
1

Ideal Load Balancing Techniques in Structured
Peer-to-Peer Networks (#424)

Abstract— Peer-to-peer(P2P) networks have grown in pop-
ularity in recent years. One of the typical applications of
P2P networks is file-sharing. Effectively load balancing in such
applications is important since the distribution of the number of
requests for individual files can be heavily skewed.

We consider a file-sharing scenario in a structured Peer-to-
Peer (P2P) network that implements a distributed hash table
(DHT), such as CAN, Chord or Tapestry. In the basic design
of these networks each file is stored at a single node which will
become a hotspot if the file is popular. In this paper we present
some novel caching/file-replication techniques that will balance
the load. The central problem addressed is what nodes should
cache the file in order to achieve (close to) perfect balancing. We
show that intuitive solutions such as replication at neighbors or
along the search path do not have this property. However, we
can construct Tapestry-type of networks with randomized routing
tables in which replication at nodes with longest common prefix
achieves provably ideal load-balancing. We extend this idea to
construct a simple caching strategy that adapts to fluctuating
loads.

I. INTRODUCTION

The popularization of peer-to-peer (P2P) file-sharing ap-
plications, such as Kazaa and Gnutella, have brought much
attention to P2P networks. We consider the file-sharing sce-
nario in structured P2P networks, such as CAN [6], Chord
[7], Pastry[4], or Tapestry [8], that implement distributed hash
tables (DHT). In these networks, publishing a file is to insert
the file into a hash table, which is distributed in the sense that
pieces of it are stored separately in a large number of nodes.
Searching for a file is to obtain the hash value of the file or
of its metadata and to make a query using the hash value.
With specially chosen network structure, the routing tables
can be set up at the time of network construction without the
help of a routing protocol. The query is routed with the file
hash value as the destination. This structured approach over-
comes the limitation of existing unstructured file-publication
approaches, which require either query flooding or establishing
file directories.

Effectively load balancing is important in any large-scale
file-sharing applications since the distribution of the number of
requests for individual files can be heavily skewed. There have
been many widely reported incidences, often associated with
the occurrence of some events, of extremely large number re-
quests for certain file or web content overburdening the content
server. Even under normal circumstances, it is conceivable that
file popularity, measured in the number of requests, follows
a heavy-tail distribution, given the ubiquity of this type of
distributions1. As a consequence of the heavy-tail distribution,
there is a non-negligible chance that some files are extremely

1In a heavy-tail distribution, the probability mass function (pmf) decays as
a power function.

popular. The servers for the popular files can be many times
overloaded above their capacity.

We stress that proper load balancing is especially important
for a P2P network constructed from voluntary participation. If
participation in the network overloads some nodes, then they
may stop serving popular files, which, in turn, increases the
chance for the remaining nodes to be overloaded. This suggests
that, while it is difficult to grow a P2P network, collapsing
a widely used network might be quite quick and easy. One
interesting thing about the DHT-based file-sharing network (as
compared to the query-flooding-based network) is that, if a
node realizes that it is carrying a popular file, it might quit
the network and rejoin with a different node ID, hoping that
it won’t carry any popular file this time. As a result, it may
be difficult to find and successfully download popular files as
nodes dodges them. Furthermore, the frequent leave and join
by nodes may seriously undermine the stability of the network
because the protocols used for constructing and maintaining
the structure of the network are not given enough time to do
their job. Even though we cannot fully anticipate the dynamics
of the user behavior, it does seem critical that structured file-
sharing networks need to be engineered carefully with proper
load balancing2.

The structured network can store either files themselves or
references to files, such as the IP address of the host that
contains a file and metadata about the file. In this paper,
whenever we mention the term file, we could mean either
the file itself or the file reference. To search or publish a
file, a hash function is first applied to the file and a file ID
is returned. Because the links and routing tables are set up
at the time of network construction, any node or file can be
located by routing a query message using the node or the file
ID as the destination. Thus, the combination of hashing and
routing together allows the identification and location of the
node that stores the file. Because of the involvement of routing,
the structured networks such as CAN, Chord and Tapestry are
said to implement a distributed DHT.

Even though hashing is distributed, with respect to a partic-
ular file, the basic version of CAN, Chord or Tapestry is each
a centralized system. Each file is always stored in one node.
This poses the classical problems about a centralized system:
single point of failure, that is, when a node fails, files on the
node will no longer be accessible; and hot spot, that is, all
requests for a particular file are directed to one node, causing
overload to that node or the network paths leading to that
node. The basic DHT using a single hash function does not
exploit the vast capacity and high redundancy of a typical P2P

2Unless other incentive structures are set up so that the owners of over-
loaded nodes are compensated for losing control of their computers.

2

network, which has a large number of users, lots of storage
space, processing power and communication bandwidth, and
potentially has many replicas for many files.

Large file-sharing P2P networks (i) should have build-in
resiliency or fault tolerance to combat the problem of single
point of failure, (ii) should have load balancing mechanism
to solve the hot-spot problem, and (iii) it is also desirable
to replicate the file content to increase the lifetime of each
file. In this paper, we will mainly consider file replication
for load-balancing purpose. The central problem addressed is
what nodes should cache the file in order to achieve (close
to) perfect balancing. We show that intuitive solutions such
as replication at neighbors or along the search path do not
necessarily have this property. However, we can construct
Tapestry-type of networks with randomized routing tables
in which replication at nodes with longest common prefix
achieves provably ideal load-balancing. We extend this idea to
construct a simple caching strategy that adapts to fluctuating
loads.

