1-- F2 1 E1 C3
Group3 | 0+1 | 8 A D4 | 2 TEerbh2 D4 B2
Group4 0 16 C3 2-- D4 2 A1
B2 | 3 T hs
A1 3 A1 3
Block 6

After B1

Before B1 After B1

Fig. 6. Shared cache example.
Memory Request Sequence: A1, B2, C3, D4, E1, F2, B1. A2, C1. A1,

Private Group
Accumulated Accumulated

Private List after B4
Core Core Core Core

Private List after A2
Core Core Core Core

Local Remote Replica _Bound 12 3 4 12 3 4
0+0+0+0+0 | 0+1+0+1+1 | 0+1-4+1+1 | 2 B1 | F2 [c3 | D4 B1 | A2 [c3 | D4
0+0+0+0+1 | 0+1+1+1+0 | O+1+1+140 | 4 E1 | B2 E1 F2
0+0+0+0+0 | 0+1+1+1+0 | O+1+1+1+0 | 8 A1 A1 | B2

Private List after C1 Private List after A1

Core Core Core Core Core Core Core Core
1 2 3 4 1 2 3 4
C1 | A2 | C3 | D4 A1 | A2 | C3 | D4
B1 | F2 C1 | F2
E1 B2 B1 B2
A1 E1

Fig. 7. Private cache example.

Counting the remote hits is somewhat tricky, since a
remote hit may only happen when a reference is a local
miss. For example, assume that a request is in the third
group of the local stack; meanwhile, the minimum group
id of all the remote groups where this address appears is
the second. When the private cache size is only large
enough to contain the first group, neither a local nor a
remote hit happens. If the cache contains exactly two
groups, the request is a remote hit. Finally, if the cache is
extended to the third group or larger, it is a local hit.
Formally, if an address is present in the local group L and

the minimum remote group that contains the block is R,
the access can be a remote hit only if the cache size is
within the range from group R to L-1. We increment the
remote counters for groups R to L-1 (R <= L-1). Note that
after the simulation, the remote counter m is the number
of remote hits for a cache with exactly m groups. To dif-
ferentiate them from the local counters, we call them ac-
cumulated remote counters.

In the example, the first highlighted request, Bl, en-
counters a local miss, but a remote hit to B2 in the first
group. We accumulate the remote counters for all the
groups. The second request, A2, is also a local miss, but a
remote hit to Al in the second group. The remote counter
of the first group remains unchanged, while the counters
are incremented for all the remaining groups. Similar to
B1, all the remote counters are incremented for C1. Fi-
nally, the last request, Al, is a local hit in the second
group and is also a remote hit to A2 in the first group. In
this case, only the remote counter of the first group is in-
cremented since Al is considered as a local hit if the cache
size extends to more than the first group.

2) Measuring Replica

The effective cache size is an important factor for
shared and private cache comparisons [2, 9, 31, 8]. The
single-pass stack simulation counts each block replication
as a replica for calculating the effective cache size along
the simulation. Similar to the remote hit case, we use ac-
cumulated replica counters. As shown in Figure 7, the
first highlighted request, B, creates a replica in the first
group, as well as any larger groups because of the pres-
ence of B2. The second highlighted request, A2, does not
create a new replica in the first group. But it does create a
new replica in the second group because of Al. Mean-
while, A2 pushes B2 out of the first group, thus reduces a
replica in the first group. This new replica applies to all
the larger groups too. Note that the addition of B2 in the
second group does not alter the replica counter for group
2, since the replica was already counted when B2 was first
referenced. Similar to Bl, the third highlighted request,
C1, creates a replica to all the groups. Lastly, the refer-
ence, Al, extends a replica of A into the first group be-
cause of A2. The counters for the remaining groups stay
the same.

3) Handling Memory Writes

In private caches, memory writes may cause invalida-
tions to all the replicas. During the stack simulation, write
invalidations create holes in the private stacks where the
replicas are located. These holes will be filled later when
the adjacent block is pushed down from a more-recently-
used position by a new request. No block will be pushed
out of a group when a hole exists in the group. To accu-
rately maintain the reuse counters in the private group
table, each group records the total number of holes for
each core. The number of holes is initialized to the respec-
tive group size, and is decremented whenever a valid
block joins the group. The hole-count for each group
avoids searching for existing holes.

