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Abstract

In this paper, we investigate the issue of node selectionpfallel access in overlay networks, which is
a fundamental problem in nearly all recent content distidou systems, grid computing or other peer-to-peer
applications. To achieve high performance and resilienctaitures, a client can make connections with multiple
servers simultaneously and receive different portion$efdata from the servers in parallel. However, selecting the
best set of servers from the set of all candidate nodes is sbtmhtforward task, and the obtained performance
can vary dramatically depending on the selection resultthia paper, we present a node selection scheme in
a hypercube-like overlay network that generates the optseever set with respect to the worst-case link stress
(WLS) criterion. The algorithm allows scaling to very largestem because it is very efficient and does not require
network measurement or collection of topology or routinigpimation. It has performance advantages in a number of
areas, particularly against the random selection scheirst, E minimizes the level of congestion at the bottleneck
link. This is equivalent to maximizing the achievable thgbput. Second, it consumes less network resources in
terms of the total number of links used and the total bandwidiage. Third, it leads to low average round-trip
time to selected servers, hence, allowing nearby nodesduaege more data, an objective sought by many content
distribution systems.
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. INTRODUCTION

A number of structured network topologies, including th@érgcube, torus, butterfly and Banyan network, have
traditionally been extensively studied in applicationaaresuch as parallel or distributed processing and switching
Recently, structured networks are becoming attractivéfgstas for building overlay networks through which
network applications and services can be deployed. Exanmplése proposed structured overlay networks include
Chord [1], Tapestry [2], Pastry [3], CAN [4], ODRI [5], and ¥#ises [6]. They have been applied to diverse



applications such as application-level multicast, pézsisdata storage, file/data access or sharing, media strgami
or other content distribution, and grid computing. The besefittaking the structured overlay approach are many:
For instance, it allows fast resource location, decealimassive computation or data access, enables large-scal
resource sharing, simplifies routing, and improves servigdity and fault-tolerance by using multiple paths.

In this paper, we present an optimal node selection scheatertimimizes the worst-case link stress in an overlay
network with one of the most popular network topologies, tigpercube. One of the important applications of
such a scheme is parallel access of data in a communicattermorke [7], [8], for instance, a content distribution,

a peer-to-peer (P2P), or a grid-computing network. The comvaaitway of downloading data is for a client to
select one node as the server from one or more candidatersefvee performance, e.g., the throughput or data
downloading time, is directly influenced by the load of theveercongestion of the path of the connection and
any traffic fluctuation that may affect routing [9]. In order téegiate these problems, the client can be allowed to
connect to multiple servers simultaneously and receiferdifit portions of the data, or file chunks, from each server
in parallel. Such parallel access can avoid server overlaeldigve higher throughput or faster distribution speed,
and be more resilient to link failure and traffic fluctuation .[Wost of the recent content distribution systems rely
on the parallel download approach. In P2P file sharing/digiih such as BitTorrent [10], parallel download takes
the more sophisticated form gfvarming(or collaborative download), where the file chunks are spm#dacross
the peers and the peers subsequently exchange the chumkeagit other to speed up the distribution process.
In either the simple parallel-download or the swarming cése node selection problem arises when a node must
select a subset of the nodes that contain the wanted file or filekshand establish actual connections for receiving
data. In sum, node selection is a fundamental component iy mantent distribution or parallel access systems.

The node-selection algorithms in existing systems usuadlyeha user-centric performance objective, such as
reducing the round-trip time (RTT) or the completion time afiindual download, but tend to ignore the congestion
caused by the concurrent connections from different sereethe total network resource usage. (See Section I-Al
for a review.) The algorithms are typically greedy, locadusd heuristics. For instance, in several systems, every
node gradually but independently samples the throughputoahections from different servers and selects the
servers that lead to higher connection throughput. This maysipategy treats different connections separately but
ignores their possible interaction. If many connectionsspghrough the same network links, they may overload the
links. A likely consequence is poorly balanced network loatlich hurts the overall performance of all users, as
well as causes inefficient utilization of the network resestc

This paper is fairly unique in emphasizing both the netwalated and user-related performance metrics. (See
also [11], [12].) It advocates an optimal, recursive sébectlgorithm that minimizes the worst-case link stress
(WLS). The WLS is directly related to the worst congestion lemghie network, an important performance concern
for network and service providers. The minimum WLS corresgaidthe best-balanced network load. A balanced
use of the network allows it to accommodate more traffic, teimprove the overall throughput. Optimizing the
WLS also improves the service quality received by a user or léi-omer session. When every user tries to minimize
the WLS in its server selection process, the chance is bétatrother users can also receive good performance

in their communication sessions. Applications such as astieaming are sensitive to bandwidth availability and



lower WLS implies better performance. In the case of elastita dransfer, the inverse of the WLS provides an

alternative performance perspective: It yields the maxmachievable throughput of the parallel download session,
which determines the shortest download time without cauegtwork congestion. Finally, our particular recursive

WLS-minimizing algorithm is also very competitive in terms tofo other performance metrics, the average path
length and total network resource usage.

Another distinguishing feature of the paper is that the layemetwork is considered as a complete virtual network
where the overlay nodes act as virtual routers for the oyeldgical network. As a result, data (as apposed to only
gueries for data) are routed on the overlay network instédldeounderlay network. This is in congruence with the
interesting trend of network virtualization through theeday approach, which is useful not only for introducing
new network applications but also for deploying new netwarghitectures [13].

In this paper, the overlay network is organized as a hypercilibhe motivation is that the hypercube is one of
the simplest and most versatile structured networks. Itéd known ([14], [15], [16], [17], [18], [19]) that the
structural regularity of the hypercube often makes pdralialistributed algorithms extremely simple and efficient.
The same is expected for many networking algorithms on theioybe. For instance, routing can be performed
based on a pre-specified convention without the need of angptiotocol. The chance is high that the hypercube
will be the topology of choice for many applications that déoypvirtual networks. The focus of this paper is
to develop a similarly efficient algorithm for minimizing th&LS on the hypercube. It turns out that such an
algorithm does exist and it requires no knowledge of theerirnetwork condition, not even the topology or
routing information, hence, avoiding the expensive ovadhef network measurement or passing control messages.
The only requirement is that the receiving node (client) chtain a list of IDs of the server candidates through
the overlay network. This is usually done by searching aitligieed directory based on the distributed hash table
(DHT) [1], [4], [20], possibly augmented by some gossip poolig21], [10] in a highly dynamic network where
nodes frequently arrive and depart. The efficiency and siityl@f the algorithm allow scaling the network to
very large size, capable of handling massive content digidn or parallel access. The paper will show that the
recursive WLS-minimization algorithm has desirable perfange with respect to the three aforementioned metrics
for both the overlay hypercube-like network and the undehfdernet-like network.