The file-replication strategies proposed in CAN, Chord,
Pastry, Tapestry and some other studies [5] can be summarized
into three categories, (i) caching (ii) replication at neighbors,
and (iii) replication with multiple hash functions. Caching a
file can be done when the file is first published, at nodes
along the route of the publishing message, and/or, when the
file is requested, at one or more nodes along the route of the
query message. In the second approach above, when a node is
overloaded with the requests to some file, it replicates the file
at its neighbors, i.e., the nodes to which it has direct (virtual)
links.

Each of these strategies has its advantages and disadvan-
tages. Caching is the simplest approach and it can improve
the response time of the queries if done properly. However,
a simple caching algorithm cannot be a complete solution
to the load balancing problem, because even a good cache
hit ratio, say 80%, still leaves 20% of the requests going to
the original node for the file, which may overload the node
by many times. Replication-at-neighbors does not have cache
miss problem, if the file is replicated at all neighbors of the
original server. However, a bit surprisingly, even in these very
“uniform” networks, the load to each of the neighbors may
not evenly distributed. In general, it is difficult to achieve
guaranteed load balancing with this approach because the
assignment of requests to nodes depends on many factors and
is not tightly controlled. Furthermore, in some networks, such
as CAN, neighbors of a node are actually close to each other in
the name space of nodes (rather than in physical sense). Even
after the nodal hot spot is removed, the routing hot spot may
still remain. In this paper, we combine caching and replication-
at-neighbors in a way that load balancing is guaranteed in
some particular Pastry/Tapestry-type networks, as long as the
request pattern is uniform. We will still loosely call it caching.

The main advantage of replication with hash functions is
that, with the help of uniform hash functions, copies of the file
are uniformly distributed over the network, and with uniform
use of the hash functions, file requests are also uniformly
distributed over the set of nodes that contain the file. However,
it is not easy to decide how many hash functions are needed.

In a separate study, we develop mechanisms to address this
problem, but the price to pay is increased response time for
queries.

II. CACHING IN PASTRY/TAPESTRY-TYPE NETWORKS

A. Routing Table and Query Routing in General Pastry Net-
work

We consider Pastry-type networks, in which Tapestry is
one example. To illustrate the basic idea about the network
construction and routing, let us first consider a network with n
nodes, numbered 0, 1, ..., n−1, and the size of the name space
is also n. Let n = 2e, where e is a natural number. Each file is
mapped into a key value in {0, 1, ..., n−1} through a uniform
hash function, and the key value indicates the ID of the node
where the file is stored. The node ID’s and the file keys can
all be expressed as binary numbers. When a file is requested,
the query for the file is routed from the starting node to the
node whose ID is equal to the file key. Suppose the initial
node ID is ae−1ae−2...a0 and the file key is be−1be−2...b0,
where ai, bi ∈ {0, 1}. In Pastry or Tapestry, routing of the
query from node ae−1ae−2...a0 to node be−1be−2...b0 can be
viewed as changing the former number to the latter one bit
at each hop. More specifically, by moving to the ith hop,
i = 1, 2, ..., e, ae−i is changed into be−i if they are not the
same. This immediately implies that the length of the query
path is log2 n.

The construction of the Pastry’s network and the routing
table at each node determine the above routing behavior. Table
I shows the routing table of node ae−1ae−2...a0. The search
key is checked against the routing table when making the
routing decision. The first column is called the level, which
is the position of the digit currently under consideration. If
the query message has traversed i hops (including the current
node), then the ith digit of the search key, counting from the
left to the right, is checked against the first column of the
routing table. The second column is the value of the digit. The
third column is the ID’s of the next hops, i.e., the neighboring
nodes. At each level, say level i, each next-hop node must
satisfy the following requirement: (i) the ith digit of the next-
hop node must match the value in column 2, which will be the
value of the ith digit of the search key when a query arrives
at the node after traversing i hops (inclusive); and (ii) the (i-
1)-digit prefix of the next-hop node must match the (i-1)-digit
prefix of the current node. Note that, at each level and for each
value of the digit, there are possibly more than one next-hop
nodes satisfying the above rules, all are called eligible next-
hop nodes or neighbors. Each “∗” in the table is a wild card,
which can be either 0 or 1.

Each particular choice for the wild cards in the routing table
defines a specific type of the Pastry networks, which all have
the distinguishing changing-one-bit-at-a-time routing behavior,
but other than that, are very different networks with distinct
properties. For each routing table entry, the original Pastry[4]
chooses an eligible next-hop node that is the closest to the
current node, where the distance may be measured in either
the round-trip time (RTT) or some other generalized notion.
In the original Pastry network, each file is also replicated and

3

TABLE I

GENERAL ROUTING TABLE FOR NODE ae−1ae−2...a0

level/digit value next hop

1 0 0 ∗ ...∗

1 1 ∗ ...∗

2 0 ae−10 ∗ ...∗

1 ae−11 ∗ ...∗

...

e-1 0 ae−1ae−2...a20∗

1 ae−1ae−2...a21∗

e 0 ae−1ae−2...a10

1 ae−1ae−2...a11

cached at different nodes as we will do. The particular choices
of the neighboring nodes and of the cache locations allow
Pastry to achieve optimal access delay. This is in contrast to
our goal of achieving perfect load balancing by appropriate
network construction and cache location selection. Tapestry[8]
is closely related to the original Pastry and also tries to choose
the closest eligible node as the next-hop node for each routing
table entry. However, due to the particular incremental way of
constructing the Tapestry network, each routing table entry
settles with a random and close node but not necessarily the
closest next-hop node. One of the goals of Tapestry is to reduce
the query delay by constructing a so-called topology-aware
overlay network, where the overlay neighbors are actually
close to each other in the physical underlay network (the
IP network). Other considerations such as allowing dynamic
growth of the network in completely distributed fashion dictate
the particular outcome of routing table entries.

