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Abstract—
Protocols such as TCP requires packets to be accepted

(i.e., delivered to the receiving application) in the order they
are transmitted at the sender. Packets are sometimes mis-
ordered in the network. In order to deliver the arrived
packets to the application in sequence, the receiver’s trans-
port layer needs to temporarily buffer out-of-order packets
and re-sequence them as more packets arrive. Even when
the application can consume the packets infinitely fast, the
packets may still be delayed for resequencing. In this paper,
we model packet mis-ordering by adding an IID random
propagation delay to each packet and analyze the required
buffer size for packet resequencing and the resequencing
delay for an average packet. We demonstrate that these two
quantities can be significant and show how they scale with
the network bandwidth.

I. INTRODUCTION

Protocols such as TCP requires packets to be accepted
(i.e., delivered to the receiving application) in the order
they are transmitted at the sender. Packets are sometimes
mis-ordered in the network. For instance, since every
packet contains the destination address, the network can
deliberately route packets via different paths to the desti-
nation, possibly for load balancing purpose. Certain pack-
ets may be dropped by the network and retransmitted by
the sender, causing the packets to arrive out-of-order at
the receiver. In order to deliver the arrived packets to
the application in sequence, the receiver’s transport layer
needs to temporarily buffer out-of-order packets and re-
sequence them as more packets arrive. Even when the
application can consume the packets infinitely fast, the
packets may still be delayed for resequencing. We are
interested in how large the resequencing buffer must be
and how much the resequencing delay is for an average
packet. We’d like to know how these two quantities scale
with the network bandwidth. The results will enable us
to examine one consequence of a fundamental principle
of packet networks: each packet contains its destination
address and can be routed independently.

A. Network Model

We will examine a model shown in figure 1, where
the sender and the receiver are separated by a network
that causes a random variable delay on each data packet.
The transmission capacity of the sender is denoted by Cs.
When packets are ready to be accepted, the receiver can
consume them at the capacity, Cr. Typically, we assume
Cr = ∞. The receiver can send perfect feedback infor-
mation to the sender about the reception status of each
packet, subject to a fixed delay, T . The sender trans-
mits new packets in increasing order of the packet IDs.
Each packet experiences a fixed propagation delay T , and
a variable delay Xi. We assume that the {Xi}’s are inde-
pendently and identically distributed (IID) random vari-
ables. The receiver needs to accept packets IN ORDER,
and can temporarily store out-of-order packets in its rese-
quencing buffer of size b. When an arrival packet finds
the buffer full, the packet with the largest ID among all
stored and incoming packets is dropped. The sender will
retransmit the dropped packet at a later time.

Cr
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T

b

X + T

Fig. 1. Our network model

The causes for packet mis-ordering in the network can
be many and are not precisely known at the present.
As stated previously, retransmission of lost packets and
multi-path routing, whether deliberate or not, may be
among them in today’s or future networks. Many previ-
ous studies in fact treat these two causes separately. Mis-
ordering caused by packet retransmission is studied under
the name of automatic repeat request (ARQ) protocol [16]
[10] [12] [15] [1] [13] [14]. It is typically assumed that
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ARQ is a link layer protocol between a sender-receiver
pair over a link with constant propagation delay. When the
communication channel from the sender to the receiver
is noisy, the sender needs to retransmit corrupted pack-
ets based on the feedback information it gets from the re-
ceiver. Researchers have mainly been concerned with the
throughput of ARQ protocols. Several papers deal with
the resequencing delay at the receiver caused by packet
retransmissions [13] [14]. Note that the end-to-end reli-
able transport protocols, such as TCP, resemble link-layer
ARQ protocol in the areas of packet retransmission at the
sender and resequencing at the receiver. In this paper, we
borrow the term ARQ even though what we have is not the
same as the link layer ARQ. In particular, we allow causes
for packet mis-ordering other than packet retransmission.

The studies that deal with packet mis-ordering due to
multi-path routing (also including parallel processing or
load balancing, etc.) typically analyze an open queue-
ing network, with no feedback and no retransmission.
Figure 2 shows a generic model, where packets (or cus-
tomers) numbered sequentially arrive at the system fol-
lowing some stochastic process, get mis-ordered by the
mis-ordering network and resequenced at the resequenc-
ing buffer. In some studies, a FIFO queue follows the rese-
quencing buffer. The mis-ordering network is also mod-
eled as a queueing system, whose type typically distin-
guishes different studies. For instance, the mis-ordering
network is an M/M/∞ queue in [9], an M/GI/∞ queue in
[7], a GI/GI/∞ queue in [2], an M/M/2 queue in [11], an
M/M/K queue in [17], an M/H2/K queue in [4], an M/M/2
queue with a threshold-type server assignment policy in
[8], two parallel M/M/1 queues with additional fixed prop-
agation delays in [6], and K parallel M/GI/1 queues in [6].
A survey is given in [3]. Most of these studies are con-
cerned mostly with finding the distribution and/or mean
of the resequencing delay or end-to-end delay. Several
also give results about the number of packets in the rese-
quencing queue.

