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Abstract

In this paper, we investigate the issue of node selection forparallel access in overlay networks, which is

a fundamental problem in nearly all recent content distribution systems, grid computing or other peer-to-peer

applications. To achieve high performance and resilience to failures, a client can make connections with multiple

servers simultaneously and receive different portions of the data from the servers in parallel. However, selecting the

best set of servers from the set of all candidate nodes is not astraightforward task, and the obtained performance

can vary dramatically depending on the selection result. Inthis paper, we present a node selection scheme in

a hypercube-like overlay network that generates the optimal server set with respect to the worst-case link stress

(WLS) criterion. The algorithm allows scaling to very large system because it is very efficient and does not require

network measurement or collection of topology or routing information. It has performance advantages in a number of

areas, particularly against the random selection scheme. First, it minimizes the level of congestion at the bottleneck

link. This is equivalent to maximizing the achievable throughput. Second, it consumes less network resources in

terms of the total number of links used and the total bandwidth usage. Third, it leads to low average round-trip

time to selected servers, hence, allowing nearby nodes to exchange more data, an objective sought by many content

distribution systems.

Index Terms

Node Selection, Server Selection, Overlay Networks, Hypercube, Content Distribution Networks, Peer-to-Peer

Networks, Parallel Download, Link Stress

I. I NTRODUCTION

A number of structured network topologies, including the hypercube, torus, butterfly and Banyan network, have

traditionally been extensively studied in application areas such as parallel or distributed processing and switching.

Recently, structured networks are becoming attractive platforms for building overlay networks through which

network applications and services can be deployed. Examplesof the proposed structured overlay networks include

Chord [1], Tapestry [2], Pastry [3], CAN [4], ODRI [5], and Ulysses [6]. They have been applied to diverse



2

applications such as application-level multicast, persistent data storage, file/data access or sharing, media streaming

or other content distribution, and grid computing. The benefits of taking the structured overlay approach are many:

For instance, it allows fast resource location, decentralizes massive computation or data access, enables large-scale

resource sharing, simplifies routing, and improves service quality and fault-tolerance by using multiple paths.

In this paper, we present an optimal node selection scheme that minimizes the worst-case link stress in an overlay

network with one of the most popular network topologies, thehypercube. One of the important applications of

such a scheme is parallel access of data in a communication network [7], [8], for instance, a content distribution,

a peer-to-peer (P2P), or a grid-computing network. The conventional way of downloading data is for a client to

select one node as the server from one or more candidate servers. The performance, e.g., the throughput or data

downloading time, is directly influenced by the load of the server, congestion of the path of the connection and

any traffic fluctuation that may affect routing [9]. In order to alleviate these problems, the client can be allowed to

connect to multiple servers simultaneously and receive different portions of the data, or file chunks, from each server

in parallel. Such parallel access can avoid server overload,achieve higher throughput or faster distribution speed,

and be more resilient to link failure and traffic fluctuation [7]. Most of the recent content distribution systems rely

on the parallel download approach. In P2P file sharing/distribution such as BitTorrent [10], parallel download takes

the more sophisticated form ofswarming(or collaborative download), where the file chunks are spreadout across

the peers and the peers subsequently exchange the chunks with each other to speed up the distribution process.

In either the simple parallel-download or the swarming case, the node selection problem arises when a node must

select a subset of the nodes that contain the wanted file or file chunks and establish actual connections for receiving

data. In sum, node selection is a fundamental component in many content distribution or parallel access systems.

The node-selection algorithms in existing systems usually have a user-centric performance objective, such as

reducing the round-trip time (RTT) or the completion time of individual download, but tend to ignore the congestion

caused by the concurrent connections from different servers or the total network resource usage. (See Section I-A1

for a review.) The algorithms are typically greedy, local-search heuristics. For instance, in several systems, every

node gradually but independently samples the throughput ofconnections from different servers and selects the

servers that lead to higher connection throughput. This myopic strategy treats different connections separately but

ignores their possible interaction. If many connections pass through the same network links, they may overload the

links. A likely consequence is poorly balanced network load, which hurts the overall performance of all users, as

well as causes inefficient utilization of the network resources.

This paper is fairly unique in emphasizing both the network-related and user-related performance metrics. (See

also [11], [12].) It advocates an optimal, recursive selection algorithm that minimizes the worst-case link stress

(WLS). The WLS is directly related to the worst congestion level in the network, an important performance concern

for network and service providers. The minimum WLS corresponds to the best-balanced network load. A balanced

use of the network allows it to accommodate more traffic, i.e.,to improve the overall throughput. Optimizing the

WLS also improves the service quality received by a user or a multi-user session. When every user tries to minimize

the WLS in its server selection process, the chance is better that other users can also receive good performance

in their communication sessions. Applications such as media streaming are sensitive to bandwidth availability and
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lower WLS implies better performance. In the case of elastic data transfer, the inverse of the WLS provides an

alternative performance perspective: It yields the maximum achievable throughput of the parallel download session,

which determines the shortest download time without causing network congestion. Finally, our particular recursive

WLS-minimizing algorithm is also very competitive in terms oftwo other performance metrics, the average path

length and total network resource usage.

Another distinguishing feature of the paper is that the overlay network is considered as a complete virtual network

where the overlay nodes act as virtual routers for the overlay, logical network. As a result, data (as apposed to only

queries for data) are routed on the overlay network instead of the underlay network. This is in congruence with the

interesting trend of network virtualization through the overlay approach, which is useful not only for introducing

new network applications but also for deploying new networkarchitectures [13].

In this paper, the overlay network is organized as a hypercube. The motivation is that the hypercube is one of

the simplest and most versatile structured networks. It is well known ([14], [15], [16], [17], [18], [19]) that the

structural regularity of the hypercube often makes parallel or distributed algorithms extremely simple and efficient.

The same is expected for many networking algorithms on the hypercube. For instance, routing can be performed

based on a pre-specified convention without the need of a routing protocol. The chance is high that the hypercube

will be the topology of choice for many applications that employ virtual networks. The focus of this paper is

to develop a similarly efficient algorithm for minimizing theWLS on the hypercube. It turns out that such an

algorithm does exist and it requires no knowledge of the current network condition, not even the topology or

routing information, hence, avoiding the expensive overhead of network measurement or passing control messages.

The only requirement is that the receiving node (client) can obtain a list of IDs of the server candidates through

the overlay network. This is usually done by searching a distributed directory based on the distributed hash table

(DHT) [1], [4], [20], possibly augmented by some gossip protocol [21], [10] in a highly dynamic network where

nodes frequently arrive and depart. The efficiency and simplicity of the algorithm allow scaling the network to

very large size, capable of handling massive content distribution or parallel access. The paper will show that the

recursive WLS-minimization algorithm has desirable performance with respect to the three aforementioned metrics

for both the overlay hypercube-like network and the underlay Internet-like network.

The combination of the hypercube and the choice of the WLS-minimizing objective makes this paper directly

relevant to the infrastructure-based overlay network for massive content distribution, and overlay virtual networks

for distributed access or computation, such as those required by E-science or grid computing. But, it should be also

relevant to other P2P/overaly file distribution, and parallel or distributed computation on other network topologies,

including other structured networks or general, non-structured networks. The node selection algorithm can be

extended to those networks, but with some loss of efficiency. Since the hypercube overlay network is a special case

of the Plaxton-type networks [22] and a relative to Pastry [3]and Tapestry [20], extension to those networks is

expected to require the smallest modification.