The combination of the hypercube and the choice of the WLS-niiiiigp objective makes this paper directly
relevant to the infrastructure-based overlay network faissive content distribution, and overlay virtual networks
for distributed access or computation, such as those &by E-science or grid computing. But, it should be also
relevant to other P2P/overaly file distribution, and paraltetlistributed computation on other network topologies,
including other structured networks or general, non-stmézi networks. The node selection algorithm can be
extended to those networks, but with some loss of efficienaycesSihe hypercube overlay network is a special case
of the Plaxton-type networks [22] and a relative to PastrydBfl Tapestry [20], extension to those networks is
expected to require the smallest modification.

This paper is organized as follows. In Section II, we introdilneehypercube overlay network and present required
definitions and facts. In Section Ill, we present the optimaleseselection algorithm for minimizing the WLS and

analyze its running time. We evaluate the algorithm and @it with other algorithms through simulation in



Section IV. Finally, the conclusions are drawn in Section V.

A. Literature Review

1) Node Selection AlgorithmsEhe literature on node selection is vast. We will mainly rewte most relevant
studies in overlay networks. Existing distribution systelnamdle node selection in a variety of (usually ad-hoc)
ways". The infrastructure-based content distribution netwo@&®N) (e.g., Akamai [23]) and web caches generally
assign the closest server to each client. In SplitStream 4], FastReplica [25], server selection is essentially
done randomly. Other systems employ a server or peer rarfhimgfion. A node favors those peers with high
ranking. The ranking function may be the nodal load (CoBI&8&]], the round-trip time (RTT) (ChunkCast [27]),
the sending and/or receiving bandwidth to and from each (i&dtet [28], Slurpie [29] and BitTorrent [10]), and
the degree of content overlap between the receiver and threrseandidate (Bullet [21]). One common practice
is that a node initially selects some random peers, but githdprobes other peers and dynamically switches to
those with better ranking over the course of downloadingjaJ80] assumes a structured but locality-aware P2P
network, where each peer exchanges file chunks with direghbers in differential amount, more with closer
neighbors. This reduces the totabrk, which is defined as the weighted sum of the total network traffiing
the entire distribution process, where the weights are themtes travelled by each bit. [31] formulates several
continuous optimization problems regarding peer seladtioP2P file download or streaming. In more traditional
server selection literature, [32] presents a dynamic sesgkection scheme based on instantaneous measurement
of the RTT and available bandwidth. [9] proposes a selectitieime that utilizes the underlying network topology
and the performance information of the senders. Similararebeworks are also reported in [7], [33].

2) Hypercube NetworksThe hypercube is among the most popular networks studied $Barehers due to
its useful structural regularity. Many have studied itsdiogical properties and communication capability for
parallel and distributed computing applications. (See,[1¥3], [16], [17], [18] for a small sample and [19] for a
comprehensive textbook treatment.) In the area of commatinit networks, [34] investigates how the hypercube
affects the spread of worms and viruses. [35] considers #ipteuaccess protocol in wireless ad-hoc networks with
the hypercube topology. [36] provides analysis of a hypeeebased distributed hash table (DHT) that achieves
asymptotically optimal load balance. [37] proposes a failecovery protocol for structured P2P networks that use
hypercube routing. We are not aware of any prior node-delectlgorithms on the hypercube that are similar to

ours.

II. PRELIMINARIES

In this section, we introduce the definition of the hypercubewoerk and some of its properties that make server
selection based on the WLS-minimizing criterion efficient andye

The overlay network we consider is a hypercube withnodes, numbered, 1,..., N — 1. SupposeN = 2™,
wherem is a positive integer. The node IDs can be expressed as bitrargss and two nodes are linked with an

edge if and only if their binary strings differ in preciselye bit. The routing rule is as follows. At each nose

INot all systems frame or handle the node selection problem explicitly. Behauld have at least an implicit selection algorithm.



Fig. 1. A labelled 5-level binomial tre®s.

and for the destinatiod, let I be the first bit position, counting from the right, thaandd have different values.
Then, the next hop on the route dois the neighbor ofs that differs withs in the I** bit. Consider the example
where N = 2°, the source node i$0110 and the destination node #000. The route consists of the following
sequence of node30110 — 10100 — 10000 — 00000.

In most earlier works, especially in the parallel computognmunity, the definition of a hypercube only specifies
how nodes are connected. In this paper, as in many strucawextay networks, the routing rule is an important
part of the definition. With the above routing rule, the hypie network is a special instance of the Plaxton-type
networks [22], which are broad enough to also include Pd8irgnd Tapestry [20], and are fundamentally related
to Chord [1] and CAN [4]. We also note that the hypercube tyemaquires that every position of the name space
is occupied by a node, which is our current assumption. (Ini@etv-F, we consider the situation where the name
space of the overlay network is not fully populated by nodes.

A helpful device for visualizing the hypercube and its ragtis the embedded tree, as shown in Fig. 1, consisting
of all valid routes allowed by the routing rule from all nodesnode 0. It is known that such a tree is a binomial
tree [38], [19]. The binomial tree embedded in the hypercustsvork is a labelled tree, where the label of each
node is the node’s ID. By the symmetry of the hypercube, tieeesm embedded binomial tree rooted at every node
where the tree paths are the valid routes to the root nodeenGive labelled binomial tree rooted at node 0, an
easy way to derive the labels for the binomial tree rootedoder # 0 is to XOR the node labels of the former
tree withd.

Throughout the paper, let us denote théevel binomial tree rooted at node 0 By= B;. Let us denote the ID
of nodew by I(u). When there is no confusion, we will useand I(u) interchangeably to denote node

Without loss of generality, the root node 0 is understoochasctient. The candidate nodes are those that contain
the data and the server nodes are those that are eventueltyeseto participate in transmitting the data.

The following lemmas and corollary are simple consequentaleohypercube definition, including its routing
rule. They will be required later.

Lemma 2.1:Supposeu is the parent of node in 7. Then,u andv differ in exactly one bit, and the value of
the bit is 0 foru and 1 forv. All bits to the right of the different bit are 0's.

Lemma 2.2:Supposeu is a node in7, and(u) =ay ... a; 0...0, 0 <i < m. Then,

() the subtree rooted at contains all nodes whose IDs fall between...a;0...0 anda;...q;1...1, inclusive;



(i) I(u) < I(v) for all nodeswv in the subtree;
(iii) if the subtree contains nodasandw, then it contains all nodes whose IDs fall betweén) and I (w);
(iv) if v is a descendant af, the longest common prefix df(u) and (v) is greater tharn.

Corollary 2.3: Suppose that, i, nodev's ID is a1 ... a,,. Then, a node: is an ancestor of nodeif and only
if the 1D of u has the forma; ...a;0...0, where0 < i < m?, andI(u) # I(v).

Definition 1: A common ancestor of a set of nodes = {s1,...,s,}, wheren > 2, in a rooted tree is a node
u satisfying the condition that, for eaéh1 < ¢ < n, eitherw is an ancestor of; or u is s;.