B. Our Choice of Routing Table and Routing Scheme

We now specify our choice for the routing table entries,
or equivalently, the set of neighboring nodes. The wild cards
in the table are chosen to match the values of the current
node ID at the corresponding digit. The result is that each
next-hop node matches the current node at all but at most
one bit positions. The special bit that can potentially be
changed corresponds to the level of the routing table entry.
The resulting routing table is shown in Table II. Note that
at each level, one of the two entries must match the current
node completely. During a route lookup, if the next-hop node
is identical to the current node, we then move to the next digit
and check the corresponding entry in the next level. This is
equivalent to the following routing rule: at each node s and
for the query destination d, the first bit position that s and d
have different values determines the level. Then, choose the
entry corresponding to the value of d at that bit position for
the next-hop node.

We note that this particular construction of the routing
table clearly requires that every position of the name space
is occupied by a node, which is our current assumption. In
Section VI, we will remove this assumption and construct
a network with similar desirable properties of our current
network. We also note in passing that there is a simple work-
around with the above assumption. Suppose the name space
size is 2m and the number of nodes is 2e, with m > e. We

TABLE II

OUR ROUTING TABLE FOR NODE ae−1ae−2...a0

level/digit value next hop

1 0 0ae−2...a0

1 1ae−2...a0

2 0 ae−10ae−3...a0

1 ae−11ae−3...a0

...

e-1 0 ae−1ae−2...a20a0

1 ae−1ae−2...a21a0

e 0 ae−1ae−2...a10

1 ae−1ae−2...a11

can insist on naming each node with m − e trailing zeros.
As a result, every name of the form ∗... ∗ 0...0 with m − e
trailing zeros has a corresponding node. The routing table is
constructed using only the first e bits, which is the effective
ID for a node.

C. Relationship between Pastry and Chord

From the routing table II, we see that the distances (differ-
ences in node ID’s) to the node’s neighbors increase by a factor
of 2. To see, suppose the current node is ae−1ae−2...ai...a0. At
each level, one of the next-hop node is in fact the current node.
The corresponding entry can be deleted from the routing table.
At the (e − i)th level, the remaining next-hop node is either
ae−1ae−2...0...a0 when ae−i = 1 or ae−1ae−2...1...a0 when
ai = 0, with the 0 or 1 at (e−i)th digit from the left. In either
case, the absolute difference between the current node and
the next-hop node is 2i. In this case, Pastry essentially turns
into Chord, with the exception that, in Chord, all neighbors
are on one side of the current node in the name space, and
in Pastry, the neighbors may be on both sides the current
node. For instance, suppose n = 16 and the current node is
1010 in binary (or 10 in decimal). Its neighbors in Chord are
1011(11), 1100 (12), 1110 (14) and 0010(2). Its neighbors in
Pastry are 1011(11), 1000(8), 1110(14) and 0010(2). There is
no fundamental difference between Chord and Pastry if the
routing tables of the latter is specified as in Table II. We
suspect that the load-balancing properties of our network also
largely apply to Chord.

III. REPLICATION AT NODES WITH LONGEST COMMON

PREFIX

A. What’s Wrong with Replication-at-Neighbors?

Without loss of generality, let us focus on queries for file
key 00...0(0), which is stored at the node 00...0(0). Consider
the following simple file replication strategy. When node 0 is
overloaded, it replicates the file at all its upstream network
neighbors, i.e., all nodes that has node 0 as a next-hop
node. They are nodes 0...01(1), 0...010(2), 0...0100(4), ..., and
10...0(2e−1). We will show that the loads to these neighbors
are very uneven.

Suppose the starting node of each query for file key 0
is uniformly randomly chosen from the n nodes. We ask:
what is the chance that the query passes through node 0...01
before ending at node 0? The answer is 1/2. This is because

4

the probability that a random node has a 1 in the rightmost
position, i.e., is of the form ∗... ∗ 1, is exactly 1/2. Starting
from one such node, with one bit matching the destination at
each hop during the routing, the query will reach node 0...01.
Queries starting from any node of the form ∗...∗0 will not go
through node 0...01.

The same argument easily applies to neighboring nodes with
ID 2i in decimal, i = 1, 2, ..., e − 1. A query will go through
node 2i if and only if it originates at a node of the form
∗... ∗ 10...0 where 1 is in the (i + 1)th position counting rom
the right. The probability of the event is 1/2i+1. Hence, the
load to each of the e neighbors are drastically different, which
violates the basic load balancing requirement.

B. Replication at Nodes with Longest Common Prefix

Comparing two of node 0’s upstream neighbors, we see
that node 1 receives half of all the requests, but node 10...0
receives 1/2e of all requests. This suggests that replicating the
file at node 10...0 does not help much in reducing the load to
node 0. Upon closer examination, a node that shares longer
prefix with the search key receivers more requests than a node
that shares shorter prefix. Given a node s and a search key t,
s, t ∈ {0, 1, ..., n − 1}, let l(s, t) be the length of the longest
common prefix between s and t.