4 SIMULATION METHODOLOGY

We use the full-system Virtutech Simics 2.2 simulator [19]
to simulate an 8-core CMP system with Linux 9.0 and x86
ISA. The processor module is based on the Simics Mi-
croarchitecture Interface (MAI) and models timing-
directed processors in detail. Each core has its own in-
struction and data L1 cache. The global stack runs behind
the L1 caches and simulates every L1 misses, essentially
replacing the role of L2 caches. During simulations, stack
distances and other related statistics are collected as de-
scribed in Section 3. The results of the single-pass stack
simulation are used to derive the performance of shared
or private caches with various cache sizes and the sharing
mechanisms for understanding the accessibility-vs.-
capacity tradeoff in CMP caches.

The results from the stack simulation are verified
against execution-driven simulations, where detailed
cache models with proper access latencies are inserted. In
those simulations, we assume the shared L2 has eight
banks, with one local and seven remote determined by

the least-significant three bits of the block address. For the
TABLE 1
SIMULATION PARAMETERS

CMP: 8 cores, 3.2GHz, 128 entry ROB

Branch predictor: g-share, 64K, 4K BTB

Branch misprediction penalty: 10 cycles

L1-I: 32KB, 4-way, 64B line, MESI

L1-D: 32KB, 4-way, 64B line, MESI

L1-I/L1-D latency: 0/2 cycles

L2: 16-way, 64B line, MESI

Private L2 size (KB): 128/256/512/1024 /2048 per core
Private L2 local/remote latency: 15/30 cycles
Shared L2: 8 banks, 1 local/7 remote

Shared L2 size (MB):1/2/4/8/16

Shared L2 local/remote latency: 15/30 cycles
Memory latency: 400 cycles

Stack: 16KB / group, 1024 groups (16MB maximum)

TABLE 2
WORKLOAD DESCRIPTIONS

OLTP (Online Transaction Processing): It is built upon the
OSDL-DBT-2 [22] and MySQL database server 5.0. We build a
1GB, 10-warehouse database. To reduce the database disk activ-
ity, we increase the size of the MySQL buffer pool to 512MB. We
further stress the system by simulating 128 users with no keying
and thinking time. We simulate 1024 transactions after bypass-
ing 2000 transactions and warming up caches (or stack) for an-
other 256 transactions.

Apache (Static web server): We run apache 2.2 as the web serv-
er, and use Surge to generate web requests from a 10,000 file,
about 200MB repository. We simulate 8 clients with 50 threads
per client. We collect statistics for 8192 transactions after bypass-
ing 2500 requests and warming up for 2048 transactions.

SPECjbb (java server): We simulate 8 warehouses. We first fast-
forward 100,000 transactions. Then we simulate 20480 transac-

tions after warming up the structures for 4096 transactions.

private L2, we model both local and remote accesses. The
MOESI coherence protocol is used to maintain data co-

herence among private L2s. For comparison, we use the
hit/miss information and average memory access times
to approximate the execution time behavior because the
single-pass stack simulation cannot provide IPCs. Table 1
summarizes important simulation parameters.

We use three multithreaded commercial workloads,
OLTP, Apache, and SPECjbb, as described in Table 2. We
consider the variability of these multithreaded workloads
by running multiple simulations for each configuration of
each workload and inserting small random noises (per-
turbations) in the memory system timing for each run.

5 [EVALUATION AND VALIDATION

The accuracy of the CMP memory performance projection
can be assessed from two different angles, the accuracy of
predicting individual performance metrics, and the accu-
racy of predicting general cache behavior. By verifying
the results against the execution-driven simulation, we
demonstrate that the stack simulation can accurately pre-
dict cache hits and misses for the targeted L2 cache or-
ganizations, and more importantly, it can precisely pro-
ject

OLTP

20%

— - —Real

a —&— Stack-1
—=&— Stack-2

16% -~ v "~~~ ~~~—~—~~—~—~~~~— —Xx— Stack-4

\ — =¥ — Stack-8

N —e— Stack-16

12%

8%

Shared miss rate

4%

0% t t t t
M M 4aM M 16M

20%

— —o——Real
—— Stack-1
—=&— Stack-2
I e —x— Stack-4
S — =% — Stack-8
« —e— Stack-16

te
0
/

miss ra

2%

Shared
%
]

I
R
.