Resequencing
Buffer

FIFO Queue

Mis−ordering
Network

Fig. 2. Resequencing network model followed by a GI/GI/1 queue

Even though we talk about packet retransmission in the
paper, our analysis never handle that aspect. Therefore,
from analytical point of view, our model falls in the class
of models shown in figure 2. We choose to model the
causes for packet mis-ordering by adding IID random de-

lays to each packet for both simplicity and for generality.
This is equivalent to say the packet mis-ordering network
is a D/GI/∞ queue. In reality, the variable packet de-
lays are most likely correlated. For instance, multi-path
routing is probably better modeled as K parallel ·/GI/1
queues. However, we do not know the value of K, the
dispatching policy to each of the queues, and the server
rates of the queues that give a realistic model.

A natural question is what distribution we should
choose for the random delay. We choose the exponen-
tial and the Pareto distributions, whose tail probabilities
have very different decaying behaviors. We will see that
the tail probability is very important to the resequencing
buffer requirement.

B. Summary of Results

We analyze two different variations of the model shown
in figure 1. In the first case, discussed in section II, we
assume the sender’s capacity, Cs, is very large so that it
can dump many packets onto the network almost instan-
taneously. Here, it makes sense to consider the Stop-and-
Wait-n ARQ (automatic repeat request) protocol 1, where,
at the beginning of each fixed time interval, the sender
transmits a block of n packets simultaneously. The re-
ceiving status of the packets reaches the sender at the end
of the interval. The main result is, for large n, if we want
to accept a fraction α in each block of n packets, the re-
sequencing buffer size must be αn. As a result, for any
fixed buffer size, the fraction of accepted packets in each
block becomes vanishingly small when the block size n
approaches infinity.

When the sending capacity is limited, we introduce the
Selective-Repeat ARQ, as discussed in section III. In this
case, the sender transmits one packet on each time slot.
When a packet is rejected at the receiver due to buffer
overflow, this information is fed back to the sender. The
sender always transmits the reject packet with the small-
est packet sequence number on each time slot and only
transmits new packets when there are no rejected pack-
ets. For the Selective-Repeat ARQ, we have results for
the buffer requirement to achieve small packet rejection
ratio, or equivalently, near 100% throughput. When the
variable packet delay is exponential with mean 1/λ, we
show that

P{Q̄(t) > m} ≈
e−(m+2)λτ

1 − e−λτ
(1)

1In this paper, we borrow the term ARQ from the commonly known
link-layer ARQ. Stop-and-Wait-n ARQ is a variation from the link-
layer Stop-and-Wait ARQ.
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where Q̄(t) is an upper bound on the resequencing queue
size and τ is the packet transmission time. For the Pareto
delay distribution with CDF F (x) = 1 − Kαx−α, where
x ≥ K, we have

P{Q̄(t) > m}

≈
Kα

(α − 1)τ
((k∗ − ko + m + 2)τ)−α+1 (2)

where k∗−ko is a small number compared with the queue
size m for which the above approximation holds.

Our analysis in section III assumes the buffer size is in-
finite. This simplifies the analysis since no packets ever
get rejected at the resequencing queue. We use the proba-
bility that the queue size exceeds a threshold, b, as the ap-
proximation for the packet rejection (or loss) ratio when
the buffer size is b. This approximation can be expected to
be accurate only when the buffer size is large, and hence,
the probabilities involved are very small. As a result, we
do not have results for the packet loss ratio for small buffer
sizes. We supplement this deficiency with a set of simula-
tion results for the finite buffer case in section III-C.

Again assuming the resequencing buffer is infinite, the
packet’s waiting time in the queue before it is accepted,
also called the resequencing delay, can be computed in
principle. We do not have concise expressions for it in
either the exponential or the Pareto case. For the expo-
nential case, we do have a simple approximation for the
expected waiting time at the resequencing buffer.

E[W ] ≈
1

λ
(log(

1

2(1 − e−λτ )
) + 0.5) (3)

where W is the waiting time. When Cs ≥ 10 Mbps, we
can further approximate E[W ] and get

E[W ] ≈
1

λ
(log(

Cs

2λU
) + 0.5) (4)

where U is the packet size in bits. We see that the mean
waiting time of a packet scales logrithmically with the link
capacity. We also see that, at a given link speed, reducing
the packet size, hence, the packet transmission time, in-
creases the mean waiting time.

The above analysis for the expected waiting time uses
the memoryless property of the exponential distribution.
The technique does not apply to the case where the packet
propagation delay is Pareto. With simulation, we can
show that the expected waiting time can be very large in
this case. To reduce the resequencing waiting time, it is
very helpful to add a bound, say d, to the Pareto delay
by retransmitting the packets that have not arrived at the
receiver after d seconds.

A feature of our paper is, when possible, we rely on
approximations and bounds to get simple and easily inter-
pretable results. This is complementary to many previous
studies whose solutions are exact but are in complicated
terms and are hard to construe.

II. STOP-AND-WAIT-n ARQ

In this section, we assume that the sender’s capacity and
the receiver capacity are both infinite. That is, a packet can
be transmitted instantaneously at the sender, and when it
is ready to be accepted by the receiver, it can be accepted
instantaneously. The propagation time, T , is zero.