Lemma 1: Suppose a query for t originates from a random
node, uniformly distributed on {0, 1, ..., n−1}. The probability
that the query passes through node s on the way to t is 1

2e−l(s,t) .
Proof: A query goes through node s if and only if the

starting node of the query shares the e − l(s, t)-suffix with
node s. There are exactly 2l(s,t) such starting nodes. Hence,
the probability one such node is selected is 2l(s,t)/2e, where
2e = n is the total number nodes in the network.

One corollary of the lemma is that, given two node s1, s2 ∈
{0, 1, ..., n − 1} with the property l(s1, t) > l(s2, t), node
s1 sees more queries on their way to t than s2 does. If we
wish to reduce the load to node t, s1 is the preferred location
for file replication. This suggests the following replication
scheme for the file with key t: Replicate the file at nodes
in decreasing order of l(s, t). We call this scheme Longest-
Common-Prefix-Based Replication (LCP-replication). We call
a node that contains the file cache node.

As an example, suppose t = 0. When node 0 is overloaded,
the file will be replicated at node 0...01. Now the file is cached
at nodes of the form 0...0∗. If these nodes are still overloaded,
the file will be replicated at node 0...010 and 0...011. As a
result, the files will be cached at nodes of the form 0...0 ∗ ∗.
In general, after p replication-steps, each of the nodes of the
form 0...0 ∗ ...∗, where the last p digits are wild cards, has a
copy of the file.

With respect to each query destination (or equivalently, each
file), it is helpful to consider the network as a tree rooted at the
destination of the query, t = 0, in this case. We define levels
for the tree as follows, and call the tree prefix tree. Level 0 has
the root node. Level i contains all nodes s, with l(s, t) = e−i,
for i = 0, 1, 2, ..., e. An edge from level i to level j, where
i < j, attaches a level-i node of the form 0...01ai−2...a0 to a
level-j node of the form 0...010...01ai−2...a0, where the first

1 from the left occurs after e−j 0’s. In other words, following
the edge from the level-j node to the level-i node corresponds
to flipping the first 1 to 0. Figure 1 shows one example of the
prefix tree for the case of n = 16. Note that a node at level
i has exactly one child at each level j > i. The last level,
level 4, is not shown in the figure. Each visible node has one
incomplete edge that is supposed to be attached to one unseen
level 4 node.

For the moment, assume the root node is the only node that
contains the corresponding file. Let p(s) be the probability
that a query from a uniform random node arrives at node s.
The prefix tree has the following properties: (i) by Lemma
1, for any node s at level i, p(s) = 1

2i ; (ii) for any node s,
p(s) =

∑
v∈Π(s)−{s} p(v), where Π(s) is the set of nodes on

the subtree rooted at node s; and (iii) for any node s at a fixed
level and its (only) child at one level down, denoted by σ(s),
p(s) = 2p(σ(s)).

With the prefix tree, we see that the LCP-replication al-
gorithm progressively replicates the file at nodes level by
level. We will show that the algorithm achieves perfect load
balancing.

Level 0

0100 0111

0000

0001

00110010

01010110 Level 3

Level 2

Level 1

Fig. 1. Prefix tree for the case of n = 16

Lemma 2: Suppose queries for t originates from random
nodes, uniformly distributed on {0, 1, ..., n − 1}. After p
replication steps, p = 1, 2, ..., e, the load to each node that
contains a copy of the file is 1

2p .
Proof: Without the loss of generality, let us assume the

destination is t = 0. If this is not true, we can rename each
node ID or file key, say id, to id−t. We will prove the lemma
by induction. After the first replication, node 0...01 has a copy
of the file. By Lemma 1, this node receives 1

2 fraction of the
queries for 0. The other half of the queries end at node 0.

Now, suppose the lemma is true for p. The files are copied
to nodes of the form 0...0 ∗ ...∗, where the last p digits are
wild cards. At the (p+1)th step, the file is replicated to nodes
of the form 0...01 ∗ ...∗, where the first 1 from the left occurs
at the (p+1)th position from the right. Exactly 2p new nodes
are added as cache nodes. Again by Lemma 1, each of these
2p new nodes receive 1

2e−(p+1) fraction of the queries. Let us
consider an arbitrary new node added in the (p + 1)th step,
say node 0...01ap−1ap−2...a0. The queries now received and
served by the new node 0...01ap−1ap−2...a0 was originally
received and served by node 0...0ap−1ap−2...a0 just before the
(p+1)th replication. Hence, after the (p+1)th replication, the
load to node 0...0ap−1ap−2...a0 is reduced by 1

2e−(p+1) . By the
induction hypothesis, the load to node 0...0ap−1ap−2...a0 after
the (p+1)th replication must be 1

2e−(p) −
1

2e−(p+1) = 1
2e−(p+1) .

5

Lemma 2 shows that LCP-replication has the nice properties
that (i) in each step of replication, the number of nodes that
contain the file is doubled, (ii) the load to each these nodes is
identical, which is the basic requirement for load-balancing,
and (iii) after each step of replication, the load to each node
is reduced by half.

IV. AUTOMATIC LOAD BALANCING BY CACHING

The LCP-replication algorithm is not automatically a dis-
tributed algorithm. Imagine how a group of 2p nodes that
contain the file decide to replicate it in another 2p nodes.
Moreover, it is a slotted algorithm, where a group of nodes
operate in a synchronized fashion. We propose the following
adaptive and asynchronous algorithm, which is essentially a
caching scheme, that automatically achieves load-balancing in
the spirit of LCP-replication.

