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Abstract—Computational clouds have evolved to go beyond
cost-effective on-demand hosting of IT resources and elasticity.
The added features now include the ability to offer entire IT
systems as a service that can quickly adapt to changing business
environments. The new trend introduces challenges in datacenter
resource management, including scalability, system-orientation,
and optimization supporting both datacenter efficiency and
customer system agility and performance. The conventional VM-
centric approach of resource management adopts a flat fine-
grained model that results in problem formulations of enormous
sizes. The difficulty in scalability hinders cloud providers’ ability
to improve resource efficiency and workload performance. In
this paper, we introduce a pack-centric approach to datacenter
resource management by abstracting a system as a pack of
resources and considering the mapping of these packs onto
physical datacenter resource groups, called swads. The assign-
ment of packs/VMs to swads/PMs is formulated as an integer
optimization problem that can capture constraints related to the
available resources, datacenter efficiency and customers’ complex
requirements. Scalability is achieved through a hierarchical de-
composition method. The new datacenter resource management
framework is illustrated with a concrete resource allocation
problem, which is interesting by itself and challenging. The
problem formulation, our solution, and numerical experiments
show the capability of integer programming formulations, the
scalability of the hierarchical decomposition method, and the
benefits of the overall framework.

Index Terms—Cloud Computing, Datacenter, Virtual Machine
Placement, Resource Allocation, Integer Programming

I. INTRODUCTION

Over the last ten years computational clouds have become
widely used by large and small enterprises as their most cost-
effective means to deploy IT services. However, the value
proposition offered by computational clouds has evolved to go
beyond cost-effective on-demand hosting/management of IT
resources and elasticity [1]. The added value now includes the
ability to offer entire IT systems as a service (versus isolated
resources that the customer needs to build into a system) that
can quickly adapt to changing business environments (versus
being statically configured) and are automatically optimized
in response to changes in either the environment or the
workload. An example is an enterprise outsourcing its entire
intranet to the cloud, instead of simply asking for a number
of virtual machines (VM). The intranet consists of layers of
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networking and resource grouping that need to be implemented
in datacenters.

These new capabilities - agility and continuous optimization
- are enabled by building datacenters where resources and
environments can be (re)configured programmatically on the
basis of monitoring information and predictive models of
behavior and workload. Industry has recently coined the term
“software-defined” to refer to these new types of datacenters
[1]–[5], built on the foundation of virtualization of computing,
network, storage, software and all other datacenter resources.
A parallel development is that some datacenters are rapidly
increasing in scale, having up to several millions of servers,
hundreds of thousands of cloud customers, and millions of end
users of services provided by cloud customers [6].

The above-mentioned evolution of datacenters introduces
new challenges in management as well as new opportunities
[1]–[4]. The challenges are scalability, system-orientation, and
optimization supporting both datacenter efficiency and cus-
tomer system agility and performance. The opportunities are
in considering systems as units of management therefore cre-
ating (1) hierarchical structure in resource management which
contributes to scalability and (2) linkage between resources
and business objectives which contributes to agility. In this
paper, we pursue these opportunities by abstracting a system
as a pack of (virtual) resources and considering the mapping of
these packs onto physical datacenter resource groups (called
swads) subject to constraints related to the physical datacenter
topology and available resources, datacenter efficiency and
customers’ complex requirements. This is a major departure
from most previous datacenter management approaches which
rely on a VM-centric view rather than a system/pack-centric
approach (hereon referred as pack-centric approach).

In VM-centric management of virtualized resources, each
customer specifies a desired number of virtual machines
(VMs)1 as well as the resource requirements for each VM,
including CPU, memory, storage, I/O throughput, and possibly
bandwidth between VM pairs, defined in deterministic terms
[7]–[9] or stochastic terms [10], [11]. A cloud provider’s
datacenters have a large number of server blades (physical
machines, PM) mounted on racks and connected through
layers of switches that form the datacenter network [12]. One
of the important problems for datacenter resource management
(a.k.a. allocation) is to map VMs to PMs such that certain

1We focus on datacenters where provisioning is based on resource virtual-
ization. This paper’s results are also extendable to the management of other
types of datacenters (e.g., those using bare-metal provisioning).
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cost, profit or performance objectives are optimized, subject to
server resource constraints and network bandwidth constraints.

The above VM-centric problem is already quite difficult to
solve for a large datacenter. Instead of optimal resource man-
agement, most deployed or proposed management schemes
tackle specific aspects of the problem and usually adopt sub-
optimal, heuristic solutions (see Section II for discussion of
related work). The problem becomes even more complicated
when datacenters attempt to support entire IT systems as a
service with the intended agility and performance, for the
following reasons. (1) A system deployment requested by
a customer may contain complex relationships among the
system components, such as resource grouping and hierarchy,
various colocation or anti-colocation constraints, topological
relationships, or workflow dependencies and traffic patterns.
(2) The resource demand from each customer can vary signif-
icantly over time; thus, the resource allocation decisions need
be continuously carried out. (3) Customers may not know the
fine-grained system requirements at the individual VM level at
all time, but may have partial information at certain aggregate
levels and/or at a coarser timescale. (4) The resource allocation
outcome often needs to achieve complex goals in multiple
areas, such as the datacenter profit, energy consumption and
thermal management, resource utilization, migration costs, and
customers’ workload performance (e.g., throughput, latency).

All the above boil down to two difficult issues - (1) how
to incorporate all the complexity into workable problem for-
mulations for high-quality resource allocation decisions, and
(2) how to solve the problems in a timely manner. To address
the first issue, we propose to use mixed integer programming
formulations [13], which are general and flexible, thus ideally
suited to characterize customers’ complex requests of all sorts
(see the IBM Connections example in Section III-D and the
problem in Section IV), as well as complex objectives. The
second issue is important, because, for a large datacenter, an
integer programming formulation can easily involve trillions
of variables as our later examples suggest, and there is no
hope to solve it optimally within acceptable time. We propose
a hierarchical decomposition method to break the large, hard
problem into many subproblems, each of which will be suffi-
ciently small and solvable quickly by integer programming
algorithms. The decomposition is possible in part because
of our abstraction of packs and swads. The subproblems
have one-to-one correspondence to the swads in the swad
hierarchy. They can mostly be solved independently from each
other, making parallel computation possible by using multiple
management servers. Unlike many prior work where various
specialized algorithms are invented for special problems, the
use of generic integer programming algorithms means that
there is no need to craft different specialized algorithms for
customers’ constantly-changing requirements.

We next summarize the main contributions of this paper.
(1) We propose a pack-centric approach to datacenter resource
management, which is capable of supporting system-oriented
services. (2) We adopt mixed integer programming formu-
lations and algorithms for datacenter resource management
problems since they are capable of capturing and solving com-
plex, changing, sometimes vague requirements and constraints,

thus providing the envisioned agility of the next-generation
datacenters. Since optimization is involved, such formulations
are a good starting point for improved performance with
respect to the datacenter’s and customers’ objectives. (3) For
scalable solutions, we propose hierarchical decomposition of
the resource allocation problem in accordance with the pack
and swad hierarchies that are often natural in the system-
oriented, pack-centric datacenters.

The rest of the paper is organized as follows. In Section
II, we discuss additional related work. In Section III, we
discuss the pack-centric approach, including an overview of
the pack and swad hierarchies, hierarchical decomposition and
periodic re-optimization. In Section IV, we apply the integer
programming formulation to an important datacenter resource
management problem, which is to assign a large number of
VMs to a large number of PMs under a disk exclusivity
requirement. The problem illustrates how the integer program-
ming formulation is capable of capturing complex constraints.
It also shows the scalability challenges in such problems.
In Section V, we show how to solve the above problem
using hierarchical decomposition and we present experimental
results to demonstrate the effectiveness of the approach. In
Section VI, we draw conclusions and discuss additional issues.