Data packets originated at the sender are numbered by a
packet ID, 1, 2, 3, ..., so on, and are transmitted in that or-
der. We require that the receiver consumes those packets
in increasing order of the packet IDs. Suppose we use a
Stop-and-Wait-n ARQ protocol with block size n, where
1 ≤ b ≤ n. More specifically, let the time be divided
into intervals of identical length. At the beginning of each
interval, the sender sends a block of n packets simultane-
ously. These packets experience IID random network de-
lays. When they reach the receiver buffer, they can be mis-
ordered. The receiver re-orders the received packets in the
receive buffer, and immediately accepts all packets that do
not leave sequencing gaps in the accepted packets. When
an incoming packet finds the resequencing buffer full, the
receiver drops the packet with the largest sequence num-
ber. Let us also assume the random delay X is bounded by
the length of the interval, so that all n packets in the block
will arrive at the receiver before the end of the interval. At
the end of the interval, the receiver drops any packet that
might be in the buffer but cannot be accepted due missing
packets with smaller packet IDs. The receiver sends per-
fect feedback to the sender during the interval. By the end
of the interval, the sender knows which packets have been
received successfully and which ones have been dropped.
In the next interval, the sender sends n more packets, con-
tiguous in sequence number, starting from the next packet
expected by the receiver.

Take the example of n = 3. Suppose b = 1 and sup-
pose the order of packet arrival at the receiver is 2, 1 and
3. Packet 2 will be dropped when packet 1 arrives because
it is out-of-order and there is no additional buffer space to
hold it. Packet 1 will be accepted immediately when it ar-
rives. Packet 3 cannot be accepted because 2 is missing.
In our case, we will drop it at the end of the current inter-
val. In the next interval, the sender will transmit packet 2,
3 and 4.

Let the number of packets accepted by the receiver in
interval i be Ni, i = 1, 2, .... The above algorithm makes
{Ni} an IID random sequence. Let the interval length be
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L. Then, the long time throughput of the communication
system is simply ENi/L. To improve the throughput, one
can increase ENi or reduce L. We investigate what quan-
tities ENi depends on. Define the packet acceptance ratio
ρ(n, b) = ENi/n. The main result is the following theo-
rem.

Theorem 1: Let integer n ≥ 1 be the block size and let
integer b be the buffer size. Then, for 1 ≤ b ≤ n,

ρ(n, b) =
1

n
(

n
∑

k=b

b! bk−b

k!
+ b − 1) (5)

Proof: Let Jk be the set {1, 2, ..., k}, where k can
vary from 1 to n. First, note that the order of packet arrival
at the receiver during each interval is the random permuta-
tion of the set Jn with a uniform probability distribution.
To compute EN 2, we will use

EN =
n

∑

k=1

P{N ≥ k}

The event {N ≥ k} is the same as the event
{all i ∈ Jk are accepted}, denoted by Ek. Given an ar-
rival sequence of the n packets, denoted by Π, we only
need to focus on the sub-sequence of Π generated by re-
stricting Π to the set Jk, when we consider the event Ek.
Denote this sub-sequence Πk. It is easy to see that the
event Ek occurs in Π if and only if it occurs in Πk, due to
the rule of rejecting the packet with the largest ID when
the buffer is full.

For any set S ⊆ Jn of contiguous packets, a permuta-
tion of S is said to be b-acceptable if they can be arranged
in sequence with the help of a resequencing buffer of size
b. For instance, the permutation (3, 2, 4) of S = {2, 3, 4}
is 2-acceptable, but not 1-acceptable. It is b-acceptable
for any b ≥ 2. We will count the number b-acceptable
permutations of Jk. Denote this number by Ak. Note that
Jk is b-acceptable if and only if none of the packets in Jk

is dropped. We claim,

Ak =

{

k! for 1 ≤ k ≤ b
b! bk−b for b < k ≤ n

(6)

For 1 ≤ k ≤ b, it is obvious that, any of the k! permu-
tations of Jk is b-acceptable, since the buffer size is large
enough to hold all of them.

For b < k ≤ n, let a1, a2, ..., ak be the sequence of
arrivals for packets 1, 2, ..., k. If a1 = 1, packet 1 will be
immediately accepted and the buffer will become empty.
We only need to count the number of b-acceptable permu-
tations of {2, 3, ..., k}. This number is identical to Ak−1.

2We have omitted the index to the interval, i.

Suppose a1 = 2. In order not to drop any packets from
Jk, it is necessary that packet 1 arrives before or in posi-
tion b. When packet 1 arrives, both 1 and 2 will be ac-
cepted and the buffer will become empty. From then on,
we only need to count the number of b-acceptable per-
mutations for {3, 4, ..., k}. That number is identical to
Ak−2. So the number of b-acceptable permutations for
{1, 2, ..., k} in which a1 = 2 is (b − 1)Ak−2.

In general, suppose a1 = i, for some 1 ≤ i ≤ k−b+2,
In order not to drop any packets from Jk, packet 1 should
arrive before or in position b, packet 2 should arrive before
or in position b + 1, ..., and packet i − 1 should arrive
before or in position b + i − 2 3. Immediately after all
packets from 1 to i have arrived, packet 1, 2, ..., i will all
be accepted and the buffer will become empty. After that,
we need to count the number of b-acceptable permutations
of {i + 1, i + 2, ..., k}. That number is Ak−i. So the total
number of b-acceptable permutations of the set Jk starting
with packet i is (b − 1)k−i+1Ak−i.

When k − b + 2 < i ≤ k, packet 1 should arrive be-
fore or in position b, packet 2 should arrive before or in
position b + 1, ..., packet k − b + 1 should arrive be-
fore or in position k, and packet k − b + 2 to i should
all arrive before or in position k 4. After that, we still
need to count the total number of b-acceptable permu-
tations of the set {i + 1, i + 2, ..., k}, which is Ak−i.
Here, we define A0 = 1. So the total number of b-
acceptable permutations of the set Jk starting with packet
i is (b − 1)k−b+1(b − 2)(b − 3)...(b − (k − i) + 1)Ak−i.