Suppose, for each file f , each node keeps a threshold, θf .
The node measures the rate of requests for file f , denoted by
r(f). If r(f) > 1

2θf + ε, then the node will cache a copy of
the file. When the rate drops to the point that r(f) < 1

2θf − ε,
the node removes that file from its memory.

To understand the above algorithm, let us consider the fol-
lowing idealized situation. Suppose each node in the network
sends queries for the file at rate λf . Hence, the total query rate
is nλf . Suppose nλf/θf = 2p, for some p ∈ {0, 1, ..., e− 1}.
Let us also modified the algorithm as follows: at each node,
if r(f) > 1

2θf , then the node will cache a copy of the file;
if r(f) ≤ 1

2θf , the node removes that file from its memory.
Let us consider the static outcome of the algorithm. Clearly,
one possible outcome is that the file is replicated at nodes
0...0ap−1ap−2a0, where ai ∈ {0, 1} for i = 0, 1, ..., p − 1,
and nowhere else. Each of these cache nodes receives and
serves the queries at exactly rate θf . Each of the other nodes
receives the queries at rate no greater than 1

2θf and will not
cache of copy of the file. This is exactly the outcome of
the LCP-replication algorithm, which is what we wish to see.
One question is: does any other outcome exist? The following
lemma shows that the answer is no.

Lemma 3: The outcome of the LCP-replication algorithm
is the only static outcome of the caching scheme.

Proof: We first show that no node other than the nodes
of the form 0...0ap−1ap−2...a0 may cache the file. Suppose
node s is not of that form, but caches a copy of the file. It
must have l(s, t) ≤ e − p − 1. By the same reasoning as in
lemma 1, the fraction of queries for 0 that passes through s
must be no greater than 1

2p+1 . Hence, the total rate of query
served by s cannot be greater than nλf

2p+1 =
θf

2 . However, by
the algorithm, node s should remove the cached copy in this
case, which is a contradiction.

Next, consider nodes of the form 0...01ap−2...a0. The total
rate of queries that reach one such node is precisely θf because
there are no other upstream nodes on the query paths that cache
the file. Hence, each such node must cache the file.

Next, consider nodes of the form 0...001ap−3...a0. The total
rate of queries that potentially can reach one such node is
precisely 2θf , out of which, θf are intercepted by the cor-
responding node 0...011ap−3...a0. No other upstream nodes

cache the file. Hence, node 0...001ap−3...a0 receives queries
at rate θf , hence, it caches and serves the file. This argument
can be applied inductively, and hence, we conclude that every
node of the form 0...0ap−1ap−2...a0 receives queries at rate
θf , hence, it caches and serves the file.

Lemma 3 says, if the caching algorithm ever reaches an
equilibrium, it must be the outcome of the LCP-replication
algorithm. The same argument also shows the equilibrium is
actually stable in the sense of the following lemma.

Lemma 4: Given any initial set of nodes that cache the
file, the algorithm eventually converges to the LCP-replication
outcome.

Proof: Nodes not of the form 0...0ap−1ap−2...a0 first
remove their cached copies of the file, if they initially have
any, due to insufficient queries that pass through them. Then,
nodes of the form 0...01ap−2...a0 must cache the file for the
same reason as in the proof of Lemma 3. Next, nodes of the
form 0...001ap−3...a0 must cache the file, again for the same
reason as in the proof of Lemma 3. Inductively, all nodes of the
form 0...0ap−1ap−2...a0 must cache the file and each handles
queries at rate θf .

We see that the above caching algorithm is in fact robust.
The above results do not require nλf/θf is an integer power
of 2. Suppose 2p < nλf/θf < 2p+1, for some integer 0 ≤ p ≤
e−1. Then, the result of dynamic caching algorithm is that the
file is cached at the 2p+1 nodes of the form 0...0apap−1...a0

and each of them handles queries at rate nλf/2p+1, which is
less than θf but greater than 1

2θf . The proofs for Lemma 3
and Lemma 4 in this case are essentially the same.

A. Measuring the Rate for Multiple File Requests

Typically, any of the nodes in the peer-to-peer network will
see/route requests for multiple files. To be able to apply the
load balancing algorithm we we introduced earlier in this
section, at least in principle the rate of each file has to be
determined and compared with θf . Since the number of files
stored in the network is usually comparable with the number of
nodes, this suggests that each node needs memory proportional
to the number of nodes just to keep track of the rates to be
able to apply the load-balancing algorithm. This is clearly a
scalability problem that can hamper the applicability of our
algorithm.

To address the linear dependency of the load-balancing
algorithm in the number of nodes, we observe that each node
needs only to answer questions of the form: r(f) > 1

2θf + ε
and r(f) < 1

2θf −ε. Moreover, in practice it is enough if these
questions can be answered with high probability instead of
exactly, as long as the probability increases fast as the value of
r(f) is away from the boundary. For nodes s for which l(s, f)
is large the rate of requests for files f is very small (according
to Lemma 1 the rate decreases exponentially with l(s, f)). This
means that most of the rates for any given node are small; only
few are comparable to θf . In any unit of time, the problem
of tracking the rates larger than a threshold, say 1

2θf − ε, it is
equivalent to the problem of tracking the elements in a string
that have frequency higher than a given threshold. These types
of queries are called iceberg queries in the database literature

6

[1]. Iceberg queries are closely related to top-k queries, i.e. find
the k elements with highest frequency, since by setting k to be
the ratio of the total number of elements and iceberg threshold,
all elements that have frequencies over the threshold will be
determined. A number of algorithms for the computation of
top-k elements and their frequencies over streaming data using
small space have been proposed,[3], [2]. Any of them can be
used here to determine the files for which the rate of requests
is larger or smaller than the prescribed thresholds using small
amounts of space.