II. RELATED WORK

Prior studies on datacenter management generally avoid
integer programming formulations all together. In the cases
where integer programming is used, the focus is usually on
developing more specialized combinatorial algorithms such
as multi-dimensional bin-packing [14], [15], graph algorithms
[10] or sophisticated heuristics [16], which are only applicable
to special problems with the structures required by those
algorithms. The resource allocation problems that we consider
have varied, far more complex constraints, often unknown
ahead of the time. The aforementioned specialized algorithms
will not apply. Practical cloud systems usually adopt less
sophisticated heuristics, such as first-fit and round-robin, as
evidenced by open-source middleware stacks [17]–[19]. While
simple heuristics can be highly scalable, they can also be
underachieving in terms of performance.

We propose to stay with integer programming formula-
tions as far as possible. To find solutions, we propose to
use a hierarchical decomposition method to replace a flat,
large integer programming problem by many much smaller
subproblems, each of which is far easier to solve and can
be solved in parallel by separate solvers. The authors of [20]
also propose an idea of hierarchical decomposition, but on
a specific problem with the specific objective of reducing
datacenter network traffic by intelligent placement of the
VMs (see also [16]). They also assume a particular network
structure. Consequently, their algorithm is tailored for that
particular situation. In contrast, our pack-centric approach is
a more thorough-going hierarchical framework for datacenter
resource management. Combined with integer programming
formulations, it is also a more general and flexible frame-
work. Our hierarchical decomposition is tied to the pack/swad
hierarchies, and hence, is systematic.
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A recent work [4] overlaps with this paper in considering
how a software-defined datacenter can offer system-oriented
complex services to the cloud customers. The level of com-
plexity in service offerings and performance objectives is com-
parable to what we envision. However, the approaches of the
two are quite different. While we propose to explicitly formu-
late integer optimization problems periodically and in batches
and solve the problems by integer programming algorithms,
[4] does not have a clearly formulated optimization problem.
For resource placement, [4] takes an incremental and random-
ization approach with immediate random placement of the
requested resources at the time of the request arrivals, followed
by subsequent gradual adjustment of the placement based on
the observed performance. The adjustment is also through
randomization, although the parameters for random sampling
get modified over time (the details of how to do this are
missing in [4]). Colocation and anti-colocation requirements
are satisfied by sequential placement of the resources, with
the resources placed earlier constraining the placement of the
later resources. Our periodic batch optimization approach will
bring improved resource efficiency and workload performance
over any incremental, heuristic approaches. Finally, in between
batch optimization events, our framework also incorporates
the immediate random placement aspect in [4] for simple
requests; complex requests are also handled immediately but
by optimization.

The authors of [21] formulate a combinatorial optimization
problem of joint VM placement and routing in datacenters.
They develop a heuristic randomized algorithm by applying
the Markov chain Monte Carlo method. In [22], a more general
version of routing and VM placement problem is formulated
and solved with an online randomized algorithm (see also
[23]). Due to their specificity and limited scalability, these
algorithms are unlikely to be directly applicable to large, com-
plex datacenter management problems that we envision. Our
decomposition method will break a large, complex optimiza-
tion problem into much smaller subproblems of optimization.
For each subproblem, we can always apply standard integer
programming algorithms. Non-standard algorithms, such as
randomized algorithms or approximation algorithms (e.g., see
[24]), can also be used; but they will have to be developed from
scratch due to the significant differences in the problems.

There are related proposals on short-term dynamic resource
re-allocation based on workload monitoring and prediction
[25]–[35]. Their common assumption is that the workload
dynamic can be captured by linear system models or other
statistical models. Then, adaptive control algorithms are de-
veloped. A comprehensive discussion can be found in the
survey paper [36]. These proposals typically are restricted to
(1) managing much smaller systems, e.g., a single PM with
multiple VMs or a small-scale server cluster, (2) with limited
performance objectives, e.g., energy saving while providing
the required service quality to the workload, (3) and with
limited workload complexity, e.g., no colocation constraints
and no network requirement. Such restrictions make the re-
source allocation problems much simpler and thereby allow
algorithms to re-allocate resources more frequently based
on more recent workload information. Aspects of the ideas

and algorithms in that stream of literature may be added to
our framework to act on a shorter timescale (than our re-
optimization period) for some of the simpler subproblems.

III. PACK-CENTRIC ARCHITECTURE OF DATACENTER
RESOURCE MANAGEMENT

The new pack-centric framework supports a variety of
sophisticated, complex, system-oriented cloud-computing ser-
vices. It also allows natural hierarchical grouping of resource
requests, which can then be mapped to the hierarchy of phys-
ical resource groups in a datacenter. The hierarchies enable
a scalable, hierarchical decomposition approach for solving
large resource allocation problems.

A. Definitions and Examples of Pack and Swad
1) Pack Hierarchy: We propose a new abstraction called

pack, which is a set of VMs, smaller packs and other (virtual)
resources that should be placed as a group in a datacenter for
the purpose of resource sharing or performance enhancement.
This recursive definition allows a customer to organize its
resource requirement in a hierarchical structure, as illustrated
by Fig. 1, which shows a scenario of a multinational cor-
poration outsourcing its IT infrastructure to the cloud. The
corporation has a branch in London, a branch in Shanghai, and
its headquarters in San Jose, corresponding to three packs. The
headquarters pack further consists of a firewall VM and three
lower-level packs, describing the resource requirements by the
management department, finance department, and engineering
department, respectively. Continuing further with the example,
let’s suppose the pack for the London branch requires 100
VMs for various databases, servers and other computing tasks.
The workload on these VMs and the resource requirement
cannot be fully predicted since the VMs may be assigned to
different tasks as needed in the future. Instead of committing
a fixed amount of each resource to each VM, it makes more
sense to specify the combined requirements for each resource
for the whole pack and let the VMs share the common pool of
resources dynamically as needed. A natural way to facilitate
resource sharing is to place these VMs as a group in a cluster
of colocated physical servers. A controller can be implemented
to monitor in real time the resource usage by the pack and
dynamically adjust the resource distribution among the VMs.

2) Swad Hierarchy: We define a swad as a set of PMs,
other physical resources (e.g., network storage) or lower-level
swads in a cloud system. The resource capacity of a swad is
equal to the sum of the capacities of its components, possibly
excluding a certain percentage of resources that may be set
aside to support elasticity (which allows a VM or pack to
dynamically scale up its resources in real time). In the example
of Fig. 2 with a fat-tree topology [37], a swad corresponds
to all the servers of a rack, shown by the nodes labeled with
“swad” in the right figure. We then recursively group a number
of lower-level swads into a higher-level swad, as illustrated by
the nodes labeled with “SWAD”, giving rise to a hierarchical
structure (tree), with the whole cloud system as a swad at the
root. While the fat-tree topology in Fig. 2 has two levels (pod
and rack), the swad hierarchy may have an arbitrary number
of levels.
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Fig. 1. VMs and other virtual resources can be organized through a recursive, hierarchical pack structure determined by administrative boundaries, locations
and resource sharing requirement.
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Fig. 2. Swad-based hierarchical abstraction of a cloud system

B. Construction of Pack and Swad Hierarchies

The swad hierarchy is established by the cloud provider
alone according its resource management policies, proximity
of physical resources and various other constraints (see Fig.
3).
Example: Suppose the cloud system has several geograph-
ically separated datacenters. The entire cloud system can be
abstracted as a level-0 swad. Each datacenter becomes a level-
1 swad. Suppose each datacenter has a number of zones, where
each zone corresponds to a highly interconnected region in the
datacenter. Then, each zone can be a level-2 swad. Each rack
in a zone can be a level-3 swad. The PMs on a rack are level-4
nodes, which are leaves of the swad hierarchy (tree).