0% t + + t
M M 4M M 16M
Cache size

SPECjbb

24%

————Real
—— Stack-1
—=&— Stack-2
—X— Stack-4
— =% — Stack-8
—e— Stack-16

20%

6%

12%

Shared miss rate
%
S
1

e

0% + + + t+
M M 4aM 8SM 16M
Cache size

Fig. 8. Miss ratios for shared caches.

the sharing and replication behavior of the CMP caches.

One inherent difficulty of stack simulation is its inabil-
ity to insert accurate timing delays for variable L2 cache
sizes. The fluctuation in memory delays may alter the
sequence of memory accesses among multiple processors.
We try a simple approach to insert memory delays based
on a single discrete cache size. In the stack simulation, we
inserted memory delays based on five cache sizes 1MB,
2MB, 4MB, 8MB, and 16MB, denoted as stack-1, stack-2,
stack-4, stack-8, and stack-16 respectively. An off-chip
cache miss latency is charged if the reuse distance is long-
er than the selected discrete cache size.

5.1 Hits/Misses for Shared and Private L2 Caches

Figure 8 shows the projected and real miss rates for
shared caches, where “real” represents the results from
individual execution-driven simulations. In general, the
stack results follow the execution-driven results closely.
For OLTP, stack-2 shows only about 5-6% average error.

OLTP

—— Stack-1 miss
—X— Stack-8 miss
—2— Stack-1 rhit
—X— Stack-8 rhit

—0— Stack-2 miss
—e— Stack-16 miss
—=8— Stack-2 rhit
—o0— Stack-16 rhit

— —— —Real
509 | —+— Stacl

40%

30%

Miss rate & remote hit rate

128k 256k 512k M M
Private Cache size

Apache
— —0— — Real miss —&— Stack-1 miss ~—0— Stack-2 miss
Stack-4 miss ~—X— Stack-8 miss ~—e— Stack-16 miss

— —&— —Real rhit —— Stack-1rthit ~ —#— Stack-2 rhit

—+— Stack-4 rhit —X— Stack-8 rhit —o0— Stack-16 rhit
° 50%

Y
= IR
- ~
g 0% T S
= Qe
] Y
S 0% b - — - - — - 2=\
£ &
) N
= N
& 20% - - \ ———————————————————
2 S\
2 e
P === e————p
=
0% t t t t
128k 256k 512k IM 2M

Private Cache size

SPECjbb
— —o— — Real miss —— Stack-1 miss ——0— Stack-2 miss
. Stack-4 miss ~ —X— Stack-8 miss —e— Stack-16 miss
50% 1~~~ Real thit —a—Stack-1thit ~ —#— Stack-2 rhit
g —+—Stack-4thit ~ —>— Stack-8thit —o— Stack-16 rhit
e
<=
p N
2k - o NS - - - e
€ 0% N\
& S N \
1= S o
2% - e SSWemmeegeo oo
% \l\
£
0%+ --------—--——-——---= o~ — — —
§ —~———
0% : ‘
128k 256k 512k M M

Private Cache size

Fig. 9. Miss ratio, remote hit ratio for private caches.

For Apache and SPECjbb, the difference among different
delay insertions is less apparent. The stack results predict
the miss ratios with about 2-6% error, except for Apache
with a small 1IMB cache.

Two major factors affect the accuracy of the stack re-
sults. One is cache associativity. Since we use a fully-
associative stack to simulate a 16-way cache, the stack
simulation usually underestimates the real miss rates.
This effect is more apparent when the cache size is small,
due to more conflict misses. The issue can be resolved by
more complicated set-associative stack simulations [21,
13]. For simplicity, we keep the stack fully-associative.
More sensitivity studies are also helpful to evaluate L2
with smaller set associativity. The other factor is inaccu-
rate delay insertions. For example, in the stack-1 simula-
tion of OLTP, a cache miss latency is inserted whenever
the reuse distance is longer than 1MB. Such a cache miss
delay is inserted wrongly for caches larger than the 1MB.
These extra delays for larger caches cause more OS inter-

OLTP
— -x- — Upper bound 4

| —e— Stack-8 4

Effective size (MB)
oo

512k M 2M

128k 256k
Private Cache size
a
Apache
16 E—
— =X~ —Upper bound ,/
144 ——Real - [
—a— Stack-1 4

Sppd —e—Stack2 . _______ pa -
g —=— Stack-4 7
e —e— Stack-8 /
2109 ——stckle |-~ a2t
a s
@
&
T 67
D

PR

0 t

128k 256k 512k M M
Private Cache size b

SPECjbb

—-X-=Upper bound| /

S ©

Effective size (MB)