This paper is organized as follows. In Section II, we introducethe hypercube overlay network and present required

definitions and facts. In Section III, we present the optimal server selection algorithm for minimizing the WLS and

analyze its running time. We evaluate the algorithm and compare it with other algorithms through simulation in
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Section IV. Finally, the conclusions are drawn in Section V.

A. Literature Review

1) Node Selection Algorithms:The literature on node selection is vast. We will mainly review the most relevant

studies in overlay networks. Existing distribution systemshandle node selection in a variety of (usually ad-hoc)

ways1. The infrastructure-based content distribution networks (CDN) (e.g., Akamai [23]) and web caches generally

assign the closest server to each client. In SplitStream [24],and FastReplica [25], server selection is essentially

done randomly. Other systems employ a server or peer rankingfunction. A node favors those peers with high

ranking. The ranking function may be the nodal load (CoBlitz [26]), the round-trip time (RTT) (ChunkCast [27]),

the sending and/or receiving bandwidth to and from each peer(Bullet′ [28], Slurpie [29] and BitTorrent [10]), and

the degree of content overlap between the receiver and the server candidate (Bullet [21]). One common practice

is that a node initially selects some random peers, but gradually probes other peers and dynamically switches to

those with better ranking over the course of downloading. Julia [30] assumes a structured but locality-aware P2P

network, where each peer exchanges file chunks with direct neighbors in differential amount, more with closer

neighbors. This reduces the totalwork, which is defined as the weighted sum of the total network trafficduring

the entire distribution process, where the weights are the distances travelled by each bit. [31] formulates several

continuous optimization problems regarding peer selection in P2P file download or streaming. In more traditional

server selection literature, [32] presents a dynamic server selection scheme based on instantaneous measurement

of the RTT and available bandwidth. [9] proposes a selection scheme that utilizes the underlying network topology

and the performance information of the senders. Similar research works are also reported in [7], [33].

2) Hypercube Networks:The hypercube is among the most popular networks studied by researchers due to

its useful structural regularity. Many have studied its topological properties and communication capability for

parallel and distributed computing applications. (See [14], [15], [16], [17], [18] for a small sample and [19] for a

comprehensive textbook treatment.) In the area of communication networks, [34] investigates how the hypercube

affects the spread of worms and viruses. [35] considers a multiple access protocol in wireless ad-hoc networks with

the hypercube topology. [36] provides analysis of a hypercube-based distributed hash table (DHT) that achieves

asymptotically optimal load balance. [37] proposes a failure recovery protocol for structured P2P networks that use

hypercube routing. We are not aware of any prior node-selection algorithms on the hypercube that are similar to

ours.

II. PRELIMINARIES

In this section, we introduce the definition of the hypercube network and some of its properties that make server

selection based on the WLS-minimizing criterion efficient and easy.

The overlay network we consider is a hypercube withN nodes, numbered0, 1, . . . , N − 1. SupposeN = 2m,

wherem is a positive integer. The node IDs can be expressed as binary strings, and two nodes are linked with an

edge if and only if their binary strings differ in precisely one bit. The routing rule is as follows. At each nodes

1Not all systems frame or handle the node selection problem explicitly. But all should have at least an implicit selection algorithm.
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Fig. 1. A labelled 5-level binomial treeB5.

and for the destinationd, let l be the first bit position, counting from the right, thats andd have different values.

Then, the next hop on the route tod is the neighbor ofs that differs withs in the lth bit. Consider the example

whereN = 25, the source node is10110 and the destination node is00000. The route consists of the following

sequence of nodes:10110→ 10100→ 10000→ 00000.

In most earlier works, especially in the parallel computingcommunity, the definition of a hypercube only specifies

how nodes are connected. In this paper, as in many structuredoverlay networks, the routing rule is an important

part of the definition. With the above routing rule, the hypercube network is a special instance of the Plaxton-type

networks [22], which are broad enough to also include Pastry[3] and Tapestry [20], and are fundamentally related

to Chord [1] and CAN [4]. We also note that the hypercube clearly requires that every position of the name space

is occupied by a node, which is our current assumption. (In Section IV-F, we consider the situation where the name

space of the overlay network is not fully populated by nodes.)

A helpful device for visualizing the hypercube and its routing is the embedded tree, as shown in Fig. 1, consisting

of all valid routes allowed by the routing rule from all nodesto node 0. It is known that such a tree is a binomial

tree [38], [19]. The binomial tree embedded in the hypercube network is a labelled tree, where the label of each

node is the node’s ID. By the symmetry of the hypercube, thereis an embedded binomial tree rooted at every node

where the tree paths are the valid routes to the root node. Given the labelled binomial tree rooted at node 0, an

easy way to derive the labels for the binomial tree rooted at noded 6= 0 is to XOR the node labels of the former

tree withd.

Throughout the paper, let us denote thek-level binomial tree rooted at node 0 byT = Bk. Let us denote the ID

of nodeu by I(u). When there is no confusion, we will useu andI(u) interchangeably to denote nodeu.

Without loss of generality, the root node 0 is understood as the client. The candidate nodes are those that contain

the data and the server nodes are those that are eventually selected to participate in transmitting the data.

The following lemmas and corollary are simple consequences of the hypercube definition, including its routing

rule. They will be required later.

Lemma 2.1:Supposeu is the parent of nodev in T . Then,u andv differ in exactly one bit, and the value of

the bit is 0 foru and 1 forv. All bits to the right of the different bit are 0’s.

Lemma 2.2:Supposeu is a node inT , andI(u) = a1 . . . ai 0 . . . 0, 0 ≤ i < m. Then,

(i) the subtree rooted atu contains all nodes whose IDs fall betweena1 . . . ai0 . . . 0 anda1 . . . ai1 . . . 1, inclusive;
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(ii) I(u) ≤ I(v) for all nodesv in the subtree;

(iii) if the subtree contains nodesv andw, then it contains all nodes whose IDs fall betweenI(v) andI(w);

(iv) if v is a descendant ofu, the longest common prefix ofI(u) andI(v) is greater thani.

Corollary 2.3: Suppose that, inT , nodev’s ID is a1 . . . am. Then, a nodeu is an ancestor of nodev if and only

if the ID of u has the forma1 . . . ai0 . . . 0, where0 ≤ i < m2, andI(u) 6= I(v).

Definition 1: A common ancestor of a set of nodesS = {s1, . . . , sn}, wheren ≥ 2, in a rooted tree is a node

u satisfying the condition that, for eachi, 1 ≤ i ≤ n, eitheru is an ancestor ofsi or u is si.

The definition allows the following case. If nodev is an ancestor of nodew, thenv is a common ancestor ofv

andw.

Definition 2: The lowest common ancestor (LCA) of a set of nodesS = {s1, . . . , sn}, wheren ≥ 2, in a

rooted tree is the deepest node in the tree that is a common ancestor of all nodes inS. It is denoted byLCA(S)

or LCA(s1, . . . , sn).

For example in Fig. 1, ifI(u) = 01011 andI(v) = 01101, thenLCA(u, v) is the node with ID 01000.

Definition 3: Given a subset,S, of two or more nodes inT , let us denote the set of LCAs of all subsets ofS

with two or more nodes bySLCA(S).