The pack hierarchy is established by combining the cus-
tomers’ pack specifications and the cloud provider’s consid-
erations. A customer’s request may be already in the form
of a pack hierarchy, such as the example of Fig. 1. The
cloud provider collects such pack requests from the customers
and establishes the final pack hierarchy (see Fig. 4). Each
customer’s pack hierarchy will be a subtree in the final pack
hierarchy. The provider can group multiple pack hierarchies
from the customers into a higher-level pack. The grouping
process continues upward recursively to form the final pack
hierarchy. There is a great deal of flexibility in constructing
the pack hierarchy. The construction ultimately depends on
many factors, including the provider’s resource management
policy, customers’ need for pack isolation and/or colocation,
security arrangement, the details of the swad hierarchy and
other constraints in the datacenter. For instance, packs from
customers with business ties may be placed under a common
parent pack to increase the likelihood of colocation for better
communication performance.

A comprehensive study on how to construct the swad and
pack hierarchies is outside the scope of this paper. Subse-
quently, we assume both hierarchies are given. The swad and
pack hierarchies each form a tree. The depth of a node in a tree
is called the level of the node, with the root node at level 0 by
convention. The leaves of the pack hierarchy can be VMs or
packs; the leaves of the swad hierarchy can be PMs or swads.

C. Hierarchical Decomposition - Pack-to-Swad Assignments

Aside from the benefits that packs allow system-oriented
cloud services and increased customer agility, the other main
use of the pack and swad hierarchies is to break a large
resource allocation problem of enormous complexity into a
series of much smaller subproblems that are far easier to
solve quickly and can be mostly solved in parallel2. There is
an assignment subproblem associated with each swad on the
swad hierarchy, which assigns some packs/VMs to the child
swads/PMs of the focal swad.

Starting from the root of the swad hierarchy, the assignment
is performed recursively. First, the root of the pack hierarchy
is assigned to the root of the swad hierarchy, assuming the
swad has sufficient resource capacity to support the pack.
The next step is to assign the children of the root pack to
the children of the root swad. The assignment process then
continues downward along the swad hierarchy, in either depth-
first or breath-first traversal order. In general, consider a swad
at level i, where i = 0, 1, . . .. Assume that some level-i packs
have been assigned to the swad in question. For that swad,
the next assignment to do is to assign the child packs/VMs of

2All subproblems at the lowest levels can be solved independently from
each other. As the experimental results in Section V show, the computation
time for these subproblems dominates the overall computation time.
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Fig. 3. An example of a swad hierarchy prepared by the cloud provider.
Circles are swads; squares are PMs.

the those level-i packs to the child swads/PMs of the level-i
swad.

Small-scale VM-to-PM assignments show up as special
cases of the above decomposition process. Consider a swad
at height 1 and suppose all its children are PMs. Suppose all
the packs assigned to the swad contain only VMs as their
children. Then, the next assignment problem associated with
the swad is a VM-to-PM assignment.
Example. Consider the assignment problem associated with
the pack hierarchy in Fig. 4 and swad hierarchy in Fig. 3. The
first step is trivial: Pack 1 is assigned to swad 1. The next step
is to assign packs 2, 3 and 4 to swads 2 and 3. Suppose the
result of the assignment (by solving an optimization problem
chosen by the provider) is that packs 2 and 3 are assigned
to swad 2, and pack 4 is assigned to swad 3. Next, consider
swad 2. The assignment problem is to assign packs 5− 20 to
swads 4− 13. Similarly, for swad 3, the assignment problem
is to assign packs 21 − 27 to swads 14 − 23. Now, suppose
packs 11 − 14 are assigned to swad 13 in the assignment
step associated with swad 2 (based on another optimization
problem). The assignment problem associated with swad 13
is to assign all the VMs in packs 11− 14 to the PMs in swad
13.

To summarize, hierarchical decomposition transforms the
complex problem of global resource management into a hi-
erarchically structured one, where the resource requirements
and performance objectives can be enforced iteratively from
higher-level swads/packs to lower-level swads/packs through
decentralized monitoring and allocation systems.

D. Periodic Re-Optimization by Integer Programming

Another key idea of the new datacenter management frame-
work is to perform periodic re-optimization and, based on that
result, update the assignment of packs/VMs to swads/PMs.
The optimization problems are formulated as integer program-
ming problems to capture complex constraints and customer
requirements, such as various colocation or anti-colocation
constraints, topological relationship among components, or
even workflow precedence relationship.
IBM Connections Example: We will illustrate complex cus-
tomer requirements by an example taken from [4], which is

Fig. 4. An example of a final pack hierarchy. Circles are packs; squares are
VMs. Enterprise customers A and B specified their own pack hierarchies, as
shown in dashed boxes. Packs 11 to 20 are created by the cloud provider;
each aggregates a set of VMs requested by individual customers.

a (virtual) system for deploying IBM Connections, a busi-
ness collaboration platform. In the example, the deployment
requires four (virtual) server clusters and each cluster contains
four virtual servers (i.e., VMs), with the requirement that (i)
the VMs in a cluster must be spread across at least two racks,
(ii) with no more than two VMs on each rack and (iii) no two
VMs in a cluster can share the same PM. The deployment
also requires two front-end HTTP servers, to be placed on
separate racks for fault tolerance and high availability. Other
components include a VM running the management server,
a VM running the security server, an external database server
and an external NFS server. Various VMs need to be connected
with desired network bandwidth and latency and protected by
firewall rules.

Periodic re-optimization may be triggered by timers or by
events (e.g., such as when the estimated resource efficiency is
below a threshold).
When re-optimization is due: The following actions are taken.

• A subset of packs/VMs is selected and a subset of
PMs/swads is selected to participate in re-optimization.
The selection depends on the cloud provider’s policy and
the states of the packs/VMs and swads/PMs, e.g., whether
a PM is running large workload and cannot be interrupted.

• A large integer optimization problem is formulated for
optimal assignment of the packs/VMs to swads/PMs,
taking into account both the customers’ and the provider’s
objectives and various constraints. The optimization prob-
lem covers all the packs/VMs and all the swads/PMs
selected in the previous step.

• A pack hierarchy and a swad hierarchy are constructed,
and the assignment subproblems in hierarchical decompo-
sition are solved by integer programming algorithms. The
packs/VMs are placed according to the solution, which
may involve VM migration.

In between re-optimization events: Customer requests for new
or additional resources are handled immediately upon arrival.
If a request is simple (e.g., for a set of non-interacting VMs), it
is handled by any online heuristic algorithm such as first-fit or
the randomized algorithm in [4]. If a request is complex (e.g.,
the IBM Connections example, or more generally, a pack with
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its own hierarchy and dependencies among its components),
a small-scale integer optimization problem is formulated to
allocate the requested resources, involving only the current
request(s) and a small set of physical resources.

There are several reasons to perform resource allocation
periodically: (1) Since on-demand packs, VMs or other re-
sources are placed immediately through sub-optimal online
heuristics or small-scale optimization, resource inefficiency
can accumulate and eventually become significant; periodic
re-optimization can restore resource efficiency. (2) To support
elastic services such as auto-scaling, the resources allocated to
a customer’s packs are allowed to dynamically change based
on the customer’s time-varying workload and measured per-
formance. (3) A customer may explicitly modify its resource
requirement for a variety of reasons.

After a re-optimization event, redistribution of the resources
may incur pack/VM migration and migration costs should have
been factored into the resource allocation formulation. This
is to ensure that re-optimization does not cause performance
degradation or costly disruption to the users. For instance,
for those packs or VMs that have very large migration costs,
constraints can be added to prevent their migration. On the
other hand, inactive packs and VMs have very low migration
costs, especially when the network traffic is light (e.g., during
the night time); they can be selected to participate in re-
optimization without any migration constraints.