256k 512k M M
Private Cache size

Fig. 10. Average effective size for private caches.

ference and context switches that may lead to more cache
misses. At 4MB cache size, the overestimate of cache
misses due to the extra delay insertion exceeds the under-
estimate due to the full associativity. The gap becomes
wider with larger caches. On the other hand, the stack-16
simulation for smaller caches mistakenly inserts hit la-
tency, instead of miss latency, for accesses with reuse dis-
tance from the corresponding cache size to 16MB, causing
less OS interferences, thus less misses. In this case, both
the full cache associativity and the delay insertion lead to
underestimate of the real misses, which makes the stack-
16 simulation the most inaccurate.

For private caches, Figure 9 shows the overall misses
and the remote hits. Note that the horizontal axis shows
the size of a single core. With eight cores, the total sizes of
the private caches are comparable to the shared cache
sizes in Figure 8. We can make three important observa-
tions. First, comparing with the shared cache, the simula

1.6

2

=

s o 4

L

£ &

S 82

@2 wn

©

¥ O

9 =

S ® 1

=

o

S &

s 08

>

<

0.6 :
IM 2M 4M 8M 16M
Total capacity

Fig. 11. Average L2 access time ratio (private / shared Caches).

tion results show that the overall L2 miss ratios are in-
creased by 14.7%, 9.9%, 4.3%, 1.1%, and 0.5% for OLTP
for the private cache sizes from 128KB to 1MB. For
Apache and SPECjbb, the L2 miss ratios are increased by
11.8%, 4.4%,1.1%,1.0%, 2.2%, and 7.3%, 3.1%, 2.9%, 0.6%,
0.5%, respectively. Second, the estimated miss and remote
hit rates from the stack simulation match closely to the
results from the execution-driven simulations, with less
than 10% margin of errors.

We also simulate the effective capacity for the private-
caches as shown in Figure 10. The effective cache size is
the average over the entire simulation period. In general,
the private cache reduces the cache capacity due to repli-
cated and invalid cache entries. The effective capacity is

reduced to 45-75% for the three workloads with various
cache sizes. We also observe that the estimated capacity
from the stack simulation is almost identical to the result
from the execution-driven results. Note that due to its
higher accuracy, we use the stack-2 simulation in the fol-
lowing discussion.

For comparison, Figure 11 further plots the average 1.2
access time ratio between the private caches and the
shared caches with equal capacity. When the total capac-
ity is small, although the private-cache cases have more
local hits, they also encounter more L2 misses. The pri-
vate cache may have up to 50% longer average L2 access
time. However, when the total capacity is large, the pri-
vate cache becomes better. With larger caches, the differ-
ence of L2 misses diminishes, but the private L2s have
much more local hits, which makes the average L2 access
time shorter.

5.2 Shared Caches with Replication

To balance accessibility and capacity, victim-replication
[31] creates a dynamic L1 victim cache for each core in the
local slice of the L2 to trade capacity for fast local access.
In this section, we show a quick estimation of the per-
formance of a static victim-replication scheme. We allo-
cate 0% to 50% of the L2 capacity as L1 victim caches with
variable L2 sizes from 2MB to 8MB. For performance
comparison, we use the average memory access time,
which is calculated based on the local hits to victim cach-
es, the hits to shared portion of L2, and L2 misses.

The average memory access time of the static victim
replication can be derived directly from the results of the
stack simulation described in the previous sections. As-
suming the inclusion property is enforced between the
shared potion of the L2 and the victim potion plus the L1.
Suppose the L1 and L2 sizes are denoted by CL1, and CL2,
r is the percentage of the L2 allocated for the victim cache,
and 7 is the number of the cores. Then, each victim-cache
size is equal to (r*CL2)/n, and the remaining shared por-
tion is equal to (1-r)*CL2. The average memory access
time includes the following components. First, since the
L1 and the victim cache are exclusive, the total hits to the
victim cache can be estimated from the private stacks
with the size of the L1 plus the size of the victim:
CL1+(r*CL2)/n. Note that this estimation may not be pre-
cise due to the lack of the L1 hit information that alters
the sequence in the stack. Second, the total number of L2
hits (including the victim portion) and L2 misses can be
calculated from the shared stack with the size (1-r)*CL2.
Finally, the hit to the shared portion of L2 can be calcu-
lated by subtracting the hits to the victim from the total
L2 hits.