Let us denote thelongest common prefix(LCP) of a set ofm-digit binary labels,R = {b1, . . . , bk}, by

LCP (b1, . . . , bk) or LCP (R), and denote them-digit label equal to the concatenation ofLCP (R) with an

appropriate number of 0’s byλ(R) or λ(b1, . . . , bk). For instance,LCP (01110, 01011) = 01, and λ(01110,

01011) = 01000. For a set of nodesS = {s1, ..., sn}, LCP (S) or LCP (s1, . . . , sn) are the simplified notations

for LCP (I(s1), . . . , I(sn)), andλ(S) or λ(s1, . . . , sn) are the simplified notations forλ(I(s1), . . . , I(sn)).

Definition 4: SupposeS = {s1, . . . , sn} is a set of nodes inT andE = {e1, . . . , el} is the set of edges used by

the paths from the root to nodes inS, called theS-paths. The link stress of an edgee in T , denoted byLS(e),

is the number ofS-paths viae. Let E be the set of all edges inT . The worst link stress (WLS) is defined as

maxe∈E LS(e).

The WLS is the largest number of downloading streams on any linkand is an indication of how well the

load is balanced in the network and of how much connections from different servers interfere with each other

at the bottleneck link, assuming the links have roughly identical bandwidth. It is both a measure of the burden

placed by the parallel download session on the network resources and a measure of the quality of data delivery.

The reciprocal of the WLS tells how many multiples each downloading stream can be increased without causing

network congestion. It gives the maximum achievable throughput of the parallel download session, which, in turn,

determines the shortest download time. A session that follows the WLS-minimizing rule in its server selection

makes a balanced use of the network bandwidth, which tends tocause the least interference to other sessions. If

every session follows the same rule, the chance is good that all sessions can benefit.

2By convention, wheni = 0, a1 . . . ai0 . . . 0 is 0 . . . 0.
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III. O PTIMAL SERVER SELECTION FORM INIMIZING WORSTL INK STRESS

A. Highlight of the Algorithm and Results

The problem addressed in this section can be stated as follows. Given the client and a set of nodes containing

the data (the candidates), denoted byS, selectk (the degree of parallelism) servers from the candidate set to

participate in transmitting the data to the client so that the worst-case link stress (WLS) is minimized. The key

observation is that the link stress of any edge(u, v), whereu and v are nodes inT and u is the parent ofv, is

no less than that of any edge in the subtreeTv, the subtree rooted at nodev. Hence, the edge with the worst link

stress must be connected to the root ofT . One possible algorithm for minimizing the WLS is as follows.Let W

be the set of children of the root. Forw ∈ W , let Sw be the set of candidates inTw, the subtree rooted atw.

Suppose eachw ∈W is labelled with|Sw|, i.e., the number of nodes inSw. Then, we call theMIN-MAX algorithm

with the argumentsl = |W |, (b1, . . . , bl) equal to the list of|Sw|’s and q = k. The returned list of numbers from

the MIN-MAX algorithm, which will be discussed in Section III-C, is an optimal allocation, with respect to the

WLS-minimization criterion, of the number of servers to be selected in each subtreeTw, for all w ∈W .

The actual algorithm (Algorithm 1) is different. It minimizes the WLS recursively in the sense that it minimizes

the WLS for every subtree rooted at everyv ∈ SLCA(S). The WLS for each such subtree,Tv, is defined over

only the edges inTv. That is, the WLS overTv is maxe∈Ev
LS(e), whereEv is the set of edges inTv. The initial

motivation for recursively minimizing the WLS is that, in themore general problem involving multiple clients,

this leads to a better chance of achieving lower link stress for heuristic algorithms built on top of the optimal

single-client algorithm3. This will be confirmed experimentally by our evaluations. (SeeSection IV-C and IV-D.)

It further turns out the recursive algorithm leads to excellent performance with respect to two other criteria, the

average path length and the total network resource usage.

The theoretical running time of the algorithm isO(nm2), wheren is the number of nodes in the candidate set

and 2m is the size of the hypercube. Hence,m is at leastO(log n). We will see that the practical running time

of the algorithm is in factO(nm). The saving comes from how one thinks about manipulatingm-bit numbers.

For instance, in theory, adding or comparing twom-bit numbers takesO(m) running time. However, for practical

problems,m is almost always small enough, e.g., 32 or 128. Such operations can be completed in constant time

in typical microprocessor architectures. We call any operation an elementary operationif it can be completed in

constant time in typical microprocessor architectures, provided that the numbers involved in the operation are of

constant sizes. In practice, the algorithm takesO(nm) elementary operations.

Although the high-level ideas about Algorithm 1 are mostly straight-forward, an efficient implementation is not.

The analysis on its running time is not trivial either. In Section III-B, we describe a crucial characterization of

3One may notice that a more complete problem formulation is to consider a setof clients, each with a set of known server candidates.

The problem is to assign a subset of the servers to each client so as to minimize the WLS. Here, the link stress is naturally defined as the

total number of connections on the link, regardless of which client the connection belongs to. The solution to this problem, although very

interesting to think about, will be complicated and will require that every clienthas the complete knowledge of all other clients, as well as

their server candidate sets. Such information will be hard to obtain cheaplyin a large network. Because the single-client WLS-minimization

algorithm aims at balancing the network load, the simple heuristic of applying the single-client algorithm separately and independently by

every client is a viable approach.
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SLCA(S) that makes Algorithm 1 efficient. Then, we describe two key subroutines in Section III-C and III-D,

and discuss their running time. In Section III-E, we give a full description of the algorithm, discuss the remaining

key steps, and give the total running time.

B. A Characterization of the SetSLCA(S)

We will need the following two lemmas for a characterizationof SLCA(S).

Lemma 3.1 (Ancestor Algebra):SupposeS is a set of nodes in an arbitrary tree. LetW1, . . . , Wn be a covering

of S. That is,Wi ⊆ S for 1 ≤ i ≤ n, and∪n
i=1Wi = S. Then,

LCA(S) = LCA(LCA(W1), . . . , LCA(Wn))

The proof of Lemma 3.1 is rather easy. We omit it for brevity.

Lemma 3.2:Suppose(s1, . . . , sn) is a sorted list of distinct nodes inT by their IDs, for some1 < n ≤ 2m.

Then,

LCA(s1, . . . , sn) = LCA(s1, sn)

The proof of Lemma 3.2 is given in [39].

Lemma 3.3:Suppose(s1, . . . , sn) is a sorted list of distinct nodes inT by their IDs, for some1 < n ≤ 2m.

Then,SLCA(s1, . . . , sn) =
⋃n−1

i=1 LCA(si, si+1).

Proof: Let S = {s1, . . . , sn}. By the Ancestor Algebra Lemma (Lemma 3.1), we only need to focus on

the LCAs of node pairs, because they form a covering for every subset ofS. Thus, by definition,SLCA(S) =
⋃

1≤i<j≤2m LCA(si, sj).

The proof is based on induction. Let us define the setsSi = {s1, . . . , si}, for 2 ≤ i ≤ n. As the base case, the

lemma is trivially true forS2. We make the induction hypothesis that the lemma is true forSl, where2 ≤ l < n.

Then,

SLCA(Sl+1)

=
⋃

1≤i<j≤l+1

LCA(si, sj)

=
(

⋃

1≤i<j≤l

LCA(si, sj)
)

∪
(

l
⋃

i=1

LCA(si, sl+1)
)

= SLCA(Sl) ∪
(

l
⋃

i=1

LCA(si, sl+1)
)

=
(

l−1
⋃

i=1

LCA(si, si+1)
)

∪
(

l
⋃

i=1

LCA(si, sl+1)
)

(1)

ConsiderLCA(si, sl+1) for some1 ≤ i ≤ l − 1.