The definition allows the following case. If nodeis an ancestor of node, thenv is a common ancestor af
andw.

Definition 2: The lowest common ancestor (LCA) of a set of nodesS = {si,...,s,}, wheren > 2, in a
rooted tree is the deepest node in the tree that is a comma@stanof all nodes irb. It is denoted byLC A(S)
or LCA(s1,...,5n).

For example in Fig. 1, if (u) = 01011 and I(v) = 01101, then LC'A(u,v) is the node with ID 01000.

Definition 3: Given a subset$, of two or more nodes 7, let us denote the set of LCAs of all subsetsSf
with two or more nodes by LC A(S).

Let us denote thdongest common prefi{LCP) of a set ofm-digit binary labels,R = {b',...,b*}, by
LCP(b,...,b%) or LCP(R), and denote then-digit label equal to the concatenation &CP(R) with an
appropriate number of 0's bx(R) or A(b', ..., b¥). For instance, LCP (01110, 01011) = 01, and A(01110,
01011) = 01000. For a set of node$ = {si,...,s,}, LCP(S) or LCP(s1,...,sy,) are the simplified notations
for LCP(I(s1), ..., I(sn)), andA(S) or A(sy,...,s,) are the simplified notations foX((s1), ..., I(sn)).

Definition 4: SupposeS = {si,...,s,} is a set of nodes il andE = {ey, ..., ¢} is the set of edges used by
the paths from the root to nodes H called theS-paths. Thelink stress of an edgee in 7, denoted byLS(e),
is the number ofS-paths viae. Let E be the set of all edges ifi. Theworst link stress (WLS) is defined as
max.cp LS(e).

The WLS is the largest number of downloading streams on any dimi is an indication of how well the
load is balanced in the network and of how much connectioos fdifferent servers interfere with each other
at the bottleneck link, assuming the links have roughly idah bandwidth. It is both a measure of the burden
placed by the parallel download session on the network ressuand a measure of the quality of data delivery.
The reciprocal of the WLS tells how many multiples each dowdilogt stream can be increased without causing
network congestion. It gives the maximum achievable thhpug of the parallel download session, which, in turn,
determines the shortest download time. A session thatvisllithe WLS-minimizing rule in its server selection
makes a balanced use of the network bandwidth, which tendause the least interference to other sessions. If

every session follows the same rule, the chance is good thsessions can benefit.

By convention, wheri =0, a;...a;0...0is0...0.



IIl. OPTIMAL SERVER SELECTION FORMINIMIZING WORSTLINK STRESS
A. Highlight of the Algorithm and Results

The problem addressed in this section can be stated as fol®iven the client and a set of nodes containing
the data the candidates denoted byS, selectk (the degree of parallelismservers from the candidate set to
participate in transmitting the data to the client so tha Worst-case link stress (WLS) is minimized. The key
observation is that the link stress of any edgev), whereu andv are nodes irZ and« is the parent of, is
no less than that of any edge in the subtfgethe subtree rooted at node Hence, the edge with the worst link
stress must be connected to the rootZofOne possible algorithm for minimizing the WLS is as follokst W
be the set of children of the root. Far ¢ W, let S,, be the set of candidates if,, the subtree rooted at.
Suppose eactv € W is labelled with|S,,|, i.e., the number of nodes i#\,. Then, we call theMIN-MAX algorithm

with the arguments = |W|, (b1,...,b;) equal to the list ofS,|'s andg = k. The returned list of numbers from

the MIN-MAX algorithm, which will be discussed in Section 4@, is an optimal allocation, with respect to the
WLS-minimization criterion, of the number of servers to beestdd in each subtreg,, for all w € W.

The actual algorithm (Algorithm 1) is different. It minimizg¢he WLS recursively in the sense that it minimizes
the WLS for every subtree rooted at evarye SLCA(S). The WLS for each such subtre®,, is defined over
only the edges ir?,. That is, the WLS ovefl, is max.cr, LS(e), whereE, is the set of edges iff,. The initial
motivation for recursively minimizing the WLS is that, in thmore general problem involving multiple clients,
this leads to a better chance of achieving lower link stressheuristic algorithms built on top of the optimal
single-client algorithri This will be confirmed experimentally by our evaluations. (S&etion IV-C and IV-D.)

It further turns out the recursive algorithm leads to exadllperformance with respect to two other criteria, the
average path length and the total network resource usage.

The theoretical running time of the algorithm @nm?), wheren is the number of nodes in the candidate set
and 2™ is the size of the hypercube. Henee, is at leastO(logn). We will see that the practical running time
of the algorithm is in factO(nm). The saving comes from how one thinks about manipulatindit numbers.
For instance, in theory, adding or comparing twebit numbers take®(m) running time. However, for practical
problems,m is almost always small enough, e.g., 32 or 128. Such opegtian be completed in constant time
in typical microprocessor architectures. We call any op@naan elementary operatioiif it can be completed in
constant time in typical microprocessor architecturesyigied that the numbers involved in the operation are of
constant sizes. In practice, the algorithm tak¥sm) elementary operations.

Although the high-level ideas about Algorithm 1 are mosthaight-forward, an efficient implementation is not.
The analysis on its running time is not trivial either. In Sewtilll-B, we describe a crucial characterization of

30ne may notice that a more complete problem formulation is to consider af stients, each with a set of known server candidates.
The problem is to assign a subset of the servers to each client so as toizaitia WLS. Here, the link stress is naturally defined as the
total number of connections on the link, regardless of which client tha@exdion belongs to. The solution to this problem, although very
interesting to think about, will be complicated and will require that every clest the complete knowledge of all other clients, as well as
their server candidate sets. Such information will be hard to obtain ch&aplyarge network. Because the single-client WLS-minimization

algorithm aims at balancing the network load, the simple heuristic of applymgitigle-client algorithm separately and independently by
every client is a viable approach.



SLCA(S) that makes Algorithm 1 efficient. Then, we describe two key sutines in Section 1lI-C and IlI-D,
and discuss their running time. In Section llI-E, we give d fldscription of the algorithm, discuss the remaining

key steps, and give the total running time.

B. A Characterization of the S&LC A(S)

We will need the following two lemmas for a characterizatmhnSLC A(S).
Lemma 3.1 (Ancestor AlgebrafupposeS is a set of nodes in an arbitrary tree. &%, ..., W,, be a covering
of S. Thatis,W; C S for 1 <i¢ <n,andU_,W; = S. Then,

LCA(S) = LCA(LCA(Wh),...,LCA(W,))

The proof of Lemma 3.1 is rather easy. We omit it for brevity.
Lemma 3.2:Suppose(sy, . .., s,) is a sorted list of distinct nodes i by their IDs, for somel < n < 2™,
Then,
LCA(s1,...,8,) = LCA(s1, $pn)

The proof of Lemma 3.2 is given in [39].