Figure 12 demonstrates the average L2 access time
with static victim replication. Generally, large caches fa-
vor more replications as expected. For a small 2MB L2,
except that Apache has a slight performance gain at low
replication levels, the average L2 access times increase
with more replications. The optimal replication levels for
OLTP are 12.5%, and 37.5% respectively for 4MB and
8MB L2. This general performance behavior with respect
to data replication is consistent with what we have ob-

served from the analytical model in section 2. However,
the analytical model without cache invalidations should
apply lower L for the optimal replication level.

For SPECjbb, 12.5% replication shows the best per-
formance for both 4MB and 8MB L2. For Apache, the best
performance is with replications as large as 50% except
for 8MB L2s. This seemly contradiction comes from the
fact that the number L2 misses is reduced drastically
around 8M caches as shown in Figure 8. Providing larger
effective capacity for 8M caches is more beneficial than
adding replicas. We can also observe that the optimal
replication levels match perfectly between the stack simu-
lations and the execution-driven simulations. With re-
spect to the average L2 access time, the stack results are
within 2%-8% error margins.

In the above studies, we assume a fixed L1 size of
32KB for the instruction and the data caches. Since the L1
cache size plays an important role in victim replications at
the L2 level, we run two more stack simulations with
16KB and 64KB L1 sizes. Figure 13 shows the breakdown
of L1 hit, L2 local hit, L2 remote hit and L2 miss with dif-
ferent L1 sizes from 16KB to 64KB and different replica-
tion levels. Since the general behavior is similar for all
three workloads, we only show the results for SPECjbb
with an 8MB L2 cache. Generally, the L1 size does not
significantly changed the replication behaviors. For this
configuration, 50% of victim space is the best for all of the
three L1 sizes. However, with smaller L1 caches, victim
replication of various degrees has larger fraction of L2
local hits, potentially more performance improvement.
This is due to the fact that the number of L1 misses is
much more for smaller L1 cache. Hence, victim replica-
tion can generate more local L2 hits.

OLTP

J——O—-Real-ZM --D--Real-4M --4--Real-8M
—— Stack-2M —®— Stack-4M —&— Stack-8M

Ave. L2 access time (Cycles)
o)
=)

40
20
0.0% 12.5% 25.0% 37.5% 50.0%
Percentage of replication area
Apache
—-—-¢--Real-2M --0O--Real-4M --4&--Real-8M
90 H —— Stack-2M —®— Stack-4M —&— Stack-8M|_

Ave. L2 access time (Cycles

0.0%

12.5% 25.0% 37.5%
Percentage of replication area

50.0%

SPEC;jbb
——-<%--Real-2M --0--Real-4M --4--Real-8M
120 —&— Stack-2M —®— Stack-4M —a&—— Stack-8M

)
< 110
@ 100
g 90
-3
% 80
131
9
g
g
o
2 50

40

12.5% 25.0% 37.5%
Percentage of replication area

50.0%

Fig. 12. Average L2 access time with different replication.

5.3 Private Caches without Replication

Private caches sacrifice capacity for fast access time. It
may be desirable to limit replications in the private
caches. To understand the impact of the private L2 with-
out replication, we run a separate stack simulation in
which the creation of a replica causes the invalidation of
the original copy.

Figure 14 demonstrates the L2 access delays of the pri-
vate caches without replication, shown as the ratio to
those of the private caches with full replication. As ex-
pected, with small 128KB and 256KB private caches per
core, the average L2 access times without replication are
about 5-17% lower than those with full replication for all
the three workloads. This is because the benefit of the
increased capacity more than compensates the loss of lo-
cal accesses. With large 1MB or 2MB caches per core, the
average L2 access time of the private caches without rep-

SPECjbb (L2 size: SMB)
R L1hit 0L2localhit @12 rentoe hit @ L2 miss

0.995

0.99 +

0985

098
SRR RS VRIS E =R B RR
g1H|8RIE (&8 |ERE %.31%.31%.‘
S|~ | S S| S S|la|lwn|e|S
= ey lenlwn — el en =l lenlwn
L1 size: 16KB L1 size: 32ZKB L1 siz: KB

Fig. 13. Effects of L1 size on replication for SPECjbb with 8MB L2.

lication is 12-30% worse than the full-replication counter-
part, suggesting that increasing local accesses is beneficial
when enough L2 capacity is available. The stack simula-
tion results follow this trend perfectly. They provide very
accurate results with only 2-5% margin of error.