LCA(si, sl+1) = LCA(si, sl, sl+1)

= LCA(LCA(si, sl), LCA(sl, sl+1))

= LCA(si, sl) or LCA(sl, sl+1)
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The first equality above is by Lemma 3.2, the second one is by the Ancestor Algebra Lemma (Lemma 3.1). The

last equality holds becauseLCA(si, sl) andLCA(sl, sl+1) are both ancestors tosl, or one or both are identical to

sl, and in a rooted tree, one must be the ancestor to the other unless they are the same node (Both are on the path

from sl to the root.).

We have shown thatLCA(si, sl+1) is either the same asLCA(sl, sl+1), or the same asLCA(si, sl), which is

already inSLCA(Sl). Hence, by (1)

SLCA(Sl+1) = SLCA(Sl) ∪ LCA(sl, sl+1)

=
l

⋃

i=1

LCA(si, si+1)

C. The MIN-MAX Algorithm

In this section, we describe the MIN-MAX algorithm, which iscalled by Algorithm 1. For brevity, we will not

list the full algorithm and will omit some proofs. We will only give the basic idea. The algorithm is invoked by

calling MIN-MAX( l, (b1, . . . , bl), q), wherel and q are positive integers, and(b1, . . . , bl) is a vector ofl positive

integers. It returns a vector ofl positive integers.

Considerl sets, 1 throughl. Set j containsbj items, for j = 1, . . ., l. Suppose we must chooseq items from

thesel sets. The objective is to decide the number of items chosen from set j, denoted bycj , for 1 ≤ j ≤ l,

so that
∑l

j=1 cj = q and that the largestcj is minimized. That is,max1≤j≤l cj is minimized. This is called a

min-max allocationof the items to the sets. In Algorithm 1, we frequently face the situation that, at a fixed node

u ∈ SLCA(S), we need to selectq(u) servers from the subtreeTu. The strategy taken is to consider the immediate

descendants ofu that are inSLCA(S), say v1, . . . , vl. Suppose, fori = 1, . . . , l, the subtreeTvi
containsbi

candidates. We then call MIN-MAX(l, (b1, . . . , bl), q(u)) to decide how many servers are to be selected from each

subtreeTvi
.

We will describe awater-filling idea on which the MIN-MAX algorithm is based. Imagine fillingl jars of volumes

b1, . . ., bl with q (volume) units of water, which is infinitely divisible. An idealized strategy is to fill alll jars

simultaneously at the same rate. When a jar becomes full, thefilling for it stops, while the filling for the rest

continues, until theq units of water are all used up. The resulting allocation of water is the min-max allocation.

It is easy to see that a literal implementation of the water-filling algorithm takesO(l2) elementary operations on

numbers. The actual MIN-MAX algorithm is a more efficient implementation of the idea, which first finds the

maximum of the min-max allocation. It takesO(l log l) elementary operations on numbers.

One desirable property of the min-max allocation is that it is the most “balanced” partition of the items into

different sets. This is captured in the following lemma.

Lemma 3.4:Suppose each item is infinitely divisible. In the min-max allocation, the difference between the

largest allocation and thejth smallest allocation is no greater than in any other allocation, for all j.
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Fig. 2. An example of a virtual treêT in the binomial treeB5. The candidate setS consists of all circled nodes. The set of nodes inT̂

are all the nodes inSLCA(S), which are shaded, and the highlighted paths are edges inT̂ . Nine nodes are to be selected from thirteen

candidates inS. The selected nodes by Algorithm 1 are indicated by arrows. Each node inT̂ is also labelled with|Sv|, |Mv| and q(v),

whereq(v) is the number of servers to be selected from the subtree ofT rooted atv, Tv.

D. Constructing the Virtual Tree,̂T

The SERVER-SELECTION-WLS algorithm (Algorithm 1) in Section III-E involves visiting all nodes in a virtual

tree formed by the nodes inSLCA(S). In this section, we describe an efficient algorithm for constructing this tree.

We will show later that its running time dominates the running time of Algorithm 1.

Definition 5: Given a setS with two or more nodes inT , the virtual treeT̂ = (V̂ , Ê) is formed by the nodes

V̂ = SLCA(S). For any two nodesu, v ∈ V̂ , (u, v) ∈ Ê if u is the immediate ancestor ofv in V̂ . That is,u is

on the path fromv to the root ofT , and there are no other nodes inV̂ on the path segment fromv to u. The root

of T̂ is LCA(S).

An example of the virtual treêT in the binomial treeB5 is shown in Fig. 2. An efficient algorithm for constructing

T̂ is based on Lemma 3.3. First, we sort the nodes inS in increasing order of the node ID. This takesO(n log n)

comparisons ofm-bit numbers. Now, assumeS = (s1, . . . , sn) is a sorted list. The set of nodes in̂T is V̂ =

{LCA(s1, s2), LCA(s2, s3), . . . , (sn−1, sn)}. The root isr = LCA(s1, sn).

The edges inÊ can be identified by traversing the paths inT from each node, sayv, in V̂ toward the root

of T . In each step along the way, we inspect if the current node, say u, is in V̂ . If so, the edge(u, v) is added

to Ê, and the path traversal originating from nodev is stopped. This scheme will work on any general network

provided the client has collected the topology informationof the network. In the hypercube network, of course,

the topology information is known without data collection.We will not dwell on this scheme but will use a more

efficient algorithm for identifying the edges.

1) Edge identification algorithm for̂T : SupposeSLCA(S) = {v1, . . . , vl}, for some1 ≤ l ≤ n−1. We first sort

the nodes inSLCA(S) by increasing order of their IDs, which takesO(n log n) comparisons ofm-bit numbers.

Suppose the resulting sorted list isL = (v1, . . . , vl). By Lemma 2.2, the root of̂T must bev1. The children ofv1

in T̂ , denoted byΠ(v1), can be identified by scanning the list. Let nodew be any node inΠ(v1). Also by Lemma

2.2, all the LCA-nodes (i.e., the nodes inSLCA(S)) in the subtree ofT rooted atw, i.e.,Tw, must be consecutive

in the list L. Hence,
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Fact 3.5: Starting fromv2, the nodes inL are partitioned into|Π(v1)| groups. Each group corresponds to one

w ∈ Π(v1) and is a contiguous sub-list ofL. The first node in each sub-list is a child ofv1.

In addition tov2 ∈ Π(v1), the other children ofv1 can be identified with the help of the following additional facts.

Fact 3.6: For any two nodesw1, w2 ∈ Π(v1), λ(w1, w2) = I(v1).

Fact 3.7: For any descendantx1 of w1, we have|LCP (w1, w2)| < |LCP (w1, x1)|, where |LCP (w1, w2)|

denotes the length of the longest common prefix betweenI(w1) andI(w2).

We will call a descendant ofv1 of depth i in T̂ a level-i descendant, for i ≥ 1. Sincev2 is the first identified

level-1 descendant of the rootv1, we denote it byv1,1. Let us also denotev1 by v0,1. Next, we find the first node

after v1,1 in L, denoted byv1,2, such thatλ(v1,1, v1,2) = I(v0,1). This is another node inΠ(v0,1). Supposev1,j has

been identified, for somej ≥ 1. We proceed by finding the first node afterv1,j in the list L, denoted byv1,j+1,

such thatλ(v1,j , v1,j+1) = I(v0,1). When this procedure finishes, we have identified all the nodes in Π(v0,1), i.e.,

the level-1 descendants. We then repeat the procedure for each sub-list ofL headed by one level-1 descendant and

terminated just before the next level-1 descendant inL.