Lemma 3.3:Suppose(sy, ..., s,) IS a sorted list of distinct nodes i by their IDs, for somel < n < 2™,
Then,SLCA(s1, . .., s,) = U] LCA(si, si11)-
Proof: Let S = {s1,...,s,}. By the Ancestor Algebra Lemma (Lemma 3.1), we only need to Soocn

the LCAs of node pairs, because they form a covering for evebget of S. Thus, by definition,SLCA(S) =
Ui<icj<om LOA(si; 85).

The proof is based on induction. Let us define the $éts- {s1,...,si}, for 2 < i < n. As the base case, the
lemma is trivially true forS2. We make the induction hypothesis that the lemma is trueStfowhere2 < [ < n.
Then,

SLCA(S™)

= U LCA(Si,Sj)

1<i<y<i+1

= ( U LCA(SZ',SJ')> U <U LCA(SivSH—l))
=1

1<i<j<l

l
= SLCA(S") U (U LCA(S¢,81+1))
i=1
-1

— (U LCA(Sz',Sz‘H)) U (LZJ LCA(SZ‘,SZ_H)) Q)

=1 =1
ConsiderLC' A(s;, s;+1) for somel <i <[ —1.

LCA(si, 8141) = LCA(si, 81, 8141)
= LCA(LOA(SZ7 Sl), LCA(S[, Sl+1))
= LCA(Si, Sl) or LCA(SZ, Sl+l)



The first equality above is by Lemma 3.2, the second one is by tleegtor Algebra Lemma (Lemma 3.1). The
last equality holds becaudeC A(s;, s;) and LC'A(s;, s;+1) are both ancestors tq, or one or both are identical to
s;, and in a rooted tree, one must be the ancestor to the othesautiley are the same node (Both are on the path
from s; to the root.).

We have shown thabC A(s;, s;+1) is either the same aBC A(s;, s;+1), or the same a&C A(s;, s;), which is
already inSLCA(S'). Hence, by (1)

SLCA(S™Y) = SLCA(SY) U LCA(sy, s141)

l
= U LCA(SZ', Si+1)
=1

C. The MIN-MAX Algorithm

In this section, we describe the MIN-MAX algorithm, whichdalled by Algorithm 1. For brevity, we will not
list the full algorithm and will omit some proofs. We will ognigive the basic idea. The algorithm is invoked by
calling MIN-MAX(1, (b1,...,b;), q), wherel andq are positive integers, an@d,, ..., b;) is a vector ofl positive
integers. It returns a vector éfpositive integers.

Considerl sets, 1 throughi. Set; containsb; items, forj =1, ..., [. Suppose we must choogeitems from
thesel sets. The objective is to decide the number of items chosen #etj, denoted byc;, for 1 < j <[,

S0 thatZéz1 c; = ¢ and that the largest; is minimized. That isjmax;<;<; c; iS minimized. This is called a
min-max allocationof the items to the sets. In Algorithm 1, we frequently face #fituation that, at a fixed node

u € SLCA(S), we need to selecf(u) servers from the subtreg,. The strategy taken is to consider the immediate
descendants of. that are inSLCA(S), say vy,...,v;. Suppose, for = 1,...,[, the subtreeZ,, containsb;
candidates. We then call MIN-MAX( (b1, ..., b;), ¢(u)) to decide how many servers are to be selected from each
subtree7,, .

We will describe awvater-fillingidea on which the MIN-MAX algorithm is based. Imagine fillingars of volumes
b1, ..., by with ¢ (volume) units of water, which is infinitely divisible. An idézed strategy is to fill all jars
simultaneously at the same rate. When a jar becomes fullfiltingy for it stops, while the filling for the rest
continues, until the; units of water are all used up. The resulting allocation ofewas the min-max allocation.
It is easy to see that a literal implementation of the waténglalgorithm takesO(I?) elementary operations on
numbers. The actual MIN-MAX algorithm is a more efficient implentation of the idea, which first finds the
maximum of the min-max allocation. It tak&3(/ log () elementary operations on numbers.

One desirable property of the min-max allocation is thasitlie most “balanced” partition of the items into
different sets. This is captured in the following lemma.

Lemma 3.4:Suppose each item is infinitely divisible. In the min-max adlibgn, the difference between the

largest allocation and thg" smallest allocation is no greater than in any other allocatfor all ;.
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Candidate Label: ISvl, IMvl, q(v)
LCA-node

Selected node

Fig. 2. An example of a virtual tre& in the binomial treeBs. The candidate sef consists of all circled nodes. The set of node<in
are all the nodes i LC'A(S), which are shaded, and the highlighted paths are edgéds iNine nodes are to be selected from thirteen
candidates inS. The selected nodes by Algorithm 1 are indicated by arrows. Each nodeisnalso labelled with S, |, | M| and ¢(v),
whereg(v) is the number of servers to be selected from the subtréE ajoted atv, 7.

D. Constructing the Virtual Tree]”
The SERVER-SELECTION-WLS algorithm (Algorithm 1) in Section IlI-E inwves visiting all nodes in a virtual

tree formed by the nodes iLC A(S). In this section, we describe an efficient algorithm for corging this tree.
We will show later that its running time dominates the rugntime of Algorithm 1.

Definition 5: Given a setS with two or more nodes if7, the virtual tree7” = (V, E) is formed by the nodes
V = SLCA(S). For any two nodesi,v € V, (u,v) € E if u is the immediate ancestor ofin V. That is,u is
on the path fromv to the root of7, and there are no other nodeslinon the path segment fromto w. The root
of T is LCA(S).

An example of the virtual tre@ in the binomial treeBs is shown in Fig. 2. An efficient algorithm for constructing
T is based on Lemma 3.3. First, we sort the node$ in increasing order of the node ID. This tak@$n logn)
comparisons ofn-bit numbers. Now, assumé = (sy,...,s,) is a sorted list. The set of nodes i is V =
{LCA(s1,s2), LCA(S2,53), ..., (Sn—1,5n)}. The root isr = LC A(s1, Sp)-

The edges inE can be identified by traversing the pathsZnhfrom each node, say, in V toward the root
of 7. In each step along the way, we inspect if the current nodeusas in V. If so, the edggu, v) is added
to £, and the path traversal originating from nodés stopped. This scheme will work on any general network
provided the client has collected the topology informatadnthe network. In the hypercube network, of course,
the topology information is known without data collectiafte will not dwell on this scheme but will use a more
efficient algorithm for identifying the edges.

1) Edge identification algorithm fof : SupposeSLCA(S) = {v, ..., v}, for somel < I < n—1. We first sort
the nodes iNSLC A(S) by increasing order of their IDs, which také¥nlogn) comparisons ofn-bit numbers.
Suppose the resulting sorted listlis= (vy,...,v;). By Lemma 2.2, the root of must bev;. The children ofu;
in 7, denoted bylI(v;), can be identified by scanning the list. Let nadéde any node ifdl(v;). Also by Lemma
2.2, all the LCA-nodes (i.e., the nodes$L.C A(S)) in the subtree off rooted atw, i.e., 7,,, must be consecutive

in the list L. Hence,



11

Fact 3.5: Starting fromwv,, the nodes inL are partitioned intdII(v;)| groups. Each group corresponds to one
w € II(v1) and is a contiguous sub-list df. The first node in each sub-list is a child of.