5.4 Simulation Time Comparison

We run the full-system Virtutech Simics 2.2 simulator [19]
to simulate an 8-core CMP system with Linux 9.0 and x86
ISA on Intel Xeon 3.2 GHz 2-way SMP. The simulation
time of each stack or execution-driven simulation is
measured on a dedicated system without other interfer-

ence. A timer was inserted at the beginning and the end
of each run to calculate the total execution time. Detailed
descriptions of the three workloads have been given in
Table 2. In the single-pass stack simulation, each stack is
partitioned into 16KB groups with a total of 1024 groups
for the 16MB cache. This small 16KB groups are necessary
in order to study shared caches with variable percentage
of replication areas as shown in Figure 12. The stack
simulation time can be further reduced for cache organi-
zations that only require a few large groups.

Table 3 summaries the simulation times for the stack
and the execution-driven simulations using the three
workloads. For each workload, two stack simulation runs
are needed. One run is for producing the results for
shared caches, private caches, and shared caches with
replication, and the other run is for the private L2 without
replication. In execution-driven simulations, it requires a
separate run for each cache size resulting in five runs for
each cache organization. In studying the shared cache
with replication, five separate runs are needed for each
cache size in order to simulate five different replication
percentages. No separate stack simulation is required for
the shared cache with replication. Similarly, no separate
execution-driven simulation is needed for shared caches
with 0% area for data replication. Therefore, we need 20
runs for the shared cache with replication for the execu-
tion-driven simulation. The total number of simulation
runs is also summarized in Table 3. The total stack simu-
lation time is measured to be about 4751 minutes, while
the execution-driven simulation takes 58016 minutes, a
ratio of over 12 times. This gap can be much wider if
more cache organizations and sizes are simulated.

OLTP

— ———Real
—— Stack

~

Ave. L2 access time ratio

128k 256k 512k IM M

Private Cache size

Apache

— —o— — Real
—— Stack

Ave. L2 access time ratio

0.6 t t t t
128k 256k 512k M M
Private Cache size

SPECjbb

— —0—— Real
—— Stack

Ave. L2 access time ratio

128k 256k 512k M 2M

Private Cache size

Fig. 14. Average L2 access time ratio of private caches without repli-

cation.
TABLE 3
SIMULATION TIMES COMPARISON (IN MINUTES)
Measurement | Workload | Stack Execution-
Driven
Shared / OLTP 1 Run: 835 (5+5) Runs: 6252
Private Apache 1 Run: 901 (5+5) Runs: 6319
(Section 5.1) | SPECjbb 1 Run: 582 (5+5) Runs: 4220
Shared with | OLTP 0 Run: 0 20 Runs: 11976
replication Apache 0 Run: 0 20 Runs: 12211
(Section 5.2) | SPECjbb 0 Run: 0 20 Runs: 8210
Private no OLTP 1 Run: 872 5 Runs: 3257
replication Apache 1 Run: 948 5 Runs: 3372
(Section 5.3) | SPECjbb 1 Run: 613 5 Runs: 2199
Total 4751 58016

6 RELATED WORK

Optimizing on-chip storage space on CMPs has been
studied extensively [2, 18, 9, 24, 31, 8, 3, 26, 15, 14, 17].
The goal is to dynamically allocate data blocks for fast
access without adversely increasing off-chip traffic due
to the L2 misses. With many CMP cache organizations,
these studies must examine a wide-spectrum of the
design space, which requires costly simulations.

There have been several techniques for speeding up
cache simulations. Mattson, et al. [21] presents a stack
algorithm to measure cache misses for multiple cache
sizes in a single pass. For fast search through the stack,
tree-based stack algorithms [4, 28] are proposed. Kim,
et al. [16] provides a much faster simulation by main-
taining the reuse distance counts only to a few poten-
tial cache sizes. All-associativity simulations [7, 2] and
generalized forest simulations [13, 25] allow a single-
pass simulation for variable set-associativities. Mean-
while, various prediction models have been proposed
to provide quick cache performance estimation [1, 11,
10, 28, 5, 6, 12]. They apply statistical models to ana-
lyze the stack reuse distances. But, it is generally diffi-
cult to precisely model systems with complex real-time
interactions among multiple processors. StatCache [5]
estimates capacity misses using sparse sampling and
static statistical analysis.