Hence, we get

Ak

= Ak−1 + (b − 1)Ak−2 + (b − 1)2Ak−3 + ...

+(b − 1)k−b−1Ab + (b − 1)k−bAb−1

+(b − 1)k−b+1Ab−2

+(b − 1)k−b+1(b − 2)Ab−3

+(b − 1)k−b+1(b − 2)(b − 3)Ab−4 + ...

+(b − 1)k−b+1(b − 2)(b − 3)...(2)A1

+(b − 1)k−b+1(b − 2)!A0

= b!bk−b−1 + (b − 1)b!bk−b−2 + (b − 1)2b!bk−b−3

+... + (b − 1)k−b−1b! + (b − 1)k−b(b − 1)!

+(b − 1)k−b+1(b − 2)!(b − 1)

= b!bk−b(
1

b
+

b − 1

b2
+

(b − 1)2

b3
+ ...

+
(b − 1)k−b

bk−b+1
+

(b − 1)k−b+1

bk−b+1
)

3Note that b + i − 2 ≤ k.
4Of course, all k packets will arrive before position k.
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= b!bk−b(
1

b

1 − ( b−1
b )k−b+1

1 − b−1
b

+
(b − 1)k−b+1

bk−b+1
)

= b!bk−b

In the above derivation, we used the induction hypoth-
esis that (6) is true for all Aj , where 1 ≤ j < k. Since
all permutations of the set Jk are equally likely to be the
packet arrival orders, we have

EN =
n

∑

k=1

P{N ≥ k} =
n

∑

k=1

Ak

k!

=

n
∑

k=b

b! bk−b

k!
+

b−1
∑

k=1

k!

k!

=
n

∑

k=b

b! bk−b

k!
+ b − 1

We next study some features of the function ρ(n, b).
Theorem 2: For any 0 ≤ α ≤ 1, let b = bαnc 5. Then,

ρ(n, b) → α, as n → ∞.
Proof: The proof uses a standard convergence argu-

ment and is omitted for brevity.
Theorem 2 says, in order to achieve reasonable accep-

tance ratio, the buffer size has to scale linearly with the
block size, n. As an easy corollary, for any fixed buffer
size b, limn→∞ ρ(n, b) = 0. These asymptotic results can
be good approximations for large n. We will use numeri-
cal examples to show how large the block size n has to be
and what happens when n is not so large.

Figure 3 shows the acceptance ratio ρ versus the buffer
size for block size n = 10 and 100, respectively. In these
plots, the label “limit” refers to the asymptotic limit of the
ρ as in Theorem 2, and the label “exact” refers to the exact
value of ρ. We see that the asymptotic result becomes
good approximation for n > 100 at all buffer sizes. Even
at very small values of n, say, n ≤ 10, the asymptotic
result is not too far from the exact value.

In figure 4, we show the convergence of ρ to the limit
as n increases to infinity while b = 0.5n. In this case, the
limit is 0.5.

III. SELECTIVE-REPEAT ARQ

In this section, we will study a more realistic re-
finement to the Stop-and-Wait-n ARQ, called Selective-
Repeat ARQ, and find its throughput-buffer relationship.
We assume that Cs is finite and the propagation delay, T ,

5bxc stands for the floor of x, i.e., the largest integer less than or
equal to x.
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Fig. 3. Acceptance ratio vs. buffer size for block sizes (a) n = 10;
(b) n = 100
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Fig. 4. Acceptance ratio converges to 50%: buffer size b = 0.5n

can be non-zero. In every packet time slot, the sender
either sends a new packet or retransmits a previously re-
jected packet. More specifically, the sender maintains a
list of packets rejected by the receiver, and retransmits
them in increasing order of the packet IDs. When this
list is empty, it sends the next new packet. The receiver
behavior and the packet-dropping rule are similar to those
for the Stop-and-Wait-n ARQ. Selective-Repeat ARQ re-
sembles the retransmission and resequencing behaviors of
typical transport and link-layer protocols.

A. Buffer Size to Achieve Near 100% Throughput

Suppose the buffer size is infinite, we wish to approx-
imate the required buffer size for near 100% throughput
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by the queue size m for which Prob{Q ≤ m} ≈ 1. Note
that when the buffer size is infinite, no packets will be re-
transmitted. The sender simply transmits new packets one
after another. Then the Selective-Repeat ARQ is the same
as the Stop-and-Wait-n ARQ with infinite block size. Sup-
pose the sender has been transmitting forever and suppose
the sender starts transmitting packet 1 at time 0 6. Then
packet k leaves the sender at t = kτ , for k ≥ 1. Let the
random delay for packet k be Xk, where the {Xk}’s are
IID random variables. Packet k arrives at the receiver at
time Ak = kτ + T + Xk, for k = ..., 1, 2, ....