The frequency of re-optimization is determined by the
overhead-benefit tradeoff, which may be estimated or mea-
sured. If re-optimization is done too frequently, the compu-
tation cost and various other overheads may be large while
the benefit may be small because only small changes may
have occurred during the short period of time between two
consecutive optimization events. If it is done too sparsely, the
opposite will be true.

IV. A CONCRETE DATACENTER RESOURCE MANAGEMENT
PROBLEM

In the following, we will describe an important datacenter
resource management problem. It serves to illustrate why
we advocate the integer programming formulation, which is
that it is capable of describing complex constraints. In this
case, it easily captures a subtle anti-colocation constraint of
disks, i.e., the disk exclusivity requirement. The example also
demonstrates the enormous scale and complexity of datacenter
management problems in general. In fact, the problem to be
described corresponds to a relatively straightforward scenario.
But, the integer programming formulation is exceedingly large
and difficult to solve using conventional algorithms. One
can imagine that more complicated datacenter management
scenarios will be much more difficult solve. We will later show
how hierarchical decomposition provides a scalable solution
framework. Finally, being a novel variant of the VM-to-PM
assignment problem, the problem is interesting in its own right.

A. Problem Formulation

We consider a problem of assigning N VMs to M PMs with
disk exclusivity constraints, which will be explained. Here, N

and M can both be fairly large, e.g., thousands or more. Each
VM has the following resource requirements: memory (GB),
vCPU, number of local disk volumes (virtual ones) and their
sizes. For the numerical experiments later, we will use the VM
types of Amazon EC2 and the local disks are SSDs (denoted
as lssd). The model can clearly be extended to include SAN
(storage area network) SSDs, local and SAN magnetic disks,
and local and network bandwidth constraints.

Each of the M PMs has certain memory, a number of
vCPUs, a number of local disks (SSDs) and their sizes. These
local disks may be in the PM or directly attached (either by
local disk interface or by fast, dedicated network interface such
as fiber channels).

1) Constraints: We first give an overview of the constraints
for this problem. With respect to each resource (e.g., vCPUs
or memory), the constraints are that the total amount of
resource required by all the VMs assigned to each PM j
cannot exceed the resource capacity of PM j. When a VM
i requests multiple local disks, there is often an exclusivity
requirement: no physical disk of the PM (to which VM i
is assigned) can contain more than one of VM i’s requested
virtual disks. For instance, separate physical disks allow the
end-user of the VM to enjoy higher total disk throughput
and/or more fault tolerance. Our problem formulation contains
several constraints to capture the exclusivity requirement. We
should point out that the disk exclusivity requirement is a form
of anti-colocation constraints and it makes the problem much
harder to solve. The problem is also much harder than typical
VM-to-PM placement problems with VM colocation and anti-
colocation constraints. A final set of constraints is that the
capacity of each physical disk must be greater than or equal
to the aggregate size of all virtual disks assigned to it.

Let the sets of VMs and PMs be denoted by V and P ,
respectively. Without loss of generality, let V = {1, 2, . . . , N}
and P = {1, 2, . . . ,M}. For each VM i, let αi be the number
of vCPUs required and let βi be the memory requirement
(in GiB)3. Suppose for each VM i, a set of virtual disks
is requested and the set is denoted by Ri. For each of the
requested virtual disks k ∈ Ri, let νik be the requested disk
volume size (in GB).

For each PM j, let Cj be the number of available vCPUs,
Mj be the amount of memory (in GiB), and Dj be the set of
available physical disks. The sizes of the physical disks are
denoted by Sjl (GB) for l ∈ Dj .

For each i ∈ V and each j ∈ P , let xij be the binary
assignment variable from VM i to PM j, which takes the value
1 if i is assigned to j and 0 otherwise. The binary variables
yikjl are used for disk assignment: yikjl is set to 1 if VM i is
assigned to PM j and the requested virtual disk k, where k ∈
Ri, for VM i is assigned to the physical disk l of PM j, where
l ∈ Dj ; it is set to 0 otherwise. The following constraints are

31 GiB (gibibyte) is equal to 230 bytes, which is 1, 073, 741, 824 bytes;
1 GB (gigabyte) is equal to 109 bytes.
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required:

yikjl ≤ xij , i ∈ V, j ∈ P, k ∈ Ri, l ∈ Dj (1)∑
j∈P

∑
l∈Dj

yikjl = 1, i ∈ V, k ∈ Ri (2)

∑
j∈P

xij = 1, i ∈ V (3)∑
k∈Ri

yikjl ≤ 1, i ∈ V, j ∈ P, l ∈ Dj (4)∑
i∈V

∑
k∈Ri

νikyikjl ≤ Sjl, j ∈ P, l ∈ Dj . (5)

The condition (1) ensures that the requested virtual disks for
VM i may be assigned to the physical disks of PM j only if
VM i is assigned to PM j. The condition (2) ensures that every
requested virtual disk must be assigned to exactly one physical
disk. The condition (3) ensures that every VM is assigned to
exactly one PM. The condition (4) ensures that VM i cannot
have more than one virtual disks assigned to the same physical
disk. The condition (5) is the disk capacity constraint.

We will check some subtler implications. Suppose yikjl = 1.
By (1), we have xij = 1; hence, VM i must be assigned to
PM j. Suppose VM i requests more than one virtual disk.
Suppose k′ 6= k. Then, the virtual disk k′ cannot be assigned
to a PM other than j; otherwise, xij′ = 1 for some j′ 6= j,
which violates (3). Furthermore, by (4), k′ must be assigned
to one of PM j’s disks other than l.
Remark. One of the key points is that integer program-
ming formulations can capture subtle or complex require-
ments quite easily, such as the disk exclusivity requirement,
pack/VM/storage colocation and anti-colocation constraints,
resource grouping and hierarchy, other topological constraints,
network constraints, and workflow dependencies. The various
requirements in the IBM Connections example in Section III-D
can all be expressed.

The following are the constraints posed by the number of
vCPUs and the total memory size of each PM j.∑

i∈V
αixij ≤ Cj , j ∈ P (6)∑

i∈V
βixij ≤Mj , j ∈ P. (7)

2) Costs and Optimization Objective: The costs and per-
formance objective will ultimately be decided by the cloud
provider. For concreteness, we assume that a fixed operation
cost is incurred for a PM as long as the PM is used by some
VMs (that is, some VMs are assigned to the PM). Specifically,
when a PM j is turned on to serve some VMs, there is a fixed
cost ĉj associated with running the PM; when the PM is off,
there is zero cost involved. The operation cost may include the
average energy cost when a machine is running and typical
maintenance cost.

Let zj be a 0-1 variable indicating whether PM j is used
by some VMs. To ensure that zj = 1 if and only if xi,j = 1
for some i ∈ V , we add the following two constraints, where
B is a large enough constant (it is enough to take B = N ).

zj ≤
∑
i∈V

xi,j , j ∈ P (8)

Bzj ≥
∑
i∈V

xi,j , j ∈ P. (9)

We assume the assignment is feasible so that no VMs will
be rejected. Then, the total payment by the customers is fixed.
In that case, a sensible optimization objective is to minimize
the total operation cost, which leads to profit maximization,

min
x,y,z

∑
j∈P

ĉjzj . (10)

Remark. The revenue/cost structure and optimization ob-
jective can be substantially refined. On the revenue side, a
customer’s payment may depend on the received performance
level of his workload, on the types of PMs his VMs are
placed at, or on the degree of isolation of his VMs from other
customers’ VMs. The cost may incorporate load-dependent
costs (e.g., the energy cost is higher for higher load or running
a CPU a higher clock speed) and the costs of other equipments
such as networking devices. Multiple objectives from both
the provider and the customers (e.g., thermal dissipation,
customers’ performance objectives) can be incorporated into
the formulation by either forming a weighted sum of all
the objectives or by treating all but one of the objectives
as constraints (see [9] for a related treatment). Variants and
examples of refinements are the subject of ongoing work.