In addition tovs € II(v1), the other children of;, can be identified with the help of the following additional tc

Fact 3.6: For any two nodesv;, we € II(v1), M wy,wa) = I(v1).

Fact 3.7: For any descendant; of w;, we have|LCP(wi,ws)| < |LCP(wi,x1)|, where |LCP(w1,ws)]
denotes the length of the longest common prefix betwiden ) and I (w-).

We will call a descendant of; of depthi in 7 aleveld descendantfor : > 1. Sincews is the first identified
level-1 descendant of the root, we denote it byv; ;. Let us also denote; by v ;. Next, we find the first node
afterv; ; in L, denoted by 2, such that\(vi 1,v12) = I(vo,1). This is another node ifl(v ;). Supposes ; has
been identified, for somg¢ > 1. We proceed by finding the first node after; in the list L, denoted byv; 1,
such that\(vy j,v1 j4+1) = I(vo,1). When this procedure finishes, we have identified all the nodé&iy ), i.e.,
the level-1 descendants. We then repeat the procedure dbrsedd-list of . headed by one level-1 descendant and
terminated just before the next level-1 descendartt.in

In the general step, suppose we have identified all lgvééscendants ofy ;, for some; > 1, denoted by
vj1,..-,Vjn,, Wheren; > 1. We repeat the procedure for each sub-list headed by oné jesescendant and
terminated just before the next leveldescendant ir..

The total number of levels is no more than For each level, the procedure steps through thellidtience, the
procedure take®)(nm) elementary manipulation af.-bit numbers. The running time ©(nm?) in theory, and
O(nm) in practice. The construction of the virtual treE, is called in line 6 of Algorithm 1. Hence,

Lemma 3.8:The running time for line 6 in Algorithm 1 i©)(nm?) in theory, andO(nm) in practice.

2) Edge identification exampleConsider the example shown in Fig. 2. The sorted list of nodeSZit'A(S)
(shaded nodes) i§ 00000, 00100, 00110, 01000, 01100,10000, 10100, 1100Q,01L1From this list, we first
identify 00000 as the root of , and 00100 as one of the children of 00000. As we continue da $te list, we
see that\(00100, 00110) = 00100 and A(00100, 01000) = 00000. We conclude that node 00110 is a descendant,
in fact, the only child, of 00100 and 01000 is another chitdo# 00000. Now, starting from node 01000, we have
A(01000, 01100) = 01000 and A(01000, 10000) = 00000. Hence, 10000 is another children of 00000 and 01100
is the child of 01000. Continue with node 10000, we hay#0000, 10100) = 10000, A(10000, 11000) = 10000
and A(10000, 11110) = 10000. Hence, nodes 10100, 11000 and 11110 are all descendant®©@d.1

The procedure repeats for each children of node 00000. Famices, consider node 10000 and the associated list
(10000, 10100, 11000, 11110Me can immediately conclude that node 10100 is one of itg@m. FromA(10100,
11000) = 10000, we know that 11000 is another children of 10000. Finallynrfra(11000, 11110) = 11000, we
conclude that 11110 is the child of node 11000.

E. Server Selection for Minimizing the WLS

This section describes the remaining key steps of Algorithemd its running time. In Algorithm 1, the nodes
in the tree7 are visited in the breadth-first fashion . The data structpiie a first-in, first-out queue of nodes yet

to be visited. LetM, be the set that contains all nodesSnfor which v is the immediate ancestor 1] (i.e., in
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SLCA(S)), and that have no descendantsSinMore formally, letv be a node ir/”and letS, be the set of nodes
in S in the subtree off rooted at node, denoted by7,. Then, M, is a subset of5,, and for each node € M,
not the same as, v is the only node inZ” on the path segment from up to v, andw has no descendants
(le., w is not in 7). In addition, ifv € S, thenwv is also included inM,. Consider the example in Fig. 2. For
v = 00000, M, contains two nodes; itself and node 00011. Far = 11000, M, contains only node 11011, but
not node 11110 since it is the parent of node 11111, which iS.in

1) An server selection exampl®efore discussing the formal algorithm, let us considergkample shown in
Fig. 2, whereT is a 5-level binomial tree anfl consists of 13 candidates, indicated as circled nodes. Tjeetole
is to selectk = 9 servers from the sef. The set of nodes ifi” are shaded, and the highlighted paths are edges in
7. Each node inf is also labelled withS,|, | M,| and ¢(v), whereq(v) is the number of servers to be selected
from the subtree off rooted atv, 7,. The selected servers by Algorithm 1 are indicated with astofihe first
node to be visited is the root af, node 00000, denoted hy. It is understood that 9 servers is to be selected
from the tree rooted at. Since two nodes are if/,, nodew itself and node 00011, those two are selected first.
The motivation is that the nodes i, generates no more than 1 unit of link stress on the edges fiemgelves
up tou. The remaining 7 servers to be selected are allocated to thteess of7 rooted at the children of in
T, according to the MIN-MAX algorithm. The resulting alloaati is that 2, 2, and 3 servers are to be selected
from the subtrees rooted at node 00100, 01000, and 100Qfixatasely. Then, the node selection algorithm runs
recursively for each subtree.

2) Description of line 7:Line 7 can be accomplished in the process of building an eegndtual tree, denoted
by 7¢, whose nodes ar6 LCA(S) U S. An edge(u,v) belongs to7® if  is on the path from to the root in7T,
and there is no other node A¢ on the path segment fromto w. In other words;7¢ is derived by extending”
to include all nodes irs and the corresponding new edges. The algorithm for estatighe edges of can be
applied to7¢. For every nodey € SLAC(S), the value|S,|, which is the number of nodes ifi in the subtree
7T, is obtained by counting the number of nodes that ar§ in the sublist started with. After 7¢ is established,
the set)M, and its sizg M, | can be obtained and recorded at nade SLAC(S) by scanning the list of nodes in
S. Suppose that, i, v € SLAC(S) is the parent of node € S, andw is a leaf node. We add to M, and
increment a counter for the size 8f,. The running time for line 7 is the same as that for constrgcdin(line 6).

Lemma 3.9:The running time for line 7 in Algorithm 1 i€)(nm?) in theory, andO(nm) in practice.

3) Description of thewhile loop: The variableg(u) is the number of nodes i yet to be selected from the
subtreeZ,,. When possible, the algorithm first selects the node®/jn which are either leaf nodes ¢ connected
to nodeu, or u itself if uw € S (lines 12 through 18). After that, if more nodes still needb selected, they will
be from the subtrees 6f rooted at each of the children afin 7. The algorithm determines an optimal allocation
of the number of nodes yet to be selected from each of thegeesglaccording to the min-max criterion (line 21).
For eachv € II(u), if the allocation to the subtree rooted-ats non-zero, then is added to the end of queu@,
(lines 23 through 25).