In the general step, suppose we have identified all level-j descendants ofv0,1, for somej ≥ 1, denoted by

vj,1, . . . , vj,nj
, wherenj ≥ 1. We repeat the procedure for each sub-list headed by one level-j descendant and

terminated just before the next level-j descendant inL.

The total number of levels is no more thanm. For each level, the procedure steps through the listL. Hence, the

procedure takesO(nm) elementary manipulation ofm-bit numbers. The running time isO(nm2) in theory, and

O(nm) in practice. The construction of the virtual tree,T̂ , is called in line 6 of Algorithm 1. Hence,

Lemma 3.8:The running time for line 6 in Algorithm 1 isO(nm2) in theory, andO(nm) in practice.

2) Edge identification example:Consider the example shown in Fig. 2. The sorted list of nodes inSLCA(S)

(shaded nodes) is( 00000, 00100, 00110, 01000, 01100,10000, 10100, 11000, 11110 ). From this list, we first

identify 00000 as the root of̂T , and 00100 as one of the children of 00000. As we continue to scan the list, we

see thatλ(00100, 00110) = 00100 andλ(00100, 01000) = 00000. We conclude that node 00110 is a descendant,

in fact, the only child, of 00100 and 01000 is another children of 00000. Now, starting from node 01000, we have

λ(01000, 01100) = 01000 and λ(01000, 10000) = 00000. Hence, 10000 is another children of 00000 and 01100

is the child of 01000. Continue with node 10000, we haveλ(10000, 10100) = 10000, λ(10000, 11000) = 10000

andλ(10000, 11110) = 10000. Hence, nodes 10100, 11000 and 11110 are all descendants of 10000.

The procedure repeats for each children of node 00000. For instance, consider node 10000 and the associated list

(10000, 10100, 11000, 11110). We can immediately conclude that node 10100 is one of its children. Fromλ(10100,

11000) = 10000, we know that 11000 is another children of 10000. Finally, from λ(11000, 11110) = 11000, we

conclude that 11110 is the child of node 11000.

E. Server Selection for Minimizing the WLS

This section describes the remaining key steps of Algorithm 1and its running time. In Algorithm 1, the nodes

in the treeT̂ are visited in the breadth-first fashion . The data structureQ is a first-in, first-out queue of nodes yet

to be visited. LetMv be the set that contains all nodes inS for which v is the immediate ancestor in̂T (i.e., in
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SLCA(S)), and that have no descendants inS. More formally, letv be a node inT̂ and letSv be the set of nodes

in S in the subtree ofT rooted at nodev, denoted byTv. Then,Mv is a subset ofSv, and for each nodew ∈Mv

not the same asv, v is the only node inT̂ on the path segment fromw up to v, andw has no descendants inS

(I.e., w is not in T̂ .). In addition, if v ∈ S, thenv is also included inMv. Consider the example in Fig. 2. For

v = 00000, Mv contains two nodes,v itself and node 00011. Forv = 11000, Mv contains only node 11011, but

not node 11110 since it is the parent of node 11111, which is inS.

1) An server selection example:Before discussing the formal algorithm, let us consider theexample shown in

Fig. 2, whereT is a 5-level binomial tree andS consists of 13 candidates, indicated as circled nodes. The objective

is to selectk = 9 servers from the setS. The set of nodes in̂T are shaded, and the highlighted paths are edges in

T̂ . Each node inT̂ is also labelled with|Sv|, |Mv| and q(v), whereq(v) is the number of servers to be selected

from the subtree ofT rooted atv, Tv. The selected servers by Algorithm 1 are indicated with arrows. The first

node to be visited is the root of̂T , node 00000, denoted byu. It is understood that 9 servers is to be selected

from the tree rooted atu. Since two nodes are inMu, nodeu itself and node 00011, those two are selected first.

The motivation is that the nodes inMu generates no more than 1 unit of link stress on the edges from themselves

up to u. The remaining 7 servers to be selected are allocated to the subtrees ofT rooted at the children ofu in

T̂ , according to the MIN-MAX algorithm. The resulting allocation is that 2, 2, and 3 servers are to be selected

from the subtrees rooted at node 00100, 01000, and 10000, respectively. Then, the node selection algorithm runs

recursively for each subtree.

2) Description of line 7:Line 7 can be accomplished in the process of building an extended virtual tree, denoted

by T̂ e, whose nodes areSLCA(S)∪S. An edge(u, v) belongs toT̂ e if u is on the path fromv to the root inT ,

and there is no other node in̂T e on the path segment fromv to u. In other words,T̂ e is derived by extendinĝT

to include all nodes inS and the corresponding new edges. The algorithm for establishing the edges of̂T can be

applied toT̂ e. For every nodev ∈ SLAC(S), the value|Sv|, which is the number of nodes inS in the subtree

Tv, is obtained by counting the number of nodes that are inS in the sublist started withv. After T̂ e is established,

the setMv and its size|Mv| can be obtained and recorded at nodev ∈ SLAC(S) by scanning the list of nodes in

S. Suppose that, in̂T e, v ∈ SLAC(S) is the parent of nodew ∈ S, andw is a leaf node. We addw to Mv and

increment a counter for the size ofMv. The running time for line 7 is the same as that for constructing T̂ (line 6).

Lemma 3.9:The running time for line 7 in Algorithm 1 isO(nm2) in theory, andO(nm) in practice.

3) Description of thewhile loop: The variableq(u) is the number of nodes inS yet to be selected from the

subtreeTu. When possible, the algorithm first selects the nodes inMu, which are either leaf nodes in̂T e connected

to nodeu, or u itself if u ∈ S (lines 12 through 18). After that, if more nodes still need tobe selected, they will

be from the subtrees ofT rooted at each of the children ofu in T̂ . The algorithm determines an optimal allocation

of the number of nodes yet to be selected from each of these subtrees according to the min-max criterion (line 21).

For eachv ∈ Π(u), if the allocation to the subtree rooted atv is non-zero, thenv is added to the end of queue,Q

(lines 23 through 25).

4) Running time analysis for thewhile loop: Let us now analyze the running time of thewhile loop (lines 10

through 29) in Algorithm 1.
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Algorithm 1 SERVER-SELECTION-WLS(S, k)
1: input: S = {s1, . . . , sn}, a candidate set; an integer1 ≤ k ≤ n
2: output: G, an optimal set withk servers w.r.t. the WLS cost
3: G← ∅
4: Sort S and re-index the nodes so thatI(s1) ≤ I(s2) ≤ . . . ≤ I(sn)
5: SLCA(S)← {LCA(s1, s2), LCA(s2, s3), . . . , (sn−1, sn)}
6: ConstructT̂ , r ← root of T̂
7: At eachv ∈ SLCA(S), record|Sv|, Mv, κ(v) , |Mv|
8: Q← {r}
9: q(r)← k

10: while Q 6= ∅ do
11: u← head[Q]
12: if q(u) > κ(u) then
13: G← G ∪Mu

14: q(u)← q(u)− κ(u)
15: else if 0 < q(u) ≤ κ(u) then
16: Add an arbitrary subset ofMv with |q(u)| elements toG
17: q(u)← 0
18: end if
19: if q(u) 6= 0 then
20: // Optimally allocateq(u) to v ∈ Π(u)
21: (q(v))v∈Π(u) ← MIN-MAX (|Π(u)|, (|Sv|)v∈Π(v), q(u))
22: for v ∈ Π(u) do
23: if q(v) > 0 then
24: Enqueue(Q, v)
25: end if
26: end for
27: end if
28: Dequeue(Q)
29: end while
30: return G

Lemma 3.10:The while loop (lines 10 through 29) in Algorithm 1 takesO(n log n) elementary operations.