At time t, let S(t) be the set of packets that have arrived
at the queue, let M(t) be the largest packet in S(t), and
let L(t) be the largest packet that has been accepted by the
receiver. They can be expressed as

S(t) = {i : Ai ≤ t}

M(t) = max{i : Ai ≤ t}

L(t) = max{i : max{..., Ai−1, Ai} ≤ t}

The queue size at time t is Q(t) = |S(t) − {..., L(t) −
2, L(t)−1, L(t)}|. It does not seem easy to keep track the
set S(t). Instead of computing the distribution of Q(t), we
will compute the distribution of an upper bound for Q(t),
denoted by Q̄(t) = (M(t)−L(t)−1)+. In order for Q̄(t)
be a tight upper bound, there should be no or few gaps
from L(t) to M(t). When the queue size is large, we have
good reason to believe this is the case. For, large queue
size is typically due to a large delay of a very early packet,
say j, which will arrive after packet j +1, j +2, ..., M(t).
For m = 0, 1, 2, ...,

P{Q̄(t) ≤ m} = P{L(t) ≥ M(t) − m − 1}

We can partition the above probability with the event
{M(t) = k}, for k ≤ k∗, where k∗ = b(t − T )/τc is
the largest packet that can possible arrive before time t.

P{Q̄(t) ≤ m}

=
∑

k≤k∗

P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t, M(t) = k}

=
∑

k≤k∗

P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t, Ak ≤ t,

Ak+1 > t, ..., Ak∗ > t}

=
∑

k≤k∗

P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t}

·P{M(t) = k} (7)

where

P{M(t) = k} = P{Ak ≤ t, Ak+1 > t, ..., Ak∗ > t}

6Packet ID numbers can be negative.

1) Computation of P{M(t) = k}: For exponential
delay with mean 1/λ,

P{M(t) = k} = (1 − e−λ(t−kτ−T ))

·e−(k∗−k)λ(t−(k+1+k∗)/2−T ) (8)

For Pareto delay with parameter K > 0 and α > 1.

P{M(t) = k}

= (1 −
Kα

(t − kτ − T )α
)

Kα

(t − (k + 1)τ − T )α
...

Kα

(t − k∗τ − T )α
(9)

Since this number decays to 0 geometrically fast as k de-
creases, we can find a ko < k∗ so that P{M(t) = k} is
negligible for k < ko. For practical purpose, the sum
in (7) involves a small number of terms. Suppose we
set P{M(t) = k} ≤ ε for some 0 < ε < 1. In the
case of exponential distribution, let us ignore the factor
(1 − e−λ(t−kτ−T )) in (8) since it is no greater than 1. Us-
ing k∗ = b(t − T )/τc, we get,

k∗ − k ≥

√

−2 log ε

λτ
+ 1 (10)

Table I shows the lower bounds on k∗ − k obtained by
using (10) (labeled “Analysis”) and by using (8) (labeled
“Exact”). It shows that the values of the lower bound on
the right hand side of (10) are not very large for very small
ε’s. Expression (10) shows that these values grow very
slowly as ε decreases or as λτ increases.

TABLE I
LOWER BOUND ON k∗ − k TO ACHIEVE P{M(t) = k} ≤ ε FOR

THE EXPONENTIAL DISTRIBUTION: 1/λ = 20 MS

Lower Bound on k∗ − k: Analysis/Exact
Cs(Mbps) ε = 10−5 ε = 10−10 ε = 10−20

1 8/6 10/9 14/13
10 21/20 29/28 41/40
100 63/58 89/87 125/124

We can do similar analysis for the Pareto case. We do
not have a more compact expression for (9). Hence, we
will show at what value k the factor Kα

(t−(k+1)τ−T )α in (9)
becomes small, say 0.1. From that point on, as k contin-
ues to decrease, the value of P{M(t) = k} will rapidly
decrease to nearly zero. By setting Kα

(t−(k+1)τ−T )α ≤ ε,
we get,

k∗ − k ≈
K

τε1/α
(11)
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The approximation above is due to rounding real numbers
to integers. For the case where α = 1.1, EX = 20 ms,
and ε = 0.1, the results are shown in table II. With exact
numerical analysis on (9), the lower bound on k∗ − k to
achieve P{M(t) = k} ≤ ε is in fact very small. The
results are shown in Table III.

TABLE II
LOWER BOUND ON k∗ − k TO ACHIEVE Kα

(t−(k+1)τ−T )α
≤ ε FOR

THE PARETO DISTRIBUTION: MEAN DELAY = 20 MS

Cs(Mbps) Lower bound on k∗ − k

1 2
10 13
100 123

TABLE III
LOWER BOUND ON k∗ − k TO ACHIEVE P{M(t) = k} ≤ ε FOR

THE PARETO DISTRIBUTION: MEAN DELAY= 20 MS

Lower Bound on k∗ − k
Cs(Mbps) ε = 10−5 ε = 10−10 ε = 10−20

1 6 9 14
10 12 17 25
100 37 48 65

2) Asymptotic behavior of P{Q̄(t) ≤ m}: In order to
compute P{Q̄(t) ≤ m} as in (7), we next turn to the cal-
culation of a(k, m) := P{..., Ak−m−2 ≤ t, Ak−m−1 ≤ t}.
For each m, as k decreases, a(k, m) increases to 1 for the
delay distributions we are considering. We will first study
the asymptotic behavior of P{Q̄(t) ≤ m} for large val-
ues of m. From the previous analysis, we can assume
the summation in (7) is over a small number of terms,
ko, ko + 1, ..., k∗. Since a(k, m) increases as k decreases,
we get,

a(k∗, m) ≤ P{Q̄(t) ≤ m} ≤ a(ko, m) (12)

The key is to compute a(k, m).
First, let us consider the exponential case. We will use

the following result.
Lemma 3: For x ≥ 2 log 2,

log(1 − e−x) ≥ −e−x/2 (13)
Proof: Form a function g(x) := log(1 − e−x) +

e−x/2 on (0,∞). We see that limx→∞ g(x) = 0. Next,

g′(x) =
e−x + e−3x/2 − e−x/2

1 − e−x

≤
e−x(2 − ex/2)

1 − e−x

When 2 − ex/2 ≤ 0, or equivalently, when x ≥ 2 log 2,
g′(x) ≤ 0. Since g(x) decreases to 0 on [2 log 2,∞), it
must be true that g(x) ≥ 0 on [2 log 2,∞).