V. THE COMPLICATION WITH THE NUMBER OF NODES

In the last two sections, we have made two assumptions (i)
the number of nodes n = 2e and (ii) every position in the name
space is occupied by a node. In this section, we will show that
the first assumption is not a serious limitation. However, the
second assumption is a more serious limitation, which we will
deal with in Section VI.

Without assumption (i), let us write 2e−1 < n < 2e for some
integer e ≥ 1. we will show that Lemma 2 is not fundamentally
altered. That is, the loads to each cache node are nearly the
same under uniform request pattern. We will do so by showing
that the properties of the prefix tree are not fundamentally
altered. Suppose the query destination is node 0, which is the
only node that stores file 0 at the moment. To simplify the
analysis in this case, we will not look at the probabilities that
a query from a random node passes through each node on
its way to the root node 0. Instead, let us assume every node
makes one request for 0 and we will count the number of
queries seen by different nodes. For node s, let N(s) denote
the number of queries seen by node s. Consider a node s at
level i on the prefix tree and its level i + 1 child σ(s), for
0 ≤ i < e. In other words, s has the form 0...01ai−2...a0,
σ(s) has the form 0...011ai−2...a0. We claim,

Lemma 5:
N(s) − 2N(σ(s)) ≤ 1 (1)

Proof: Note that N(s) is the number of queries origi-
nating from nodes of the form ∗... ∗ 1ai−2...a0, N(σ(s)) is
the number of queries originating from nodes of the form
∗... ∗ 11ai−2...a0, and N(s) − N(σ(s)) is the number of
queries originating from nodes of the form ∗... ∗ 01ai−2...a0.
Suppose the largest node (in terms of node ID) of the
form ∗... ∗ 11ai−2...a0 is be−1...bi+111ai−2...a0. In other
words, be−1...bi+111ai−2...a0 + 2i+1 ≥ n. We claim that
be−1...bi+101ai−2...a0 + 2i+2 ≥ n, because

be−1...bi+101ai−2...a0 + 2i+2

= be−1...bi+101ai−2...a0 + 2i + 2i+1 + 2i

= be−1...bi+111ai−2...a0 + 2i+1 + 2i

≥ n

This shows that N(s) − N(σ(s)) can be greater than
N(σ(s)) by no more than 1.
Lemma 5 implies the number of queries that reach σ(s) is
nearly 1/2 of the number of queries that reach s. With a similar
argument, we can show that the number of queries seen by the
same-level nodes may differ by no more than 1.

Lemma 6: For two nodes, say u and v, at the same level,
|N(u) − N(v)| ≤ 1.

Proof: Suppose u and v are at level i, for some i ∈
{2, 3, ..., e}. They are of the form 0...01ai−2...a0. The largest
possible difference between N(u) and N(v) happens when
u = 0...01...1 and v = 0...010...0. It suffices to show N(v)−
N(u) ≤ 1. Let be−1...bi1...1 be the largest among all nodes
whose queries pass through u. Then, be−1...bi1...1 + 2i ≥ n.
Then, it must be true that be−1...bi10...0 + 2i+1 ≥ n, because

be−1...bi10...0 + 2i+1

= be−1...bi10...0 + 2i−1 − 1 + 1 + 2i−1 + 2i

= be−1...bi1...1 + 2i + 1 + 2i

≥ n

We will re-state Lemma 2 with a slightly different format.
Lemma 7: Suppose each node in the network makes one

query for file t. Suppose at each level, the number queries of
seen by a node s is twice as many as the queries seen by
node σ(s). Suppose the number of queries seen by nodes at
the same level is the same. Then, after p replication steps,
p = 1, 2, ..., e, the number of queries served by each node that
contains a copy of the file is identical.

Proof: Without the loss of generality, let us assume the
destination is t = 0. After the first replication, node 0...01 has
a copy of the file. It will intercept exactly half of the queries
destined for node 0. Hence, node 0 and node 0...01 serve equal
number of queries. Now, suppose the lemma is true for p. The
files are copied to all nodes of the form 0...0 ∗ ...∗, where the
last p digits are wild cards. At the (p + 1)th step, the file is
replicated to nodes of the form 0...01 ∗ ...∗, where the first 1
from the left occurs at the (p + 1)th position from the right.
These new nodes are at level-(p + 1) of the prefix tree, each
of which is connected to a distinct node at a previous level.
Hence, half of them have level-p parent nodes. Suppose node
v has a level-p parent u. By the assumption of the lemma,
N(v) = N(u)/2. Hence, right after the (p + 1)th replication
step, node v serves half of the queries that were served by node
u in the pth step. For a node y at level p+1 that has a parent
w at a level before p, N(y) = N(v) = N(u)/2 = N(w)/2,
where the first equality is by the assumption of the lemma and
the last equality is by the induction hypothesis. We see that,
right after the (p + 1)th replication step, each of the level-
(p + 1) new node takes over half of the queries of a node
at some previous level. Hence, all cache nodes right after the
(p + 1)th replication step handle exactly the same number of
queries, which is half of the queries handled by each cache
node in the previous step.