4) Running time analysis for thehile loop: Let us now analyze the running time of thile loop (lines 10
through 29) in Algorithm 1.
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Algorithm 1 SERVER-SELECTION-WLSY, k)
1: input: S = {s1,...,s,}, a candidate set; an intege< k < n
: output: GG, an optimal set witht servers w.r.t. the WLS cost
G—10
: Sort.S and re-index the nodes so thits;) < I(s2) < ... < I(sp)
: SLCA(S) «— {LCA(s1,s2), LCA(s2,83),...,(Sn—1,5n)}
. Construct7’, r — root of T
At eachv € SLCA(S), record|S,|, M,, k(v) £ |M,|
Q< {r)
cq(r) — k
: while Q # 0 do
u < headf)]
if g(u) > k(u) then
G — GUM,
14: q(u) — q(u) — K(u)
15:  eseif 0 < q(u) < k(u) then
16: Add an arbitrary subset a¥/, with |¢(u)| elements taz
17: q(u) 0
18: end if
19:  if g(u) # 0 then
20: /I Optimally allocateq(u) to v € II(u)
21: (¢(v))vertu) « MIN-MAX ([TI(w)], ([So])vemn(w), ¢(w))
22: for v € II(u) do
23: if g(v) > 0 then
24: EnqueueQ, v)
25: end if
26: end for
27:  end if
28: Dequeue(Q)
29: end while
30: return G

© O N U WN
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Lemma 3.10:The while loop (lines 10 through 29) in Algorithm 1 tak&s(nlogn) elementary operations.
Proof: We will show that the worst-case is achieved when the rodf dfasO(n) children, in which case, the

total number of elementary operationsi$n logn). We first argue that, in each entry into thvile loop, we only
need to consider the running time of the MIN-MAX algorithniled in line 21. Line 16 may consist of more than
one elementary operations. However, since each operalids anode to the sét, the total number of elementary
operations by the completion of theéhile loop cannot be more than the size@®@f which is at most, multiplied by
a constant factor. Similarly, thier loop in lines 22 through 26 cannot take more tl@afn) elementary operations
over all entries into thevhile loop, because this part of the code simply visits all node$S i’ A(S) one at a
time.

Let T'(n,[) be the number of elementary operations in the worst case) Wieecandidate set hasn nodes, and
the tree7 has! interior nodes (i.e., non-leaf nodes), denotedvby. . ., v;. The total number of nodes i is no
greater tham — 1, andl < n— 2. Suppose; hasn; children in the treel’, fori =1, ..., L. Then,zﬁz1 n; is equal

to the number of nodes ii minus 1, which is no greater than— 2. The MIN-MAX algorithm will be called
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I times, one for each;, and the number of elementary operations taken; ieg n; for v;. Consider the problem
of max Y!_, n;logn,; subject to the constraint.\_, n; < n — 2. The maximum is achieved at; = (n — 2)/I,
assuming(n — 2)/1 is an integer, and the maximum (8 — 2) log((n — 2)/1). We do not care whether such a tree

T with n — 1 nodes,! interior nodes, each interior node with — 2)/I children exists. The useful result is

T(n,1) < (n— 2) log((n — 2)/1). @

The maximum of the right hand side is achieved/at 1. We getT'(n,l) < (n — 2)log(n — 2). Let T'(n)
be the number of elementary operations in the worst casen whe candidate se$ hasn nodes. We have
T(n) <max;T(n,l) < (n—2)log(n — 2). The total number of elementary operations for a tree thatesdst is
of O(nlogn). [ |

We state without proof that the upper bou@dn logn) can be achieved.

Finally,

Theorem 3.11:The running time for Algorithm 1 i) (nm?) in theory, andO(nm) in practice.

Proof: By Lemma 3.8, 3.9, and 3.10, the running time for Algorithm Hédermined by line 6 or 7, which is

O(nm?) in theory, andO(nm) in practice. [ |

IV. EVALUATION

In this section, we present simulation results demonstyatie benefits of the WLS-minimizing server selection
scheme. We compare four selection algorithms,rtrelomscheme where the client choogeservers uniformly
at random from the list of candidate nodes, thesestscheme where the client choosdeservers with the shortest
RTTs from the candidate pool, the DOI-minimizing scheme tletegates an optimal server set with respect to the
degree of interference (DOI) criterion, and the WLS-minimgzischeme (Algorithm 1). The random scheme and
the closest scheme are the most typical strategies in tatedeworks ( [26], [40], [27], [31], [9], [41], [7], [33],
[42]). We use three performance metrics to evaluate theesaelection schemes.

o Worst case link stress: We measure the stress of each link by counting the numbeowhidading streams
on the link and report the worst case link stress.
o Degree of Interference (DOI): the DOI of the selected servers.

« Average path length: The average is taken over the paths from the selected sdovéne client.

We now elaborate on the DOI performance measure.
Definition 6: SupposeS = {si,...,s,} is a set of nodes if¥ and E = {ey,..., ¢} is the set of edges used

by the S-paths. Thedegree of interference (DOI) of nodessy, ..., s,, denoted byi(S) or d(s1,...,sy), IS

l
d(s1,...,s,) = Y _(number ofS-paths viae; — 1)
i=1
= n(average path length-

For example in Fig. 1, ifu = 01100, v = 01101 andw = 01010, thend(u,v,w) = 3 because the number of
S-paths on edge (01100, 01000) is 2 and on edge (01000, 009@)) i
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Fig. 3. The worst-case link stress at the overlay network

The following gives a justification for this measure. Supposedérvers inS each transmit a data stream to the
client (the root). Let the base case for comparison be thatyex#ge involved in the parallel download session
sees exactly one downloading stream, which would be the itdhe paths from the servers to the root are all
disjoint. The DOI measures the difference between the tataiber of streams seen by all edges and the base case.
From a slightly different viewpoint, suppose there is ond ofiicost associated with a stream traversing an edge.
The DOI is the difference between the actual total cost andctist of the base case. By its definition, the DOI
is equal to the sum of the path lengths from all node$jminus the total number of edges used. It tends to be
small when the average path length, hence the average plat) desmall. Since the aggregate bandwidth used
by all connections in a downloading session is proportidodhe average path length, the DOI also measures the
total bandwidth usage by the session. In this respect, itmi#ag to the performance measumsork, in [30]. The
algorithm for minimizing the DOI is presented in our prewowork [39], and will not be a focus of the paper.

Note that minimizing the DOI is related to but not the same a&smizing the average path length.

A. Single Client Case - Performance on Overlay Network

In this experiment, we compare the goodness of the servectsml schemes for a single client. We vary the
size of the hypercube from 128 to 4096 nodes and, from eachrbype, a reasonable size (25%) subset of all
nodes is chosen as the candidate set. The client sélect80 servers from the candidate set.