3) Problem Complexity: As typical for integer program-
ming problems, we will measure the complexity of the prob-
lem by the number of variables and the number of constraints,
which can be counted easily. To make the matter more
concrete, suppose 1000 VMs are to be assigned to 1000 PMs,
i.e., N = 1000 and M = 1000. Suppose each VM requests
2 virtual disks and each PM provides 4 physical disks. Then,
the number of y variables is 1000×1000×2×4 = 8, 000, 000
and the number of x variables is 1, 000, 000. The number
of constraints of the form in (1) is 8, 000, 000. This is an
extremely large integer optimization problem, far exceeding
what any integer optimization software can handle. A large
datacenter may have 1, 000, 000 PMs servicing more than
1, 000, 000 VMs. Even if at each re-optimization period, only
10% of them participate in re-optimization, the number of y
variables exceeds 100, 000×100, 000×2×4 = 8×1010 and the
number of constraints also exceeds that number. The examples
show that the disk exclusivity requirement is the main source
of difficulty.

V. SOLUTION AND SIMULATION RESULTS

This section presents the hierarchical decomposition solu-
tion to the problem in IV-A. To demonstrate its effectiveness
in scalability and performance improvement, the solution
is compared with an aggressive heuristic algorithm through
simulation/numerical experiments.
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TABLE I
VM TYPES

VM Type vCPU Memory (GiB) Storage (all SSD; GB)
m3.medium 1 3.75 1 × 4

m3.large 2 7.5 1 × 32
m3.xlarge 4 15 2 × 40
m3.2xlarge 8 30 2 × 80

c3.large 2 3.75 2 × 16
c3.xlarge 4 7.5 2 × 40
c3.2xlarge 8 15 2 × 80
c3.4xlarge 16 30 2 × 160
c3.8xlarge 32 60 2 × 320

r3.large 2 15.25 1 × 32
r3.xlarge 4 30.5 1 × 80

r3.2xlarge 8 61 1 × 160
r3.4xlarge 16 122 1 × 320
r3.8xlarge 32 244 2 × 320
i2.xlarge 4 30.5 1 × 800

i2.2xlarge 8 61 2 × 800
i2.4xlarge 16 122 4 × 800
i2.8xlarge 32 244 8 × 800

A. Setup

1) VM Types: We take a subset of the allowed VM types
(classes) of Amazon’s EC2 [38]. Their resource requirements
are shown in Table I. Below are the use cases of the different
VM types, according to Amazon’s web site.
• m3: m3 VM instances provide a balance of comput-

ing, memory, and network resources, and they are good
choices for many applications.

• c3: c3 instances are the latest generation of compute-
optimized instances, providing customers with the high-
est performing processors and the lowest price/compute
performance available in EC2 currently.

• r3: r3 instances are optimized for memory-intensive appli-
cations and have the lowest cost per GiB of RAM among
Amazon EC2 instance types.

• i2: i2 instances are equipped with large SSD storage op-
timized for very high random I/O performance, providing
high IOPS at a low cost.

2) PM Types: There is a diverse array of server and
storage systems for datacenters in the market. Different cloud
providers use different systems, ranging from simple, low-
cost servers to specially-designed systems for datacenters, and
they may use a combination of them. A low-cost server may
be only slightly more powerful than a high-end consumer
machine, such as a 4-core, single processor machine, with
16 GiB or memory and 1 512-GB SSD drive (and 1 Gbps
networking interface). On the other end of the spectrum, a
Cisco UCS B460 M4 server has four Intel Xeon E7-8800
v2 processors, which provides 60 processor cores, 96 DDR3
memory DIMM slots (total 6.0 TiB of memory using 64-
GiB memory modules), four drive bays for hard disks or
SSDs (up to 4.8 TB of internal storage), and 320 Gbps of
overall Ethernet throughput. The number of disk drives that
can be installed inside a server is quite limited, e.g., up to 4.
However, servers can be attached to disk arrays using some
form of “direct” connections, such as the SAS interface or
direct fiber channel connections. Such directly attached storage
(DAS) can provide storage-access performance at the level of

TABLE II
PM TYPES

PM Type vCPU Memory Storage Operation Costs
(GiB) (all SSD; GB) (normalized)

s1 8 16 1 × 256 100
s2 8 32 1 × 512 120
s3 8 64 2 × 512 200
s4 8 64 4 × 512 300
m1 16 32 2 × 512 600
m2 16 64 4 × 512 700
m3 16 128 4 × 1000 900
m4 16 256 8 × 1000 1500
m5 16 256 16 × 512 1800
l1 32 256 4 × 1000 2500
l2 48 512 8 × 1000 3500
l3 64 1024 4 × 1000 5000
l4 80 2048 16 × 1600 7000
l5 120 4096 4 × 1000 9000
l6 120 4096 24 × 1600 12000

internal disks. Thus, DAS can be considered as a form of
local storage. With DAS, each server can have 16, 24, 128
local disks, depending on the system setup and cost.

For Amazon EC2, each vCPU (virtual CPU) corresponds
to a hyperthread of a physical core [39]. In our experiments,
we assume the PMs all support two hyperthreads per physical
core. Hence, each physical core counts as 2 vCPUs. As an
example, Amazon EC2 uses Intel Xeon E5-2680 processors
for the C3 class of VMs. Each Xeon E5-2680 processor
has 8 cores and supports a total of 16 threads. A PM with
one such processor offers 16 vCPUs. As another example,
the aforementioned Cisco UCS B460 M4 server offers 120
vCPUs.

For our experiments, we use the PM types of Amazon EC2,
which are listed in the first column of Table II. Cloud providers
generally don’t disclose the capabilities of all their PMs. The
amount of resources that each type of PM is equipped with
is largely our guess based on the information revealed on
Amazon’s web site. Given the diversity of physical hardware
that vendors offer, the amount of resources listed in Table
II should be quite sensible. The operation costs (in the 5th
column) are not exactly known circa 2014, but are based on
our estimate4. Since the experiments results are comparative
between two alternative algorithms, only normalized costs are
needed.

B. Target of Comparison: Greedy Randomized Heuristic Al-
gorithm

Since we are not aware of prior studies on exactly our
problem instance, as a target for performance comparison, we
had to develop our own heuristic algorithm. The heuristic algo-
rithm is motivated by the general ideas of online randomized
algorithms [4], [40], [41] but should achieve much lower costs
than the latter due to two exhaustive search steps, which we
will describe.

Imagine that VM requests arrive dynamically. An online
randomized algorithm will assign a requested VM to some

4The large cost increase when the number of disks exceeds 4 reflects the
cost of running separate DAS devices.
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random PM one at a time in the arrival order of the VM
requests. Note that, in our experiments, all the VMs to be
placed are given together in a batch. Our greedy randomized
algorithm first randomly permutes the list of all the requested
VMs; this emulates the random arrival order of the VM
requests. For each VM in the permuted list, an attempt is
made to assign the VM to a PM. The greedy aspect is that,
for assignment, the list of used PMs, which are those already
with some assigned VMs, is checked first; if the VM cannot
be assigned to any PM in the used list, then the list of unused
PMs is checked. The greediness tends to lead to more VM
consolidation. In scanning either PM list, the order of scanning
is uniformly random to emulate random selection; the first PM
in the list that can accommodate the VM is selected (first-fit).5

For each scanned PM, our heuristic algorithm checks
whether it is possible to assign the currently considered VM to
that PM. For vCPU or memory, all that is needed is to check
whether the remaining number of vCPUs or the remaining
memory is sufficient for the VM. For disk assignment, the
algorithm exhaustively enumerates different disk assignment
possibilities and uses the first one that is feasible6. If the
disk assignment (for the currently considered VM and PM)
cannot be done by the algorithm, it is because the assignment
is infeasible.