Proof: We will show that the worst-case is achieved when the root ofT̂ hasO(n) children, in which case, the

total number of elementary operations isO(n log n). We first argue that, in each entry into thewhile loop, we only

need to consider the running time of the MIN-MAX algorithm called in line 21. Line 16 may consist of more than

one elementary operations. However, since each operation adds a node to the setG, the total number of elementary

operations by the completion of thewhile loop cannot be more than the size ofG, which is at mostn, multiplied by

a constant factor. Similarly, thefor loop in lines 22 through 26 cannot take more thanO(n) elementary operations

over all entries into thewhile loop, because this part of the code simply visits all nodes inSLCA(S) one at a

time.

Let T (n, l) be the number of elementary operations in the worst case, when the candidate setS hasn nodes, and

the treeT̂ hasl interior nodes (i.e., non-leaf nodes), denoted byv1, . . ., vl. The total number of nodes in̂T is no

greater thann−1, andl ≤ n−2. Supposevi hasni children in the treêT , for i = 1, . . ., l. Then,
∑l

i=1 ni is equal

to the number of nodes in̂T minus 1, which is no greater thann − 2. The MIN-MAX algorithm will be called
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l times, one for eachvi, and the number of elementary operations taken isni log ni for vi. Consider the problem

of max
∑l

i=1 ni log ni subject to the constraint
∑l

i=1 ni ≤ n − 2. The maximum is achieved atni = (n − 2)/l,

assuming(n− 2)/l is an integer, and the maximum is(n− 2) log((n− 2)/l). We do not care whether such a tree

T̂ with n− 1 nodes,l interior nodes, each interior node with(n− 2)/l children exists. The useful result is

T (n, l) ≤ (n− 2) log((n− 2)/l). (2)

The maximum of the right hand side is achieved atl = 1. We get T (n, l) ≤ (n − 2) log(n − 2). Let T (n)

be the number of elementary operations in the worst case, when the candidate setS has n nodes. We have

T (n) ≤ maxl T (n, l) ≤ (n− 2) log(n− 2). The total number of elementary operations for a tree that canexist is

of O(n log n).

We state without proof that the upper boundO(n log n) can be achieved.

Finally,

Theorem 3.11:The running time for Algorithm 1 isO(nm2) in theory, andO(nm) in practice.

Proof: By Lemma 3.8, 3.9, and 3.10, the running time for Algorithm 1 isdetermined by line 6 or 7, which is

O(nm2) in theory, andO(nm) in practice.

IV. EVALUATION

In this section, we present simulation results demonstrating the benefits of the WLS-minimizing server selection

scheme. We compare four selection algorithms, therandomscheme where the client choosesk servers uniformly

at random from the list of candidate nodes, theclosestscheme where the client choosesk servers with the shortest

RTTs from the candidate pool, the DOI-minimizing scheme that generates an optimal server set with respect to the

degree of interference (DOI) criterion, and the WLS-minimizing scheme (Algorithm 1). The random scheme and

the closest scheme are the most typical strategies in the related works ( [26], [40], [27], [31], [9], [41], [7], [33],

[42]). We use three performance metrics to evaluate the server selection schemes.

• Worst case link stress: We measure the stress of each link by counting the number of downloading streams

on the link and report the worst case link stress.

• Degree of Interference (DOI): the DOI of the selected servers.

• Average path length: The average is taken over the paths from the selected serversto the client.

We now elaborate on the DOI performance measure.

Definition 6: SupposeS = {s1, . . . , sn} is a set of nodes inT and E = {e1, . . . , el} is the set of edges used

by theS-paths. Thedegree of interference (DOI) of nodess1, . . . , sn, denoted byd(S) or d(s1, . . . , sn), is

d(s1, . . . , sn) =
l

∑

i=1

(number ofS-paths viaei − 1)

= n(average path length)− l

For example in Fig. 1, ifu = 01100, v = 01101 and w = 01010, thend(u, v, w) = 3 because the number of

S-paths on edge (01100, 01000) is 2 and on edge (01000, 00000) is 3.
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Fig. 3. The worst-case link stress at the overlay network

The following gives a justification for this measure. Suppose the servers inS each transmit a data stream to the

client (the root). Let the base case for comparison be that every edge involved in the parallel download session

sees exactly one downloading stream, which would be the caseif the paths from the servers to the root are all

disjoint. The DOI measures the difference between the total number of streams seen by all edges and the base case.

From a slightly different viewpoint, suppose there is one unit of cost associated with a stream traversing an edge.

The DOI is the difference between the actual total cost and thecost of the base case. By its definition, the DOI

is equal to the sum of the path lengths from all nodes inS, minus the total number of edges used. It tends to be

small when the average path length, hence the average path delay, is small. Since the aggregate bandwidth used

by all connections in a downloading session is proportionalto the average path length, the DOI also measures the

total bandwidth usage by the session. In this respect, it is similar to the performance measure,work, in [30]. The

algorithm for minimizing the DOI is presented in our previous work [39], and will not be a focus of the paper.

Note that minimizing the DOI is related to but not the same as minimizing the average path length.

A. Single Client Case - Performance on Overlay Network

In this experiment, we compare the goodness of the server selection schemes for a single client. We vary the

size of the hypercube from 128 to 4096 nodes and, from each hypercube, a reasonable size (25%) subset of all

nodes is chosen as the candidate set. The client selectsk = 20 servers from the candidate set.

Fig. 3 shows the number of streams on the most stressed edge, i.e., the WLS, for different sizes of the hypercubes

when the random scheme, the closest scheme, the DOI-minimizing scheme, and the WLS-minimizing scheme are

used, respectively. In all cases, the WLS-minimizing scheme clearly generates the best results, and the random

scheme performs the worst. The WLS of the random scheme can be four times as much as that of the WLS-

minimizing scheme. The WLS-minimizing scheme and the DOI-minimizing scheme are effective in reducing the

bottleneck stress. We observe that the closest scheme isn’tsignificantly better than the random scheme. The WLS

shows no clear trend as the hypercube size increases under the random scheme, the closest scheme, and the DOI-

minimizing scheme. It decreases under the WLS-minimizing scheme due to the decrease in the density of the

servers in the candidate set.

Fig. 4 shows the DOI of all servers for different sizes of the overlay networks. As we would expect, the

DOI-minimizing scheme has produced the best results over all the cases. It is interesting to notice that the WLS-
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Fig. 4. The degree of interference of the servers at the overlay network
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Fig. 5. The average length of the paths from the servers to the client at theoverlay network

minimizing scheme generates only slightly higher DOI than the DOI-minimizing scheme. The random scheme has

up to three times as much DOI as the DOI-minimizing scheme or the WLS-minimizing scheme.