All above techniques target uniprocessor systems

where there is no interference between multiple
threads running on different processors. Several works
aim at modeling multiprocessor systems [29, 30, 7, 6].
StatCacheMP [6] extends StatCache to incorporate
communication misses. It assumes a random replace-
ment policy for the statistical model. Chandra, et al [7]
propose three analytical models based on the L2 stack
distance or circular sequence profile of each thread to
predict inter-thread cache contentions on the CMP for
multiprogrammed workloads that do not have inter-
ference with each other. Two other works [29, 30] ex-
tends stack simulations to multiprocessors. However,
they pay attention only to miss ratios, update ratios,
and invalidate ratios. The proposed single-pass stack
simulation method aims at the L2 caches on CMPs
where the remote cache hits are an important perform-
ance metric. The single-pass stack simulator creates a
global stack to simulate both shared and private L2
caches. The results can be used to project the cache
performance for various CMP shared, private, and a
combination of both cache organizations with different
degrees of data sharing.

7 CONCLUSION

In this paper, we developed an abstract analytical
model for understanding the general performance be-
havior of data replication on CMP caches. The model
showed that data replication could degrade cache per-
formance without a sufficiently large cache capacity.
We then developed a global stack simulation method
for more detailed study on the issue of balancing ac-
cessibility and capacity for on-chip storage space on
CMPs. With the stack simulation, we can evaluate a
wide-spectrum of the cache design space in a single
simulation pass. Based on the stack simulation results,
we can estimate performance of regular shared / pri-
vate caches, shared caches with data replication, and
private caches without data replication of various
cache sizes. We verified the modeling and stack simu-
lation results against detailed execution-driven simula-
tions using commercial multithreaded workloads. We
showed that the analytical model and the single-pass
stack simulation can characterize the CMP cache per-
formance with high accuracy. Our results also demon-
strated that the effectiveness of various techniques to
optimize the CMP on-chip storage is closely related to
the total L2 cache size.

ACKNOWLEDGMENT

This work was supported in part by NSF grant EIA-
0073473 and by research and equipment donations from
Intel Corp. We also thank anonymous referees for their
helpful comments.

REFERENCES

1

[2]

3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

(23]

A. Agarwal, M. Horowitz and]. Hennessy, “An Analytical Cache
Model,” ACM Transactions on Computer Systems, Vol. 7, No. 2, May
1989, pp. 184-215.

B. Beckmann and D. Wood, “Managing Wire Delay in Large Chip-
Multiprocessor Caches,” Proc. of 37th Int’l Symp. on Microarchitecture,
Dec. 2004, pp. 319-330.

B. M. Beckmann, M. R. Marty, and D. A. Wood. “ASR: Adaptive
Selective Replication for CMP Caches,” Proc. of the 39th Int'l Symp. on
Miicroarchitecture, Dec. 2006.

B. T. Bennett and V. J. Kruskal, “LRU Stack Processing,” IBM journal
of R & D, July 1975, pp. 353-357.

E. Berg and E. Hagersten, “StatCache: A Probabilistic Approach to
Efficient and Accurate Data Locality Analysis,” Proc. of Int'l Symp. on
Performance Analysis of Systems and Software, March 2004.

E. Berg, H. Zeffer and E. Hagersten, “A Statistical Multiprocessor
Cache Model,” Proc. of Int'l Symp. on Performance Analysis of Systems
and Software, March 2006.

D. Chandra, F. Guo, S. Kim and Y. Solihin, “Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture”, Proc. of
11th Int'l Symp. on High Performance Computer Architecture, Feb. 2005,
pp. 340-351.

J. Chang and G. Sohi, “Cooperative Caching for Chip Multiproces-
sors,” Proc. of 33rd Int’l Symp. on Computer Architecture, June 2006.

Z. Chishti, M. D. Powell and T. N. Vijaykumar, “Optimizing Replica-
tion, Communication, and Capacity Allocation in CMPs,” Proc. of
32nd Int'l Symp. on Computer Architecture, June 2005.

G. Edwards, S. Devadas, and L. Rudolph, “Analytical Cache Models
with Applications to Cache Partitioning,” Proc.of 15th Int'l Conf. on
Supercomputing, June 2001, pp. 1-12.

B. Fraguela, R. Doallo, and E. Zapata, “ Automatic Analytical Model-
ing for the Estimation of Cache Misses,” Proc. of Int'l Conf. on Parallel
Architectures and Compilation Techniques, Sep. 1999.