We use this lemma in the following derivation with x =
λ(t − (j − m)τ − T ).

log a(k∗, m) =
∑

j<k∗

log(1 − e−λ(t−(j−m)τ−T ))

≥ −
∑

j<k∗

e−λ(t−(j−m)τ−T )/2

= −
e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2
(14)

The condition for the above inequality is λ(t−(j−m)τ−
T ) ≥ 2 log 2 for j < k∗. This is satisfied if (k∗−j+m) ≥
2 log 2/(λτ) for j < k∗. A weaker condition is simply
m ≥ 2 log 2/(λτ). When 1/λ = 20 ms, m ≥ 3, 24
and 232 for the link speed Cs = 1, 10 and 100 Mbps,
respectively. We’d like to point out that these are very
loose bound. In practice, we expect the inequality (14) to
hold for much smaller m. Combining (12) and (14), we
get

P{Q̄(t) ≤ m} ≥ exp(−
e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2
) (15)

Or, using the fact ex ≥ 1 + x for all x, we get

P{Q̄(t) > m} ≤ 1 − exp(−
e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2
)

≤
e−λ(t−(k∗−m−1)τ−T )/2

1 − e−λτ/2

≤
e−(m+2)λτ/2

1 − e−λτ/2
(16)

Thus, for large enough m, P{Q̄(t) > m} converges to
zero very rapidly, at a rate no slower than exponential in
m. In the above analysis, if we suppose λ(t− (j−m)τ −
T ) is large enough, we can write

log a(k∗, m) =
∑

j<k∗

log(1 − e−λ(t−(j−m)τ−T ))

≈ −
∑

j<k∗

e−λ(t−(j−m)τ−T )

= −
e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ
(17)

Furthermore, since ex ≈ 1 + x, for x near 0,

P{Q̄(t) > m} ≤ 1 − exp(−
e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ
)

≈
e−λ(t−(k∗−m−1)τ−T )

1 − e−λτ

≈
e−(m+2)λτ

1 − e−λτ
(18)
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The approximation in (18) turns out to be very good. Fig-
ure 5 (a) compare values of P{Q̄(t) > m} obtained with
(18) (labeled as “Approximation”) with numerical results
of (7) (labeled as “Numerical”) 7. The mean delay, 1/λ,
is 20 ms for figure 5 (a). The approximation agrees ex-
tremely well with the numerical results. In figure 5 (a),
we also compare the distribution of Q̄(t) with that of Q(t),
the real queue length, obtained by simulation (The curves
are labeled as “Simulation”). We see that the two distribu-
tions agree very well when the queue size is large enough.
In figure 5 (b), we show a comparison between two differ-
ent mean delays: 1/λ = 10 ms and 20 ms. The link speed
for figure 5 (b) is Cs = 100 Mbps.
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Fig. 5. Tail probability for queue size for the exponential distribution
(a) Cs = 10 Mbps; (b) comparison of different mean delays, Cs =
100 Mbps.

Next, we will show a similar analysis for the Pareto
case. For k ≤ k∗,

log a(k, m)

=
∑

j<k

log(1 −
Kα

(t − (j − m)τ − T )α
)

≤ −
∑

j<k

Kα

(t − (j − m)τ − T )α

7Throughout section III, all simulation results are for the real queue
size, Q. All analytical and numerical results are for Q̄.

≤

∫ k−1

−∞
−

Kα

(t − (x − m − 1)τ − T )α
dx

=
−Kα

(α − 1)τ
(t − (k − m − 2)τ − T )−α+1 (19)

By P{Q̄(t) ≤ m} ≤ a(ko, m),

P{Q̄(t) ≤ m}

≤ exp{
−Kα

(α − 1)τ
(t − koτ − T + (m + 2)τ)−α+1}

≤ exp{
−Kα

(α − 1)τ
((k∗ − ko + m + 2)τ)−α+1} (20)

P{Q̄(t) > m}

≥ 1 − exp{
−Kα

(α − 1)τ
((k∗ − ko + m + 2)τ)−α+1}

≈
Kα

(α − 1)τ
((k∗ − ko + m + 2)τ)−α+1 (21)

Formula (21) shows that the tail probability decays as
a power tail. In figure 6, we show an example of the tail
probability, P{Q̄(t) > m}, based on the approximation
in (21), and compare the result with those based on nu-
merical analysis. As will be explained in section III-A.3,
numerical analysis of the queue length distribution for the
Pareto case is difficult. The numerical results in figure
6 are for Pareto distributions “truncated” at large values,
denoted by d. In these plots, we see extraordinary good
match between the approximation and the numerical re-
sults. We believe that the slight discrepancy between the
two is because the delay bounds, d, are not large enough.
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Fig. 6. Tail probability for queue size for the Pareto distribution:
Cs = 10 Mbps

In figure 7, we compare the distribution of Q̄(t) with
that of Q(t), obtained through simulation. The Pareto dis-
tribution is truncated at d = 1000 seconds. We see that
they are very close to each other for large queue size.