In Fig. 5, we compare the average length of the paths from the selected servers to the client. The optimal schemes

(the closest scheme, the DOI-minimizing scheme, and the WLS-minimizing scheme) offer much shorter average

path length than the random scheme. For example, when the size of hypercube is 4096, the average path length can

be reduced from 6.11 to 2.3, if we use the WLS-minimizing schemerather than the random scheme. This means

that the optimal schemes can perform better than the random scheme in terms of response time due to shorter round

trip time (RTT), particularly true when the overlay hypercubenetwork is locality aware. As noted in our literature

review in Section I, downloading from nearby servers is an objective sought by many existing content distribution

systems. In addition, since the number of paths is constant,the optimal schemes use much fewer links, hence, less

network resource, than the random scheme.

B. Single Client Case - Performance on Physical Network

Similar simulations were also performed on the Transit-Stub model [43] using a 2-level hierarchy of routing

domains with transit domains that interconnect lower levelstub domains. The simulations run on network topologies

consisting of 4200 nodes split into 10 Autonomous Systems (AS). The average diameter of the network is 10.5.

We vary the size of the overlay networks from 128 to 4096 nodesand, from each network, a reasonable size (25%)

subset of all nodes is chosen as the candidate set. The candidate nodes are uniformly distributed over the 4200

nodes. The client selectsk = 20 servers from the candidate set. The simulator counts the number of streams on each

physicallink and assigns a constant delay to each link. It does not model either queuing delay or packet losses. The
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Fig. 6. The average of 5 worst physical link stresses
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Fig. 7. The degree of interference of the servers

path length is measured in terms of the number ofphysical links. We run each experiment with different random

number generator seeds and present the average of the results obtained.

Fig. 6 shows the average number of streams on the five most stressed physical links, for different sizes of the

overlay networks when the random scheme, the closest scheme, the DOI-minimizing scheme, and WLS-minimizing

scheme are used, respectively. In all cases, the WLS-minimizing scheme generates the best results, and the random

scheme performs the worst. Improvement of up to 38% was observed, if we use the WLS-minimizing scheme

rather than the random scheme.

Fig. 7 shows the DOI on the physical links for different sizes of the overlay networks. The DOI-minimizing

scheme has produced the best results over all the cases. It isnoticeable that the WLS-minimizing scheme and the

closest scheme generate only slightly higher DOI than the DOI-minimizing scheme. The random scheme has up to

three times as much DOI as the other three schemes.

Fig. 8 shows the average length of the paths from the selected servers to the client for different sizes of the

overlay networks. The optimal schemes performs significantlybetter than the random scheme. As the size of overlay

networks increases, the average length of paths increases under the random scheme, but, the optimal schemes show

no such trend. The optimal schemes use much fewer links, hence, less network resource, than the random scheme.

C. Multiple Client Case - Performance on Overlay Network

In this experiment, the overlay network has 4096 nodes, a quarter of which are candidate nodes. There are

100 clients, each selecting 20 servers from the shared candidate set. The candidate nodes and the clients are both
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Fig. 8. The average length of the paths from the servers to the client
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Fig. 9. The worst case link stress for the case of 100 clients at the overlay network

uniformly distributed over the 4096 nodes. We use a heuristic algorithm in which each client independently applies

the optimal schemes.

Fig. 9 depicts the number of streams on the most stressed edge for the four selection schemes. The WLS-

minimizing scheme still achieves the best result (5), as compared to the DOI-minimizing scheme (10), the closest

scheme (12.5) and the random scheme (20). The WLS-minimizing scheme is still very effective at reducing the

stress at the bottleneck link for the multiple-client case.

Fig. 10 shows the total DOI of all connections between each andevery client and its selected servers. The

DOI-minimizing scheme yields the lowest DOI, much lower than the random scheme, and slightly lower than the

WLS-minimizing scheme and the closest scheme.

Fig. 11 compares the average path length of the connections between each and every client and its selected servers.
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Fig. 10. The degree of interference of all connections for the case of100 clients
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Fig. 12. Distribution of link stress for the case of 100 clients at the overlay network

The average path lengths of the closest scheme, the DOI-minimizing scheme and the WLS-minimizing scheme are

1.9, 2.5 and 2.4, respectively, and that of the random schemeis 6.03. The former three schemes still perform much

better than the random scheme, leading to lower response time and less network resource requirement.

Fig. 12 plots the distribution of the link stress in the case of100 clients. Note that, for every stress level, the

WLS-minimizing scheme has the fewest edges at that level than the other schemes, and that the curve also has

shorter tail.This suggests that, if we identify “load” with the number of streams on an edge, the WLS-minimizing

scheme is the best from the network load-balancing point of view.

D. Multiple Client Case - Performance on Physical Network

The simulation results on the Transit-Stub model are reportedin Fig. 13, Fig. 14 and 15. Fig. 13 depicts the

average number of streams on the five most stressed physical links. It can be reduced by up to 51% if we use the

WLS-minimizing scheme rather than the random scheme. Fig. 14 shows the total DOI of all connections between

each and every client and its selected servers. Fig. 15 shows the average path length of the connections. It is

noticeable that the general trends on the physical links arethe same as the overlay cases. We also observed that

the distribution of physical link stress shows the same trends as in Fig. 12.

E. Distributed Implementation and Scalability

Low computation complexity is only one of the factors for successful adaptation of the server selection algorithms

to large networks. The scalability of the algorithms in a distributed system is often dominated by communication
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Fig. 14. The degree of interference of all connections for the case of100 clients

overhead and constraints rather than computation complexity. In this section, we will address such issues in

distributed implementation.

First, we would like to point out that the proposed algorithm is friendly to distributed implementation, because

only the IDs of the candidate nodes are needed at each client.This important fact is due to the known structure of

the hypercube network. The problem of distributing the candidate list is similar to many relatively easy, classical

information dissemination problems in networking. For instance, we may rely on well-known servers that maintain

the candidate list, on limited flooding of the candidate list or the queries for the list, on random walk type of

information dissemination, or on distributed hash table based information retrieval.

In a large network with a large candidate server set, it may beimpractical for each client to receive the entire
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Fig. 15. The average path length of connections for the case of 100 clients
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Fig. 16. The average of 5 worst physical link stresses for the case of100 clients. The entire candidate set has 1024 nodes. The three

columns for each server selection scheme correspond to the cases where each client has knowledge of 1024, 256 or 64 candidates.
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Fig. 17. The degree of interference of all connections for the case of100 clients. The entire candidate set has 1024 nodes. The three

columns for each server selection scheme correspond to the cases where each client has knowledge of 1024, 256 or 64 candidates.

list of candidates in time, particularly when such a set changes quickly overtime. We will show that the proposed

server selection algorithm still yields significant performance improvement when only a (different) subset of the

candidates is visible to each client.

In the experiment, we assume the same Transit-Stub model as inprevious sections, and the overlay network

has 4096 nodes, 1024 candidate nodes, 100 clients each selecting 20 servers. All performance metrics are with

respect to the underlay physical network. We compare three situations where each client has knowledge of all 1024

candidates, or 256, or 64 candidates. In the case where each client sees only a subset of the candidates, say 256

of them, the partial set is randomly chosen from the entire candidate set.

Fig. 16 depicts the average number of streams on the five most stressed physical links for the four selection

schemes. Regardless the size of the candidate set for each client, the random scheme performs equally bad. For

the optimal schemes, the link stress decreases as each client sees more and more candidates. Even when the size

of each visible candidate set, say 256, is significantly smaller than that of the entire candidate set, the reduction in

link stress compared with the random scheme is significant.