When the total number of nodes is much larger than the
number of the cache nodes, we can ignore the difference of 1
query in Lemma 5 and Lemma 6. The assumptions of Lemma
7 are satisfied (approximately).

VI. LCP-REPLICATION IN RANDOMIZED PASTRY

NETWORK

We stress that the desirable load balancing properties of
the particular Pastry network we have been discussing depend

7

crucially on the particular choice of routing specified in
Section II-B. To illustrate this, suppose we choose the largest
node (in term of node ID) among all eligible nodes for each
routing table entry in Table I. Then, the two next-hop nodes in
level i are ae−1...ae−i+101...1 and ae−1...ae−i+111...1. The
result is that, no matter where the query for 0 originates, the
routing takes the query to node 01...1 in one hop. It is not
hard to see that the sequence of nodes traversed by any query
is 01...1 → 001...1 → ... → 0...01 → 0...0. Hence, there is no
load-balancing at all in this network regardless where the file
is replicated, unless every node contains a copy of the file.

The example suggests that, to achieve ideal load balancing,
one must be very careful in constructing the routing table. Our
routing table shown in Table II requires that every position in
the name space has a node. In typical file-sharing applications,
the nodes only thinly populate the name space, and hence,
many required nodes for the routing table most likely do not
exist. We will handle the situation by constructing a random
network, which will have the desired load balancing properties
as the deterministic network, but only when averaged over
all random instances of the network. In other words, we will
choose eligible neighbors at random, resulting in randomized
routing tables.

A. Randomized Routing Tables

Starting with the generic Pastry routing table as shown in
Table I, for each entry, we choose a node uniformly at random
from all eligible nodes for the entry. For instance, the next-hop
node at level 2 for digit value 0 is chosen uniformly at random
from all available nodes of the form ae−10∗ ...∗. Note that the
resulting network is an instance of a random network. After
the network is constructed, the routing rule is still as specified
in Section II-B. We will show that, regardless the name space
is fully populated by nodes or not, the random network has
the desirable load balancing properties similar to the previous
deterministic network, whose routing table is given by Table
II. Consider queries for file 0.

Lemma 8: Suppose the file is replicated at all nodes 0...0 ∗
...∗ with p wild cards, p = 0, 1, ..., e. For any query originating
from a node that is not one of the cache nodes above, it is
equally likely to be served by any of the cache nodes.

Proof: First, consider a query from a node of the form
0...01ap−1...a0. At the first hop of the routing, it will be routed
to one of the cache nodes with equal probability. Next, suppose
the lemma is true for queries originated from any node of the
form 0...01 ∗ ...∗, with the leading 1 at the ith position from
the right, where p + 1 ≤ i ≤ q < e. Consider nodes of the
form 0...01 ∗ ...∗ with the leading 1 at the (q + 1)th position.
After the first hop, the query is routed to a node of the form
0...0aq−1...a0 with equal probability. Either this node is one
of the cache node, or it isn’t. If it isn’t, then it is as if the query
starts from that node, and by the induction assumption, will
be served by one of the cache nodes with equal probability.
Hence, the original query will be served by one of the cache
nodes with equal probability.

An easy corollary of the lemma is,
Corollary 9: Suppose the file is replicated at all nodes

0...0 ∗ ...∗ with p wild cards, p = 0, 1, ..., e. Suppose a query

originates from a node chosen uniformly at random among all
nodes. It is equally likely to be served by any of the cache
nodes.

B. Simulation Experiments

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100

N
um

be
r

of
 Q

ue
rie

s

Nodes

Averaged over 1000 Networks

Fig. 2. Average number of queries seen by each node in a random network,
averaged over 1000 instances. The network has 5000 nodes. The name space
size is also 5000

1) Case 1: Name Space Size = 5000, n = 5000, No
Caching: We now show simulation experiments to show the
effectiveness of the LCP-replication strategy on the random
network. In the first case, we have a network with 5000 nodes,
fully populating the name space of size 5000. Figure 2 shows
the query count at each node averaged over 1000 instances of a
random network. In each instance, only the root node contains
the file of interest and each node generates precisely one query
for the file. We see that the load to each node decreases by
half for nodes in group of 2p, p = 0, 1, ..., e− 1, which is the
expected behavior. As a comparison, Figure 3 shows the query
count at each node in two different instances of the random
network. Even though the general trend for the query counts
still decreases exponentially in each instance, the precise query
counts do have some fluctuation around the expected values.

2) Case 2: Name Space Size = 5000, n = 5000, with
Caching: Next, consider the same 5000-node random network,
in which the requested file is cached in 32 nodes according
to the LCP-replication scheme. In other words, the file is
replicated at node 1 to 31. When averaged over instances of the
random network, we should expect that node 0 to 31 each serve
the same amount of queries. This is indeed verified by Figure
4. Compared to Figure 2, the load to node 0 is reduced by a
factor of 32. When we look at the query counts on instances
of the random network, as shown in Figure 5, we do get load
reduction to node 0. However, the number of queries served
by different cache nodes varies more and also depends on the
particular network instance.

We know that, when averaged over different network in-
stances, the query count seen by each node agrees with the
theoretical results. We would like to investigate its fluctuation.
Figure 6 (a) and (b) show the probability mass function of
the query counts seen by node 1 and node 63, respectively,
collected over 10000 random network instances. It seems that
the variances of the query counts are not negligible. We hope
that these experimental results will guide us in our future
analysis on the probability distribution of the random network.