Fig. 3 shows the number of streams on the most stressed ezlgéhé. WLS, for different sizes of the hypercubes
when the random scheme, the closest scheme, the DOI-mingnéizheme, and the WLS-minimizing scheme are
used, respectively. In all cases, the WLS-minimizing schetearly generates the best results, and the random
scheme performs the worst. The WLS of the random scheme canubdifites as much as that of the WLS-
minimizing scheme. The WLS-minimizing scheme and the DOI-mining scheme are effective in reducing the
bottleneck stress. We observe that the closest schemesignificantly better than the random scheme. The WLS
shows no clear trend as the hypercube size increases urdearitiom scheme, the closest scheme, and the DOI-
minimizing scheme. It decreases under the WLS-minimizingeseh due to the decrease in the density of the
servers in the candidate set.

Fig. 4 shows the DOI of all servers for different sizes of theertay networks. As we would expect, the

DOI-minimizing scheme has produced the best results ovehalcases. It is interesting to notice that the WLS-
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Fig. 4. The degree of interference of the servers at the overlay rietwo
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Fig. 5. The average length of the paths from the servers to the client avénky network

minimizing scheme generates only slightly higher DOI thia@ DOI-minimizing scheme. The random scheme has
up to three times as much DOI as the DOI-minimizing schemée/LS-minimizing scheme.

In Fig. 5, we compare the average length of the paths from tleeted servers to the client. The optimal schemes
(the closest scheme, the DOI-minimizing scheme, and the Witgmzing scheme) offer much shorter average
path length than the random scheme. For example, when th®klgypercube is 4096, the average path length can
be reduced from 6.11 to 2.3, if we use the WLS-minimizing scheatieer than the random scheme. This means
that the optimal schemes can perform better than the randbanse in terms of response time due to shorter round
trip time (RTT), particularly true when the overlay hypercuietwork is locality aware. As noted in our literature
review in Section |, downloading from nearby servers is arectitje sought by many existing content distribution
systems. In addition, since the number of paths is condfamtpptimal schemes use much fewer links, hence, less

network resource, than the random scheme.

B. Single Client Case - Performance on Physical Network

Similar simulations were also performed on the Transit-Stumeh [43] using a 2-level hierarchy of routing
domains with transit domains that interconnect lower lsteb domains. The simulations run on network topologies
consisting of 4200 nodes split into 10 Autonomous Systems .(ABg average diameter of the network is 10.5.
We vary the size of the overlay networks from 128 to 4096 nadels from each network, a reasonable size (25%)
subset of all nodes is chosen as the candidate set. The candioldes are uniformly distributed over the 4200
nodes. The client selecks= 20 servers from the candidate set. The simulator counts the auailstreams on each

physicallink and assigns a constant delay to each link. It does noteigither queuing delay or packet losses. The
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Fig. 7. The degree of interference of the servers

path length is measured in terms of the numbeplofsicallinks. We run each experiment with different random
number generator seeds and present the average of thes relstdined.

Fig. 6 shows the average number of streams on the five mossetirgdysical links, for different sizes of the
overlay networks when the random scheme, the closest s¢lieenBOIl-minimizing scheme, and WLS-minimizing
scheme are used, respectively. In all cases, the WLS-mimimigtheme generates the best results, and the random
scheme performs the worst. Improvement of up to 38% was wbdeif we use the WLS-minimizing scheme
rather than the random scheme.

Fig. 7 shows the DOI on the physical links for different sizésh®e overlay networks. The DOI-minimizing
scheme has produced the best results over all the casesqidticeable that the WLS-minimizing scheme and the
closest scheme generate only slightly higher DOI than thé-mi@imizing scheme. The random scheme has up to
three times as much DOI as the other three schemes.

Fig. 8 shows the average length of the paths from the seleeteg@rs to the client for different sizes of the
overlay networks. The optimal schemes performs significdrgtyer than the random scheme. As the size of overlay
networks increases, the average length of paths increasies the random scheme, but, the optimal schemes show

no such trend. The optimal schemes use much fewer links, hssenetwork resource, than the random scheme.

C. Multiple Client Case - Performance on Overlay Network

In this experiment, the overlay network has 4096 nodes, ateuaf which are candidate nodes. There are
100 clients, each selecting 20 servers from the shared datedset. The candidate nodes and the clients are both
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Fig. 9. The worst case link stress for the case of 100 clients at the pvestavork

uniformly distributed over the 4096 nodes. We use a hearagorithm in which each client independently applies
the optimal schemes.

Fig. 9 depicts the number of streams on the most stressed edglef four selection schemes. The WLS-
minimizing scheme still achieves the best result (5), aspamed to the DOI-minimizing scheme (10), the closest
scheme (12.5) and the random scheme (20). The WLS-minimizingnse is still very effective at reducing the
stress at the bottleneck link for the multiple-client case.

Fig. 10 shows the total DOI of all connections between each evady client and its selected servers. The
DOI-minimizing scheme yields the lowest DOI, much lowerrtithe random scheme, and slightly lower than the
WLS-minimizing scheme and the closest scheme.

Fig. 11 compares the average path length of the connectidws®e each and every client and its selected servers.
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Fig. 10. The degree of interference of all connections for the cad®@fclients
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Fig. 12. Distribution of link stress for the case of 100 clients at the overéywark

The average path lengths of the closest scheme, the DOI-mingrmscheme and the WLS-minimizing scheme are
1.9, 2.5 and 2.4, respectively, and that of the random sche®®3. The former three schemes still perform much
better than the random scheme, leading to lower respongedird less network resource requirement.

Fig. 12 plots the distribution of the link stress in the casel@® clients. Note that, for every stress level, the
WLS-minimizing scheme has the fewest edges at that level tharother schemes, and that the curve also has
shorter tail. This suggests that, if we identify “load” withet number of streams on an edge, the WLS-minimizing

scheme is the best from the network load-balancing pointi@f.v

D. Multiple Client Case - Performance on Physical Network

The simulation results on the Transit-Stub model are repdndeig. 13, Fig. 14 and 15. Fig. 13 depicts the
average number of streams on the five most stressed phyigikal It can be reduced by up to 51% if we use the
WLS-minimizing scheme rather than the random scheme. Fig. @dsskhe total DOI of all connections between
each and every client and its selected servers. Fig. 15 shwmvaverage path length of the connections. It is
noticeable that the general trends on the physical linksttagesame as the overlay cases. We also observed that

the distribution of physical link stress shows the samedseas in Fig. 12.

E. Distributed Implementation and Scalability

Low computation complexity is only one of the factors for seesful adaptation of the server selection algorithms

to large networks. The scalability of the algorithms in aritistted system is often dominated by communication
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Fig. 13. The average of 5 worst physical link stresses for the cag®®tlients
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Fig. 14. The degree of interference of all connections for the cad®®fclients

overhead and constraints rather than computation contyldxi this section, we will address such issues in
distributed implementation.