C. Results: Comparison between Flat Optimization and
Greedy Randomized Heuristics

In this part of the experiments, we will show sample
instances that can be solved by directly using the integer
programming software Gurobi [42] without hierarchical de-
composition, an approach that we call flat optimization. We
will compare flat optimization with our heuristic algorithm.
The intention is to demonstrate that (1) the optimization
approach achieves much lower costs (i.e., the total operation
costs) than even sophisticated heuristics; (2) however, the size
of solvable instances is rather limited. Later in Section V-D,
we will show how hierarchical decomposition can help to
solve large instances while maintaing the advantage over the
heuristic algorithm in achievable costs.

The results for experiments 1 and 2 are summarized in Table
III.7

5For a large datacenter, a scalable online algorithms cannot afford to search
through all the used PMs or unused PMs for each VM request. A typical
strategy is to randomly sample a few used PMs and, if that does not work out,
pick a unused PM with sufficient resources randomly. Our heuristic algorithm
should do better in the achievable objective value. A more sophisticated
algorithm is to keep track of an ordered list of all the PMs according to certain
criterion and assign the VM to the first one on the list that fits. In this case,
exhaustive search is needed and scalability is limited. Our heuristic algorithm
does not maintain an ordered list because there is no obvious criterion for the
order due to the difficult disk exclusivity requirement.

6Checking the feasibility of disk assignment can be done by some standard
assignment algorithm, which may be faster than enumeration but still takes
some time. Either way, our heuristic algorithm has limited scalability, since in
the worst case, there is one disk assignment problem for every PM for every
VM request. But, it should achieve a lower cost than more scalable online
randomized algorithms that do not check all the PMs for all possible disk
assignment possibilities.

7Since the heuristic algorithm is not sufficiently scalable, there is no need
to collect the computation time. See later comment in Section V-D2.

TABLE III
SUMMARY OF RESULTS: FLAT OPTIMIZATION V.S. HEURISTICS

Experiments Flat Optimization Heuristics
1 Cost 4540 9913

Run Time (s) 106
2 Cost 45300 65105

Run Time (s) 3756

1) Experiment 1 – 70 VMs and 50 PMs: We experimented
with a problem of assigning 70 VMs to 50 PMs. The 70 VMs
are of the following mix of types – m3.medium: 36; m3.large:
14; m3.xlarge: 10; m3.2xlarge: 10. The 50 PMs are of the
following mix – s1: 7; s2: 7; s3: 10; s4: 7; m1: 5; m2: 5; m3:
5; m4: 2; m5: 2. Judging by the VM and PM numbers, this
is a small instance. However, our formulation of this problem
involves 17950 binary variables and 26120 constraints, which
make it non-trivial for any optimization software. The instance
is solved by Gurobi in 106 seconds, yielding the optimal cost
4540.

The randomized heuristic algorithm, which serves as an tar-
get of comparison, can solve the problem more quickly. Since
the heuristic algorithm involves randomization, we collected
the results of 50 runs, which all together took several seconds.
The average cost of the 50 runs is 9913, more than twice the
optimal cost. The minimum, maximum and standard deviation
of the costs are 6980, 12000, and 1074, respectively.

2) Experiment 2 – 77 VMs and 70 PMs: In this experiment,
77 VMs will be assigned to 70 PMs (see Table IV). Here, we
have a fuller mix of almost all types of VMs and PMs. The
instance has 55380 binary variables and 80825 constraints,
quite a bit larger than the previous instance. Although the
numbers of VMs and PMs are not so different from the
previous instance, the mixes of the VM and PM types are
quite different. The problem took Gurobi about 3756 seconds
(about 63 minutes) to solve, which is much longer than for
the previous instance. The optimal assignment has a cost of
45300.

We ran the heuristic algorithm 50 times. The resulting
average cost is 65105 and the standard deviation is 3683.
The minimum and maximum costs are 58400 and 76200,
respectively. The heuristic algorithm results in 44% higher
cost than the optimal algorithm. Percentage-wise, the heuristic
algorithm is doing better here than for the previous instance.
Part of the reason is that, even in the optimal algorithm, 38 out
of the 70 PMs are used and there is not a lot of room for cost
saving, in terms of percentage of improvement. Nevertheless,
the cost saving in value by the optimal algorithm is still much
more than that for the previous instance.

3) Additional Results and Comments: Table V summarizes
the computation time for flat optimization on several instances
with various VM and PM mixes. The computation time
depends on all the parameters of a problem instance, including
the numbers of VMs and PMs, the resource specifications of
different VM and PM types, and the mixes of the types. It is
difficult to give a concise characterization of that dependency.
But, generally speaking, 100 VMs and 100 PMs represent an
upper limit of instances that can be solved under an hour
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TABLE IV
VM AND PM SETUP

VM Type No. of VMs PM Type No. of PMs
m3.medium 5 s1 5

m3.large 5 s2 5
m3.xlarge 5 s3 5
m3.2xlarge 5 s4 5

c3.large 5 m1 5
c3.xlarge 5 m2 5
c3.2xlarge 5 m3 5
c3.4xlarge 5 m4 5
c3.8xlarge 5 m5 5

r3.large 5 l1 5
r3.xlarge 5 l2 5

r3.2xlarge 5 l3 5
r3.4xlarge 5 l4 5
r3.8xlarge 5 l5 5

16 0
i2.xlarge 2

i2.2xlarge 2
i2.4xlarge 3
i2.8xlarge 0

TABLE V
FLAT OPTIMIZATION COMPUTATION TIME

Num. of VMs Num. of PMs Average Run Time (seconds)
20 20 7.8
40 40 75
70 50 106
77 70 3756
90 75 4885

using standard integer programming algorithms on ordinary
computers. Improvement of that limit may come from more
clever problem formulations, customized algorithms, and more
powerful computers.

D. Results: Two-Level Hierarchical Decomposition

The major experiments are to assign 1000 VMs to 1000
PMs of different types using our hierarchical decomposition
method8.

1) Two-Level Decomposition Algorithm: We split the VMs
into 25 packs and the PMs into 25 swads randomly. In this
case, the pack and swad hierarchies each have two levels. In
the pack hierarchy, the root pack has 25 child packs, each
of which has 40 VMs as children. Similarly, in the swad
hierarchy, the root swad has 25 child swads, each of which
has 40 PMs as children9.

In the first level of assignment, we assign the 25 packs to the
25 swads by solving an optimization problem described below.
For each swad, we aggregate the total number of vCPUs,

8Although the numbers of VMs and PMs are chosen to be identical, not
all the PMs are used in the results of the experiments, and therefore, VM
consolidation still occurs.

9Although the pack hierarchy is stated as an artificial construction by us,
the same hierarchy may arise as a combined effort of the customers and the
cloud provider. For instances, some of the packs may be specified directly
by customers, and other are created by the provider after aggregating some
individually-requested VMs. Also, although each pack has 40 VMs and each
swad has 40 PMs, multiple packs may be assigned to a swad in the first-level
assignment, and hence, the total number of VMs may be significantly more
than the number of PMs in the swad.