The simulation results on the DOI and the average path length shown in Fig. 17 and 18 also confirm the above

observation. In fact, for those two performance measures, the optimal schemes perform better even with 64 visible

candidates for each client.
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Fig. 18. The average path length of connections for the case of 100 clients. The entire candidate set has 1024 nodes. The three columns
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Fig. 19. The average of 5 worst physical link stresses for the case of100 clients. The overlay network has a name space size 4096 and

contains 2048 nodes.

F. Name Space Not Fully Occupied

In this section, we consider the situation where the name space is not fully populated by nodes. This is the most

likely scenario for an ad-hoc P2P network with frequent node joins and leaves, but less an issue for a managed

content distribution network. We modify the routing as follows. When a message for destinationd arrives at a

node, the next node will be the first available node on the hypercube path tod. This results in an increase in the

routing table size. However, one can substitute routing-table-based routing by on-demand routing. The hypercube

path to the destination is probed before the data messages are sent, and the route is either encoded in the messages

themselves or cached at the intermediate nodes.

The server selection strategy is, given the list of candidate, each client selects servers as if the network is a

hypercube. In our simulation experiments, we again use the same Transit-Stub model as in previous sections. The

overlay network has a name space size 4096, but only contains2048 actual nodes, uniformly distributed over the

4200 nodes. There are 100 clients, each selecting 20 servers from the shared candidate set of 1024 nodes. Fig.

19, 20 and 21 show the resulting worst link stress, DOI and average path length, respectively. Compared with the

results for the fully-occupied hypercube in Section IV-C, the performance gain of the optimal schemes has not

deteriorated.
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Fig. 20. The degree of interference of all connections for the case of100 clients. The overlay network has a name space size 4096 and
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Fig. 21. The average path length of connections for the case of 100 clients. The overlay network has a name space size 4096 and contains

2048 nodes.

V. CONCLUSIONS

In this paper, we make an in-depth investigation on the issueof server/peer selection, which is a fundamental

problem in parallel data access or collaborative content distribution. We envision a hypercube overlay network,

and give a node selection scheme that generates an optimal server set with respect to the worst link stress (WLS)

criterion. The optimal scheme does not require the network topology or routing information; nor does it require

the measurement of the network performance data. The only assumption is that the client can obtain the list of IDs

of the candidate servers through the overlay network. The scheme has a running time ofO(nm2) in theory and

O(nm) in practice, wheren is the number of nodes in the candidate set and2m is the size of the network. The

freedom from network measurement and low implementation complexity make the overall scheme scalable. One

of the main contributions of the paper is to carefully develop the ideas that make this fast and simple algorithm

possible.

We have presented simulation results to demonstrate the benefits of the optimal node selection schemes. We

conclude that the WLS-minimizing scheme performs significantly better than the random node selection scheme in

all performance measures we evaluated. Compared to two other optimal schemes, it has a noticeable advantage in

reducing the WLS, and is very competitive in terms of the average path length against the closet scheme, and in

terms of the DOI against the DOI-minimizing scheme.

We summarize the real-world advantages of the WLS-minimizingscheme as follows. First, it minimizes the level
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of congestion at the bottleneck link. This balanced use of thenetwork leads to higher chance of accommodating

other sessions, and ultimately can benefit all sessions. Second, minimizing the WLS can be turned into maximizing

the achievable throughput. This both speeds up the individual downloading session and allows the network to

accept more sessions, hence, improving the efficiency of network resource utilization. Third, the outcome of WLS-

minimization consumes less network resources in terms of the total number of links used and the total bandwidth

usage. Fourth, it leads to low average RTT to selected servers, hence, allowing nearby nodes to exchange more

data, a desirable feature for overlay-based content distribution.

Our optimal algorithm can also work well for any general network with known topology, at the expense of

higher communication overhead for collecting the topologyand routing information and computation complexity

for manipulating the unstructured graph. Such a general network is more suitable for an ad-hoc distribution system,

whereas the hypercube network is more suitable for a managedsystem. In this paper, when justifying the WLS as a

measure of congestion, we assume the overlay links are of similar bandwidth, a reasonable assumption for a managed

infrastructure overlay network. Our formulation and algorithm should handle a small degree of heterogeneity well,

possibly with minor modification to treat special cases. If the link bandwidth varies considerably, the optimization

objective should take into account this heterogeneity, forinstance, by considering the normalized WLS against the

link bandwidth. A complete solution to this modified problem is worth further investigation.
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[28] D. Kostić, R. Braud, C. Killian, E. Vandekieft, J. W. Anderson, A. C. Snoeren, and A. Vahdat, “Maintaining high bandwidth under

dynamic network conditions,” inProceedings of USENIX Annual Technical Conference, 2005.

[29] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: A cooperative bulk data transfer protocol,” inProceedings of IEEE Infocom,

Hong Kong, March 2004.

[30] D. Bickson, D. Malkhi, and D. Rabinowitz, “Efficient large scale content distribution,” inProceedings of the 6th Workshop on Distributed

Data and Structures (WDAS’2004), Lausanne, Switzerland, July 2004.

[31] M. Adler, R. Kumar, K. Ross, D. Rubenstein, T. Suel, and D. Yao, “Optimal peer selection for p2p downloading and streaming,” in

Proceedings of IEEE Infocom, Miami, FL, March 2005.

[32] R. L. Carter and M. Crovella, “Server selection using dynamic pathcharacterization in wide-area networks,” inProceedings of IEEE

Infocom, 1997, pp. 1014–1021.

[33] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness ofdns-based server selection,” inProceedings of IEEE Infocom, Anchorage,

AK 2001.

[34] A. Ganesh, L. Massoulie, and D. Towsley, “The effect of network topology on the spread of epidemics,” inProceedings of IEEE

Infocom, Miami, FL, March 2005.

[35] Z. Tang and J. J. Garcia-Luna-Aceves, “Hop-reservation multiple access (HRMA) for ad-hoc networks,” inProceedings of IEEE

Infocom, New York, NY, March 1999.

[36] M. Adler, E. Halperin, V. Vazirani, and R. M. Karp, “A stochastic process on the hypercube with applications to peer-to-peer networks,”

in ACM Symposium on Theory of Computing, San Diego, CA, June 2003.

[37] S. S. Lan and H. Liu, “Failure recovery for structured P2P networks: protocol design and performance evaluation,” inACM

SIGMETRICS/Performance 2004, New York, June 2004.



26

[38] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein,Introduction to Algorithms, 2nd ed. The MIT Press, 2001.

[39] S. C. Han and Y. Xia, “Constructing an optimal server set in structured peer-to-peer network,”IEEE Journal on Selected Areas in

Communications, vol. 25, no. 1, pp. 170–178, Jan. 2007.

[40] S. Annapureddy, M. J. Freeman, and D. Mazières, “Shark: Scaling file servers via cooperative caching,” inProceedings of the 2nd

USENIX/ACM Symposium on Networked Systems Design and Implementation(NSDI 05), Boston, MA, May 2005.

[41] A. Miu and E. Shih, “Performance analysis of a dynamic parallel downloading scheme from mirror sites throughout the internet,” 1999,

http://nms.lcs.mit.edu/∼aklmiu/comet/paraload.html.

[42] A. Zeitoun, H. Jomjoom, and M. El-Gendy, “Scalable parallel-access for mirrored servers,” inProceedings of IASTED International

Conference on Applied Informatics, February 2002.

[43] K. Calvert, M. Doar, and E. W. Zegura, “Modeling internet topology,” IEEE Communications Magazine, June 1997.