First, we would like to point out that the proposed algorittsrfriendly to distributed implementation, because
only the IDs of the candidate nodes are needed at each clibistimportant fact is due to the known structure of
the hypercube network. The problem of distributing the cdadi list is similar to many relatively easy, classical
information dissemination problems in networking. Fortamee, we may rely on well-known servers that maintain
the candidate list, on limited flooding of the candidate listtoe queries for the list, on random walk type of
information dissemination, or on distributed hash tablsedainformation retrieval.

In a large network with a large candidate server set, it maynactical for each client to receive the entire

@ Average length of paths

40
35 +
30 +
25 +
20 +
15 +—
10 T

Random Closest DOI-min WLS-min

Fig. 15. The average path length of connections for the case of 10@sclien
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Fig. 16. The average of 5 worst physical link stresses for the cad®®fclients. The entire candidate set has 1024 nodes. The three
columns for each server selection scheme correspond to the cases @dth client has knowledge of 1024, 256 or 64 candidates.
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Fig. 17. The degree of interference of all connections for the casE@fclients. The entire candidate set has 1024 nodes. The three
columns for each server selection scheme correspond to the cases @dth client has knowledge of 1024, 256 or 64 candidates.

list of candidates in time, particularly when such a set geanquickly overtime. We will show that the proposed
server selection algorithm still yields significant perfamse improvement when only a (different) subset of the
candidates is visible to each client.

In the experiment, we assume the same Transit-Stub model pseiious sections, and the overlay network
has 4096 nodes, 1024 candidate nodes, 100 clients eachirsgl2@ servers. All performance metrics are with
respect to the underlay physical network. We compare thiteations where each client has knowledge of all 1024
candidates, or 256, or 64 candidates. In the case where #anhsees only a subset of the candidates, say 256
of them, the partial set is randomly chosen from the entirelickate set.

Fig. 16 depicts the average number of streams on the five mesisetl physical links for the four selection
schemes. Regardless the size of the candidate set for daah ¢he random scheme performs equally bad. For
the optimal schemes, the link stress decreases as eachsdien more and more candidates. Even when the size
of each visible candidate set, say 256, is significantly smdafian that of the entire candidate set, the reduction in
link stress compared with the random scheme is significant.

The simulation results on the DOI and the average path lerdgitvrs in Fig. 17 and 18 also confirm the above
observation. In fact, for those two performance measuhespptimal schemes perform better even with 64 visible

candidates for each client.
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Fig. 18. The average path length of connections for the case of 10Qscliime entire candidate set has 1024 nodes. The three columns
for each server selection scheme correspond to the cases whhrelieat has knowledge of 1024, 256 or 64 candidates.
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Fig. 19. The average of 5 worst physical link stresses for the cad®®rlients. The overlay network has a name space size 4096 and
contains 2048 nodes.

F. Name Space Not Fully Occupied

In this section, we consider the situation where the nameesjganot fully populated by nodes. This is the most
likely scenario for an ad-hoc P2P network with frequent naalesj and leaves, but less an issue for a managed
content distribution network. We modify the routing as dals. When a message for destinatidrarrives at a
node, the next node will be the first available node on the loyer path tad. This results in an increase in the
routing table size. However, one can substitute routitdetdased routing by on-demand routing. The hypercube
path to the destination is probed before the data message®at, and the route is either encoded in the messages
themselves or cached at the intermediate nodes.

The server selection strategy is, given the list of candjdeseh client selects servers as if the network is a
hypercube. In our simulation experiments, we again use dheeslransit-Stub model as in previous sections. The
overlay network has a hame space size 4096, but only cor2@i48 actual nodes, uniformly distributed over the
4200 nodes. There are 100 clients, each selecting 20 sereenstiie shared candidate set of 1024 nodes. Fig.
19, 20 and 21 show the resulting worst link stress, DOI andaaeepath length, respectively. Compared with the
results for the fully-occupied hypercube in Section IV-Ce therformance gain of the optimal schemes has not

deteriorated.
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Fig. 20. The degree of interference of all connections for the cad®®fclients. The overlay network has a name space size 4096 and
contains 2048 nodes.
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Fig. 21. The average path length of connections for the case of 10@scligme overlay network has a hame space size 4096 and contains
2048 nodes.

V. CONCLUSIONS

In this paper, we make an in-depth investigation on the isduserver/peer selection, which is a fundamental
problem in parallel data access or collaborative contesiridution. We envision a hypercube overlay network,
and give a node selection scheme that generates an optinial set with respect to the worst link stress (WLS)
criterion. The optimal scheme does not require the netwopbltmy or routing information; nor does it require
the measurement of the network performance data. The onlyrgwi®n is that the client can obtain the list of IDs
of the candidate servers through the overlay network. Thersehhas a running time @ (nm?) in theory and
O(nm) in practice, where: is the number of nodes in the candidate set afidis the size of the network. The
freedom from network measurement and low implementationpdexity make the overall scheme scalable. One
of the main contributions of the paper is to carefully depetbe ideas that make this fast and simple algorithm
possible.

We have presented simulation results to demonstrate thefitteeof the optimal node selection schemes. We
conclude that the WLS-minimizing scheme performs signifigabétter than the random node selection scheme in
all performance measures we evaluated. Compared to two ofttienal schemes, it has a noticeable advantage in
reducing the WLS, and is very competitive in terms of the avenagth length against the closet scheme, and in
terms of the DOI against the DOI-minimizing scheme.

We summarize the real-world advantages of the WLS-minimisictteme as follows. First, it minimizes the level
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of congestion at the bottleneck link. This balanced use ofrigigvork leads to higher chance of accommodating
other sessions, and ultimately can benefit all sessions. 8egonimizing the WLS can be turned into maximizing
the achievable throughput. This both speeds up the individaoanloading session and allows the network to
accept more sessions, hence, improving the efficiency ofarktvesource utilization. Third, the outcome of WLS-
minimization consumes less network resources in termsetdtal number of links used and the total bandwidth
usage. Fourth, it leads to low average RTT to selected serhierse, allowing nearby nodes to exchange more
data, a desirable feature for overlay-based content loligibin.

Our optimal algorithm can also work well for any general natiswwith known topology, at the expense of
higher communication overhead for collecting the topolagy routing information and computation complexity
for manipulating the unstructured graph. Such a generalarktis more suitable for an ad-hoc distribution system,
whereas the hypercube network is more suitable for a mansggem. In this paper, when justifying the WLS as a
measure of congestion, we assume the overlay links are désipandwidth, a reasonable assumption for a managed
infrastructure overlay network. Our formulation and alon should handle a small degree of heterogeneity well,
possibly with minor modification to treat special cases. # timk bandwidth varies considerably, the optimization
objective should take into account this heterogeneityjrfstance, by considering the normalized WLS against the

link bandwidth. A complete solution to this modified problesnworth further investigation.
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