TABLE VI
SUMMARY OF RESULTS: TWO-LEVEL DECOMPOSITION V.S. HEURISTICS

Experiments Two-Level Decomp. Heuristics
Mix 1 Cost 82540 150573

Run Time (s) 1281;75 per swad
Mix 2 Cost 487840 601914

Run Time (s) 3366;280.5 per swad
Mix 1; Smaller Cost 98040 150573

Pack/Swad Sizes Run Time (s) 202;7.8 per swad

the total amount of memory, the total number of disks (lssd)
and the total amount of disk storage space over all PMs in
the swad; we also record the maximum of the vCPUs, the
maximum amount of memory, and the maximum number of
disks of any PM in the swad. For each pack, we also tabulate
the same requested quantities. Then, we solve an optimization
problem that minimizes the number of swads used, subject to
the constraints that, at each swad, the resource usage are no
greater than the corresponding capacity of the same resource.
For instance, the sum of the memory requested by all the
packs allocated to a swad is no more than the total amount
of memory provided by the swad. For the requested number
of disks, we define a safety margin, 0 < β ≤ 1, and we
stipulate that the total number of disks requested by all the
packs assigned to a swad is no more than β times the total
number of disks provided by the swad. The reason for doing
so is that disk exclusivity is often a difficult constraint to
satisfy in the second-level optimization problems. By reducing
β in the first-level optimization (if needed), we can spread
out packs more across the swads to gain more room for
maneuver. We also have a constraint that the maximum amount
of memory requested by any pack (which is the maximum
amount requested by any VM in the pack) allocated to the
swad is no more than the maximum amount of memory
provided by any PM in the swad. We do the same for the
maximum number of vCPUs.

A second-level assignment is performed for each of the
swads that has some packs assigned to it. For each such swad,
we collect all the VMs in all the packs that are assigned to
the swad, and we collect all the PMs in the swad. We then
perform optimal allocation of the VMs to the PMs using the
formulation provided in Section IV-A, with the objective of
minimizing the total operation cost of the PMs. For each of
the swads, the minimum cost is given by the optimization
solution (the cost is equal to zero if no packs are assigned
to the swad). The overall cost is the sum of all the minimum
costs for all the swads.10

The results of the experiments are summarized in Table VI.
2) Mix 1: The mix of VMs and PMs is described in Table

VII. The safety margin is β = 0.7. The two-level decompo-

10There is still a possibility that the second-level optimization is infeasible
for some swads, even after we require the resource usage constraints are
satisfied in the aggregate and in the maxima when we conduct the first-level
optimization at the pack-swad level. One remedy is to put safety margins on
all the stringent resources (like the use of β) and find suitable values by binary
search. When the constraints are violated by small amounts, one can simply
move some of the packs or VMs to unused swads. For the experiments that
we are presenting, all the second-level assignments turn out to be feasible.
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TABLE VII
1000 VMS AND 1000 PMS - MIX-1

VM Type No. of VMs PM Type No. of PMs
m3.medium 500 s1 150

m3.large 200 s2 150
m3.xlarge 150 s3 150
m3.2xlarge 150 s4 150

c3.large 0 m1 100
c3.xlarge 0 m2 100
c3.2xlarge 0 m3 100
c3.4xlarge 0 m4 50
c3.8xlarge 0 m5 50

r3.large 0 l1 0
r3.xlarge 0 l2 0

r3.2xlarge 0 l3 0
r3.4xlarge 0 l4 0
r3.8xlarge 0 l5 0

16 0
i2.xlarge 0

i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

sition algorithm achieves a total cost 82, 540. This number
should be compared with the randomized heuristics, which
has an average (over 50 runs) total cost 150, 573, a standard
deviation 4951, a minimum cost 140, 060 and a maximum
cost 165, 840. The two-level decomposition algorithm achieves
about half the cost as that of the randomized heuristics. We
conclude that the cost improvement can be significant. As
explained earlier, our target of comparison – the randomized
heuristics – is quite optimistic and actual online algorithms
will do worse than it.

We next discuss the algorithm running time. A total 17
swads are used after the first-level pack-to-swad assignment.
A used swad is allocated 1 or 2 packs. The computation for
the first-level assignment took very little time, on the order
of a few seconds, due to the small problem size at this level.
In general, the optimization at the upper levels for assigning
packs to swads does not pose scalability challenges.

For the second-level VM-to-PM assignments, the total run-
ning time is 1281 seconds, which is the aggregate for 17
different computations for the 17 used swads. The average
running time is therefore 75 seconds per swad. Note that
these 17 different assignment subproblems are completely
independent and can run in parallel on different computers.
There is variability in the running times for different swads,
due to different problem sizes and the inherent variability
of how the feasibility set is explored by the optimization
algorithm. The running times are shown in Fig 5, sorted
in increasing order. Overall, we see that the optimization
that assigns VMs to PMs at the bottom level of hierarchical
decomposition is where the computation complexity lies. To
get a solution within a prescribed time budget, the size of each
such optimization subproblem needs to be limited, which can
be achieved by sufficient decomposition.

The heuristic algorithm took a fairly long time, hundreds of
seconds per run. At the minimum, the computation time scales
as the product of the total number of VMs and the total num-
ber of PMs. The disk exclusivity requirement poses greater
scalability challenge as the number of disks offered by some
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Fig. 5. Sorted running times for VM-to-PM assignment for different swads;
mix-1

PM and/or the number requested by some VM increase11.
The precise situation depends on the implementation of the
heuristic algorithm. Overall, the heuristic algorithm can handle
this instance. But, it is not a sufficiently scalable algorithm.

We next make additional comments about the experimental
results. In the optimal solution for the first-level assignment,
the utilization of various resources is generally low. This is in
part due to the chosen granularities of the packs and swads,
measured in the numbers of VMs and PMs, respectively. For
instance, while the resource utilization at a swad may be
low, bringing in another pack to the swad involves a big
jump in the total resource requirements, likely exceeding the
resources provisioned by the swad. The other part of the
reason is the inherent imbalance in the supply and demand
of various resources. The vCPUs tend to be the resource
bottleneck whereas the memory and disk space tend to be
abundant. The total number of disks also tends to be a stringent
resource when considered jointly with the vCPUs. Recall
that the disks requested by a VM can only be assigned to
the PM to which the VM itself is assigned. Since each PM
typically can accommodate a small number of VMs due to
the vCPU constraint, it follows that a PM can accommodate
a small number of disks even if the PM’s total disk capacity
is abundant.

The resource utilization is shown in Fig. 6. The four
curves correspond to four different types of resources: vCPU,
memory, the number of disks (lssd) and the total disk size.
The utilization of the ‘number of lssd’ is the highest, ranging
from 40% to close to 70%. Given that the safety margin is
set at β = 0.7, we see that the optimal solution tends to
saturate that constraint. The next highest utilization is that of
the vCPU, ranging from 25% to 50%. The total lssd size and

11Enumeration of the disk assignment possibilities works fine when the
numbers of disks are small. But, the number of assignment possibilities rapidly
increases with the disk numbers. For example, when a PM has 8 disks and a
VM requests 4 disks, there are total 8!/4! = 1680 assignment possibilities,
which is a small number to enumerate; when the PM has 24 disks and the
VM requests 8 disks, there are total 24!/8! = 29, 654, 190, 720 possibilities.
The enumeration strategy becomes impractical for the second case. When that
happens, one can use one of the standard assignment algorithms. The disk
numbers in our experiments are chosen such that cases with a large number
of assignment possibilities are avoided.
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TABLE VIII
1000 VMS AND 1000 PMS - MIX-2

VM Type No. of VMs PM Type No. of PMs
m3.medium 200 s1 100

m3.large 100 s2 100
m3.xlarge 100 s3 100
m3.2xlarge 100 s4 100

c3.large 50 m1 100
c3.xlarge 50 m2 100
c3.2xlarge 50 m3 50
c3.4xlarge 50 m4 50
c3.8xlarge 50 m5 50

r3.large 50 l1 50
r3.xlarge 50 l2 50

r3.2xlarge 50 l3 50
r3.4xlarge 50 l4 50
r3.8xlarge 50 l5 50

16 0
i2.xlarge 0

i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

the memory are seriously under-utilized, at around 10% and
20%, respectively.