After we establish enough confidence on the “good-
ness” of the approximation, we use the approximation to
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Fig. 7. Tail Probability for Queue Size for the Pareto Distribution:
Comparison of Q̄(t) with Q(t). Cs = 1 Mbps, α = 1.9 and d = 1000
seconds

investigate dependency of the tail probability of the queue
size on various parameters. The results are shown in fig-
ure 8 in log-log scale. We use the tail probability of the
queue size, P{Q̄(t) > m}, as an approximation of the
packet loss ratio when the buffer size is m. From figure
8 (a) and (b), we notice that to achieve low packet loss
probability, the buffer size must be large. For instance,
to achieve less than 1% packet loss ratio, or equivalently
99% of throughput, m > 102, 104, and 106 for α = 1.9,
for Cs = 1, 10 and 100 Mbps, respectively. As illustrated
in figure 8 (b) and (c), the loss ratio depends crucially on
the parameter α, but less crucially on the mean variable
delay.

3) Numerical computation of P{Q̄(t) ≤ m}: Be-
cause we do not know the value of each a(k, m), it is
not easy to say how many Ai’s we need in order to com-
pute each a(k, m) with enough accuracy. The fact that the
variable delays are always bounded in practice can help
us. Specifically, in the case of Pareto distribution, we con-
sider the corresponding “truncated” Pareto distribution.

P{X ≤ x} =

{

1 − (K
x )α for K ≤ x < d

1 for x >= d

When the variable delay is bounded by d, any packet i ≤
k(d) := d(t − T − d)/τe must have arrived by time t.
Hence, the computation of a(k, m) involves only a finite
number of Ai’s.

We show the tail probability of the queue size for “trun-
cated” Pareto distribution in figure 9. We also compare the
“truncated” case with the “not-truncated” case (labeled as
“Pareto”). We see that truncating the Pareto random vari-
able significantly alters the resulting queue size distribu-
tion, leading to a much faster decay. We also see that the
delay bound, d, dictates the buffer requirement for low
loss probability. That is, the buffer size must be as large
as the worst case delay, d, multiplied by the sending ca-
pacity, Cs.
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Fig. 8. Tail Probability for Queue Size for the Pareto Distribution:
Log-Log Plot (a) α = 1.9, Mean Delay = 20 ms; (b) Cs = 1 Mbps,
Mean Delay = 20 ms, and (c) Cs = 100 Mbps, α = 1.9, Mean Delays
= 10 and 20 ms
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B. Waiting Time in the Queue

Packets are often delayed at the receiver queue for them
to be accepted in order. In this section, we analyze the
waiting time distribution. Again, suppose the buffer size b
is infinite. Let the waiting time for packet i be Wi. Packet
i will be accepted immediately after all packets j ≤ i
arrive at the queue. Therefore, packet i’s waiting time is,

Wi = max
j≤i

Aj − Ai

= max
j≤i

{Aj − Ai}

Hence, for t ≥ 0,

P{Wi ≤ t}

= P{Aj − Ai ≤ t, for all j < i}

=
∏

j<i

P{Aj − Ai ≤ t}

=

∫

∏

j<i

F (x + (i − j)τ + t)dF (x) (22)

When the variable delay is bounded by d,

P{Wi ≤ t} =

∫ d

0

i−1
∏

i−d(d−t−x)/τe

F (x+(i−j)τ+t)dF (x)

The mean waiting time of a packet i is

EW = Emax
j≤i

Aj − EAi (23)

1) Waiting time for exponential variable delay: In the
case of exponential variable delay, we can find an ex-
pression that can approximate the expected waiting time.
When packet i arrives at the queue, let Gi be the num-
ber of sequence gaps in the received packets prior to i. In
other words, Gi is the number of packets that are trans-
mitted before i but have not arrived at the receiver.

Gi = |{j < i : Aj > Ai}|

Packet i needs to stay in the queue until all these Gi pack-
ets arrive. Due to the memoryless property of the expo-
nential distribution, the remaining time in the network of
each packet is still exponentially distributed. Hence,

Wi = max{Yj : j = 1, 2, ..., Gi}

where the Yj’s are IID exponential random variables rep-
resenting packets’ remaining times in the network. We
know from [5] (page 49) that the kth order statistics for a
collection of n IID exponential random variables has the
expectation

EX(k) =
1

λ

k
∑

i=1

1

n − i + 1
(24)

where 1/λ is the mean of the exponential distribution and
k = 1, 2, ..., n. Conditional on Gi and using (24), we get

E[Wi|Gi] =
1

λ

Gi
∑

j=1

1

j

For Gi > 1, the sum can be approximated by

E[Wi|Gi] ≈
1

λ
(log Gi + 0.5)

Then

E[Wi] ≈
1

λ
(E log Gi + 0.5) ≤

1

λ
(log EGi + 0.5)

Since the log function is fairly flat over the range of
values of practical interest, we will use the following ap-
proximation.

E[Wi] ≈
1

λ
(log EGi + 0.5) (25)

The expected value of Gi can be computed as follows.