A. Hartstein, V. Srinivasan, T. R. Puzak, and P.G. Emma, “On the
Nature of Cache Miss Behavior: Is it sqrt(2)?” Journal of Instruction-
Level Parallelism 10 (2008), pp.1-22.

M. Hill and J. Smith, “Evaluating Associativity in CPU Caches”, IEEE
Transactions on Computers, Dec. 1989, pp. 1612-1630.

J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger and S. W. Keckler, “A
NUCA Substrate for Flexible CMP Cache Sharing,” Proc. of 19th Int'l
Conf. on Supercomputing, June, 2005.

C. Kim, D. Burger, and S. Keckler, “An Adaptive Non-uniform Cache
Structure for Wire-delay Dominated On-chip Caches,” Proc. of 10th
Int'l Conf. on Architectural Support for Programming Languages and Op-
erating Systems, Oct. 2002.

Y. H. Kim, M. D. Hill and D. A. Wood, “Implementing Stack Simula-
tion for Highly-associative Memories,” Proc. of 1991 SIGMETRICS
conf. on Measurement and Modeling of Computer Systems, May 1991, pp.
212-213.

R. Kumar, V. Zyuban, and D. M. Tullsen. “Interconnections in Multi-
core Architectures: Understanding Mechanisms, Overhead and Scal-
ing,” Proc. of 32nd Int'l Sump. on Computer Architecture, June 2005.

C. Liu, A. Sivasubramaniam and M. Kandemir, “Organizing the Last
Line of Defense before Hitting the Memory Wall for CMPs,” Proc. of
10th Int’l Symp. on High Performance Computer Architecture, Feb. 2004,
pp- 176-185.

P. S. Magnusson et al. “Simics: A Full System Simulation Platform,”
IEEE Computer, Feb. 2002, pp. 50-58.

Matlab, http/fwww.mathworks.com/products/matlaby.

R. Mattson, J. Gecsei, D. Slutz, and 1. Traiger, “Evaluation Techniques
and Storage Hierarchies,” IBM Systems Journal, 9, 1970, pp. 78-117.
Open Source Development Labs. Open source development labs
database test 2.
httpyfwwuw.osdl.org/lab_activities/kernel_testing/osdl_database_test_suite/os
dl_dbt-2/.

X. Shi, F. Su, . Peir, Y. Xia, and Z. Yang, “CMP Cache Performance
Projection: Accessibility vs. Capacity,” Workshop on Design, Architec-
ture and Simulation of Chip Multi-Processors (dasCMP2006), in conjunc-

(4]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

tion with the 39th Annual International Symposium on Microarchitecture,
Dec 2006.

E. Speight, H. Shafi, L. Zhang and R. Rajamony, “Adaptive Mecha-
nisms and Policies for Managing Cache Hierarchies in Chip Multi-
processors,” Proc. of 32nd Int'l Symp. on Computer Architecture, June
2005, pp. 346-356.

R. A. Sugumar and S. G. Abraham, “Set-associative Cache Simulation
using Generalized Binomial Trees,” ACM Transactions on Computer
Systems, Vol. 13, No. 1, Feb. 1995, pp. 32-56.

G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Partitioning of
Shared Cache Memory,” The Journal of Supercomputing, 28(1), 2004,
pp- 7-26.

J. G. Thompson, “Efficient Analysis of Caching Systems,” Computer
Science Division Technical Report UCB/Computer Science Dept. 87/374,
University of California, Berkeley, October 1987.

X. Vera and]. Xue, “Let’s Study Whole-Program Cache Behavior
Analytically,” Proc. of 8th Int'l Symp. on High Performance Computer Ar-
chitecture, Feb. 2002.

C. E. Wy, Y. Hsu, Y. Liu, “Efficient Stack Simulation for Shared
Memory Set-Associative Multiprocessor Caches,” Proc. of 1993 Int’l
Conf. on Parallel Processing, Aug. 1993.

Wy, Y. and Muntz, R. 1995, “Stack Evaluation of Arbitrary Set-
Associative Multiprocessor Caches,” IEEE Transactions on Parallel and
Distributed Systems, Sep. 1995, pp. 930-942.

M. Zhang, and K. Asanovic, “Victim Replication: Maximizing Capac-
ity while Hiding Wire Delay in Tiled Chip Multiprocessors,” Proc. of
32nd Int’l Symp. on Computer Architecture, June 2005, pp. 336-345.