3) Mix 2: The mix of VMs and PMs is described in Table
VIII. The safety margin is β = 0.7.

The two-level decomposition algorithm achieves a total cost
487, 840. Out of the 25 swads, 12 of them are used. The total
algorithm running time is 3366 seconds, or 280.5 seconds per
swad. The running time for VM-to-PM assignment (at the
bottom level) for each of the used swad is shown in Fig. 7.

We ran the randomized heuristics 50 times, which took
hours. The average cost of the heuristic algorithm is 601, 914
and the standard deviation is 5079; the minimum and the
maximum costs are 589, 900 and 613, 520, respectively. The
heuristic algorithm is about 23% more costly than the decom-
position algorithm.

For the decomposition algorithm, the resource utilization
results are shown in Fig. 8.

4) Mix 1 with Smaller Pack/Swad Sizes: Here, we want
to show that decreasing the sizes of the packs and swads can
reduce the computation time drastically. The mixes of the VMs
and PMs are as described in Table VII. The safety margin is
β = 0.7. The 1000 VMs are divided into 50 packs and the
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1000 PMs are divided into 50 swads. Thus, each pack has 20
random VMs and each swad has 20 random PMs.

The first-level optimization attempts to assign the 50 packs
to the 50 swads. The result shows that 26 swads are used. The
computation time is negligible.

Each second-level subproblem attempts to assign 20 or more
VMs (on average, 1000/26 ≈ 38) to 20 PMs. The total running
time is 202 seconds, which is the aggregate for solving 26
subproblems corresponding to the 26 used swads. The average
running time is therefore 7.8 seconds per swad. Both the total
and the per-swad running times are much smaller than the case
in Section V-D2 (1281 and 75 seconds, respectively).

The total cost achieved by two-level decomposition is
98, 040, still a big improvement over the randomized heuris-
tics, which leads to a cost of 150, 573.

5) Effects of the First-Level Optimization: There is a com-
plex relationship between the optimization problems at the
two levels. The resulting cost depends crucially on how the
optimization problem is formulated at the first level (for pack-
to-swad assignment). For instance, it may appear reasonable
that, in order to reduce the total operation cost, the first-level
optimization problem should aim at reducing the number of
swads used. We can control that number by varying the param-
eter β. The results after the first and second-level optimization
are shown in Table IX. As β decreases, the constraint about
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the number of disks becomes more stringent in the first-level
optimization and consequently, each swad is assigned fewer
packs on average and more swads are used. However, after
the second-level optimization, the total cost in fact decreases
as β decreases. Also, the number of PMs used after the second-
level optimization increases as β decreases. One explanation
is that, as more swads are used, there are more second-level
optimization instances (one for each used swad), and hence,
there is more opportunity to improve the total cost. Although
more swads and more PMs are used as β decreases, cheaper
PMs tend to be used and more expensive PMs tend to be
avoided, resulting in a lower total cost. As β continues to
decrease, the first-level optimization problem will eventually
become infeasible.

The above observations hold for the particular performance
objective and cost structure. It should not be generalized with-
out rigorous reasoning or extensive experiments. For instance,
if every PM has the same operation cost, the total cost will
be proportional to the number of PMs used. Then, based on
the data in Table IX, the total cost would have increased as β
decreases.

How to formulate the first-level (or, in general, higher-level)
optimization appropriately is a tough issue, which requires
further research. On the positive side, there is an easy practical
approach to address the issue, which is to experiment with
different possible formulations and look at the total cost
achieved, under the given set of cost structure, constraints and
objective encountered in practice. This approach is possible
because the hierarchical decomposition method is scalable and
the result for each experiment can be computed quickly.

6) Scalability: The hierarchical decomposition method is
scalable with the help of parallelism. Suppose the basic
building blocks of hierarchical decomposition are 100 × 100
VM-to-PM assignment subproblems and suppose each takes 2
minutes to solve. A system with 1 million VMs and 1 million
PMs has 10000 100 × 100 assignment subproblems, which
takes 2 × 10000 = 20000 minutes computation time. If 200
management servers are used to manage the datacenter, the
running time on each is 100 minutes. Over a 24-hour day,
there can be 14 rounds of complete re-optimization. The 200
management servers represent an overhead of 200/1000000 =
0.02%, which is low.

It is unlikely that every VM needs re-allocation of resources
every 100 minutes. The numbers of VMs and PMs that need
to be considered at each re-optimization period are likely to be
drastically smaller than 1 million each, may be in the order of
thousands to tens of thousands. Even a reduction by a factor of
10, i.e., 100,000 VMs and 100,000 PMs, can bring the total
computation time down to 2000 minutes or 10 minutes per
management server. In practical systems, the variability of the
problem sizes at the bottom level can be exploited. Some VM-
to-PM assignment subproblems at the bottom level may have
smaller problem size, e.g., 20 × 20, which can be solved in
seconds. On the other hand, larger subproblems (e.g., of the
size 100×100) can be computed less frequently, such as once
every few hours.

With smarter algorithms, it is hopeful that the computation
time of each 100 × 100 VM-to-PM assignment subproblem

TABLE IX
CONTROLLING NUMBER OF SWADS USED BY β

β No. of Swads Used No. of PMs Used Total Cost
Mix 1

0.5 24 346 71720
0.6 19 336 78980
0.7 17 326 82540
0.8 12 306 95740

Mix 2
0.5 22 438 443260
0.6 13 361 474440
0.7 12 346 487840

can be cut down to sub-minutes. A factor of 10 reduction will
have significant overall impact. Finally, we can always make
most of the bottom-level subproblems smaller to speed up the
overall computation. But, the achievable cost will be higher.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we propose a pack-centric approach, com-
bined with integer programming formulations and hierarchical
decomposition, for datacenter resource management. The new
approach enables complex and system-oriented cloud services,
enhances customer agility, and at the same time, improves
datacenter resource efficiency or costs. With simulation and
numerical experiments, the approach has been shown to be
effective and scalable. Next, we briefly discuss some additional
issues.

Customer workload often exhibits time non-stationarity. The
requested resources may be occasionally insufficient to handle
large, temporary workload increase, or they may be overly
abundant in other times. Our proposal handles non-stationary
in several ways. (1) It allows customers to specify time-
dependent resource requirements, e.g., for different time of the
day, week or month. Batch optimization at each period uses the
customers’ requirements for that period as input. (2) We add
real-time monitoring of the actual workload, performance and
resource usage. Based on the measurement results, the problem
formulations can be modified and solved again for improved
solutions. (3) Re-optimization of different kinds may happen at
various frequencies in a nested fashion. For instance, small-
scale re-optimization that occurs once every five minutes is
accompanied by larger-scale re-optimization that occurs once
every several hours. (4) To accommodate fast autoscaling of
resources and on-demand handling of newly arrived requests,
the framework incorporates incremental resource adjustment
in between two adjacent re-optimization events. The last three
mechanisms are also used to cope with uncertainty, incomplete
information, failure and other dynamics.

We have seen that, in hierarchical decomposition, the
higher-level optimization (e.g., the first-level assignment in the
experiments) does not take much computation time. The com-
putational challenge comes from the bottom-level VM-to-PM
assignment subproblems. Ultimately, the sizes of these bottom-
level subproblems need to be limited. Any future research that
can improve that limit will be worthwhile. Improvement may
come from more efficient problem formulations, more clever
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customization of the integer optimization algorithms, or new
algorithms.
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