E[Gi] = E[
∑

j<i

1(Aj>Ai)]

=
∑

j<i

P{Aj > Ai}

=
∑

j<i

P{Xj − Xi > (i − j)τ}

=
∑

j<i

1

2
e−λ(i−j)τ

=
1 − e−λiτ

2(1 − e−λτ )

Substituting the result for E[Gi] into (25) and let i goes
to infinity, we get the stationary mean waiting time.

E[W ] ≈
1

λ
(log(

1

2(1 − e−λτ )
) + 0.5) (26)

In table IV, we compare the mean waiting times derived
from the above analysis with those from simulation. The
analytic approximation becomes quite good when the link
speed exceeds 10 Mbps. When the link speed is smaller,
it appears that the approximation is not accurate. The rea-
son is that, at 1 Mbps, G is very close to 1 on average,
making the two approximations we use in deriving (26)
less appropriate. However, at this link speed, the packet
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transmission time, τ , is 12 ms. So the inaccuracy in the
approximation of E[W ] at 1 Mbps is no greater than one
packet transmission time. In any case, we are more in-
terested in situations where the link speed, and hence, the
waiting time, are large. At link speed Cs = 10 Mbps and
1/λ = 10 ms, we have E[G] = 4.4, which is not a very
large number. We see that the approximation of E[W ] is
already quite good. When Cs ≥ 10 Mbps, we can further
approximate E[W ] by noticing that e−λτ ≈ 1 − λτ when
λτ is small. Then,

E[W ] ≈
1

λ
(log(

Cs

2λU
) + 0.5) (27)

where U is the packet size in bits. We see that the mean
waiting time of a packet scales logrithmically with the link
capacity. We also see that, at a given link speed, reducing
the packet size, hence, the packet transmission time, in-
creases the mean waiting time.

TABLE IV
MEAN WAITING TIME FOR EXPONENTIAL DELAY: ANALYSIS VS.

SIMULATION

E[W ]: Analysis/Simulation (ms)
Cs(Mbps) 1/λ = 10 1/λ = 20

1 1.65/0.2 12.1/0.2
10 19.9/17.5 53.0/48.5
100 42.3/40.0 98.5/94.0

2) Waiting time for Pareto variable delay: Table V
shows the simulation results for the expected waiting time,
EW , for “truncated” Pareto delays. The delay bounds are
d = 0.2, 0.5, 2, 10 and 1000 seconds. We see that EW
depends d, α and Cs in significant ways. In many cases,
this resequencing delay is non-trivial. When the Pareto
distribution has “heavy” tail, e.g., α = 1.1, and when the
sending rate is fairly large, e.g., Cs = 100 Mbps, EW is
close to the delay bound, d. If the delay bound is deter-
mined by a time-out mechanism similar to the one used
in TCP, then it is typical d ranges from 0.5 to 2 seconds.
The resequencing delay ranges from 232 ms to 1.8 sec-
onds for Cs = 100 Mbps, and is expected to be higher for
larger Cs. Luckily, the delay increases much more slowly
than Cs increases. Also notice that reducing d to 0.2 sec-
onds can greatly reduce the expected delay. In the case
of TCP, there is incentive to reduce the time-out value,
which depends on the round-trip time of the transmission
path. Therefore, it pays to accurately estimate the round-
trip time.

C. Throughput for finite buffer sizes

This section shows some simulation results of the
throughput under finite buffer sizes. Figure 10 is for the
exponential delays. Figure 11 shows similar result for the
“truncated” Pareto distributions on semi-log scale. We see
that the delay bound, d, severely affects the throughput-
buffer characteristics.
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Fig. 10. Throughput versus buffer size for the exponential distribu-
tion. Cs = 10 Mbps, T = 30 ms.
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IV. CONCLUSION

This paper studies the required buffer size and extra de-
lay for resequencing mis-ordered packets at the receiver.
The results are summarized in section I-B. We have
shown that both quantities can be significant. Besides
requiring extra resource, the delay caused by packet re-
sequencing negatively affects the performance of delay-
sensitive applications. A network that causes severe
packet mis-ordering, such as one that allows multi-path
routing, must employ mechanisms to reduce the rese-
quencing delay. Fast detection and feedback about packet
that are delayed by the network and retransmission of
these packets can be very helpful or even necessary. The
implication of our results on network engineering, besides
the cautionary notes on multi-path routing, is suggested by
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TABLE V
MEAN WAITING TIME FOR PARETO DELAY: SIMULATION RESULTS

E[W ]: Simulation (ms)
Cs(Mbps) d = 0.2 s d = 0.5 s d = 2 s d = 10 s d = 1000 s

EX = 20 ms 1 33.12 81.82 279.15 1093.49 51403.21
α = 1.1 10 129.39 327.84 1223.43 5434.29 342886.45

100 172.83 458.22 1859.36 9183.65 826939.37

EX = 20 ms 1 11.56 20.02 34.52 59.00 71.81
α = 1.9 10 74.67 135.29 257.73 431.85 677.99

100 152.28 351.43 988.85 2433.43 4416.03

EX = 10 ms 1 3.73 6.08 9.92 16.89 20.02
α = 1.9 10 37.50 58.27 94.60 158.44 211.46

100 121.30 232.90 519.41 1079.91 1205.94

fact that the mean resequencing delay is proportional to
log(Cs/U) (See equation (4).) for the exponential propa-
gation delay. As the sources become faster, the resequenc-
ing delay increases. Moreover, making the packet size
smaller also increases the resequencing delay.
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