8

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

(a)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

(b)

Fig. 3. Number of queries seen by each node in instances of a random
network with 5000 nodes. The name space size is also 5000. (a) network 1;
(b) network 2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 Q

ue
rie

s

Nodes

Averaged over 1000 Networks

Fig. 4. Average number of queries seen by each node in a random network,
averaged over 1000 instances. The file is cached at node 0 to 31. The network
has 5000 nodes, and the name space size is 5000.

3) Case 3: Name Space Size = 5000, n = 500, No
Caching: We next move to the case where 500 nodes sparsely
populate a name space of size 5000. Recall that this type of
situations create problems for the routing shown in Table II.
The nodes are distributed uniformly in the name space. Figure
7 shows the query count seen by each node averaged over 1000
network instances. We still see the exponential decrease in the
query counts for groups of nodes whose numbers increase
exponentially. Note that, unlike the previous two cases, the
horizontal axis does not correspond to the node ID. It shows
the indices of the nodes in increasing order of their ID’s.
Figure 8 shows the query count for a fixed network instance.

4) Case 4: Name Space Size = 5000, n = 500, with
Caching: Now, we cache the file at nodes whose ID’s are less

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

(b)

Fig. 5. Number of queries seen by each node in instances of a random
network. The file is cached at node 0 to 31. The network has 5000 nodes,
and the name space size is 5000. (a) network 1; (b) network 2

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 100 200 300 400 500 600 700 800 900

P
ro

ba
bi

lit
y

Query Counts

node 1

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0 100 200 300 400 500 600 700 800 900 1000

P
ro

ba
bi

lit
y

Query Counts

node 63

(b)

Fig. 6. Probability mass function of the number of the query counts. The
file is cached at node 0 to 31. The network has 5000 nodes, and the name
space size is 5000. (a) node 1; (b) node 63

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200

N
um

be
r

of
 Q

ue
rie

s

Nodes

Averaged over 1000 Networks

Fig. 7. Average number of queries seen by each node in a random network,
averaged over 1000 instances. The network has 500 nodes. The name space
size is 5000.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

Fig. 8. Number of queries seen by each node in a fixed instance of a random
network. The network has 500 nodes. The name space size is 5000.

than 128. The number of such nodes is a random variable,
which is a function of the network instance. Figure 9 and
Figure 10 demonstrate that LCP-replication achieves nearly
perfect load balancing in the average sense, and achieves
acceptable load balancing in fixed instances of the network.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200

N
um

be
r

of
 Q

ue
rie

s

Nodes

Averaged over 1000 Networks

Fig. 9. Average number of queries seen by each node in a random network,
averaged over 1000 instances. The network has 500 nodes. The name space
size is 5000. The file is cached at nodes whose ID’s are less than 128.

VII. CONCLUSIONS

We have specified two routing schemes in pastry-type
networks, which allow us to design a provably ideal load
balancing scheme, LCP-replication. That is, the load to each
cache node is perfectly balanced under certain qualifying

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200

N
um

be
r

of
 Q

ue
rie

s

Nodes

Single Network

Fig. 10. Number of queries seen by each node in an instance of a random
network. The file is cached at node 0 to 31. The network has 5000 nodes,
and the name space size is 5000.

conditions. We have also extended the LCP-replication scheme
to a more automatic and more dynamic caching scheme. In
essence, each node decides to cache a copy of the file if its load
exceeds a threshold. This should not be construed as a naive
caching scheme, because its success depends crucially on the
routing tables we set up. Preliminary experimental results on
the automatic caching scheme appear to be very promising,
which we will pursue further. The statistical properties about
the random network in Section VI requires further attention.
Besides practical implication on P2P file-sharing applications,
our work should also deepen the understanding of Pastry-
like network. Possible extension of our work to Chord-type
or CAN-type networks should also be studied.

REFERENCES

[1] Min Fang, Narayanan Shivakumar, Hector Garcia-Molina, Rajeev Mot-
wani, and Jeffrey D. Ullman. Computing iceberg queries efficiently. In
Proc. 24th Int. Conf. Very Large Data Bases, VLDB, pages 299–310,
24–27 1998.

[2] Cheqing Jin, Weining Qian, Chaofeng Sha, Jeffrey X. Yu, and Aoying
Zhou. Dynamically maintaining frequent items over a data stream. In
Proceedings of the twelfth international conference on Information and
knowledge management, pages 287–294, 2003.

[3] G. Manku and R. Motwani. Approximate frequency counts over data
streams, 2002.

[4] C. Plaxton, R. Rajaraman, and A Richa. Accessing nearby copies of
replicated objects in a distributed environment. In Proceedings of the
ACM SPAA, pages 311–320, Newport, Rhod Island, June 1997.

[5] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp,
and Ion Stoica. Load Balancing in Structured P2P Systems. In 2nd
International Workshop on Peer-to-Peer Systems (IPTPS ’03), pages 311–
320, Berkeley, CA, Feb. 2003.

[6] Sylvia Ratnasamy, Paul Francis, Mark Hanley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proc. ACM
SIGCOMM ’2001, pages 161–172, San Diego, CA, August 2001.

[7] Ion Stoica, Robert Morris, David Karger, M. Fran Kaashoek, and Hari
Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. In Proc. ACM SIGCOMM ’2001, pages 149–160, San
Diego, CA, August 2001.

[8] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and Routing.
Technical Report UCB/CSD-01-1141, University of California University,
Berkeley, Computer Science Division (EECS), April 2001.

