Advance Reservation and Scheduling for Bulk

Transfers in Research Networks

Kannan Rajah, Sanjay Ranka and Ye Xia

Abstract

Data-intensive e-science collaborations often requieetthnsfer of large files with predictable performance.
To meet this need, we design novel admission control anddsting algorithms for bulk data transfer in research
networks for e-science. Due to their small sizes, the rebeaetworks can afford a centralized resource management
platform. In our design, each bulk transfer job request,cwhian be made in advance to the central network
controller, specifies a start time and an end time. If adahjttiee network guarantees to complete the transfer before
the end time. However, there is flexibility in how the actuahtsfer is carried out, that is, in the bandwidth assignment
on each allowed paths of the job on each time interval, ansl iifpi to the scheduling algorithm to decide this. To
improve the network resource utilization or lower the jofeection ratio, the network controller solves optimization
problems in making admission control and scheduling deessi Our design combines the following elements into
a cohesive optimization-based framework: advance reenvanulti-path routing, and bandwidth reassignment via
periodic re-optimization. We evaluate our algorithm innterof both network efficiency and the performance level

of individual transfer. We also evaluate the feasibilityoofr scheme by studying the algorithm execution time.

. INTRODUCTION

The advance of communication and networking technologiegther with the computing and storage technolo-
gies, is dramatically changing the ways how scientific redea conducted. A new terne-sciencehas emerged to
describe the “large-scale science carried out throughildised global collaborations enabled by networks, reqgir
access to very large scale data collections, computinguress, and high-performance visualization” [1]. Well-
guoted e-science (and the related grid computing [2]) eXasnipclude high-energy nuclear physics (HEP), radio
astronomy, geoscience and climate studies.

The need for transporting large volume of data in e-sciensebbkan well-argued [3], [4]. For instance, the HEP
data is expected to grow from the current petabytes (RP8Y) to exabytes {0'®) by 2012 to 2015. In particular,
the Large Hadron Collider facility at CERN is expected to gateempetabytes of experimental data every year,

The authors are with the Computer and Information Science and Enigigdeepartment, University of Florida, Gainesville, FL.

Ye Xia is the corresponding author. Email: yx1@cise.ufl.edu, Phobi2:392-2714, Fax:352-392-2714

This work was supported in part by the National Science Foundation)(N8&er Grant ITR 0325459 and 0427110. Any findings,

conclusions or recommendations expressed in this material are thalse afithor(s) and do not necessarily reflect the views of NSF. The
authors would like to thank Rick Cavanaugh and Paul Avery for sewlisalissions and insights.

for each experiment. In addition to the large volume, as date[5], e-scientists routinely request schedulable
high-bandwidth low-latency connectivity with known anddwable characteristics. Instead of relying on the public
Internet, which has unpredictable service performanctoma governments are sponsoring a new generation of
optical networks to support e-science. Examples of suchareBeand education networks include the Internet2
related National Lambda Rail [6] and Abilene [7] networks liee tU.S., and CA*net4 [8] in Canada.

To meet the need of e-science, this paper studdraission contro(AC) and schedulingalgorithms for high-
bandwidth data transfers (also known as jobs) in researwbonies. The results will not only advance the knowledge
and techniques in that area, but also compliment the prbtacohitecture and infrastructure projects currently
underway in support of e-science and grid computing [9]],[11L], by providing more efficient network resource
reservation and management algorithms. Our AC and schmedalgorithms handle two classes of jobs)k data
transferand those that requirerainimum bandwidth guarantd®BG). Bulk transfer is not sensitive to the network
delay but may be sensitive to the delivery deadline. It isfulsier distributing high volumes of scientific data,
which currently often relies on ground transportation af gtorage media. The MBG class is useful for realtime
rendering or visualization of data remotely. In our framewahe algorithms for handling bulk transfer also contain
the main ingredients of those for handling the MBG class. thix reason, we will only focus on bulk transfer.

One distinguishing feature in this study is that each joluest can be made in advance and can specify a start
time and an end time. The reservation-based approach gigasetivork users more predictability and control over
their work schedule and is deemed very useful by the e-seieammunity [12]. If a job is admitted, as determined
by the admission control algorithm, the network guarantbes it will finish the data transfer for the job before
the requested end time. The challenge is how to provide thisagtee while maintaining efficient utilization of
the network resources and keeping the request rejectiamloat. (If a request is rejected, there are many possible
follow-up scenarios depending on the design. The simplesiaisthe user of the request may modify the end time
and re-submit the request. The re-submission process camtbmated and repeated by the user-side software
agent.)

The need for efficient network resource utilization is esghcralevant in the context of advance reservation and
large file sizes or long-lasting flows. As argued in [13], ther@am undesirable phenomenon knowrbasdwidth
fragmentation The simplest example of bandwidth fragmentation occursnwthe interval between the end time
of one job and the beginning of another job is not long enowghahy other job request. Then, the network or
relevant links will be idle on that interval. If there are tomany of these unusable intervals or if their durations
are long, the job rejection ratio is likely to be high whileesthetwork utilization remains low. Over-provisioning
the network capacity may not be the right solution due to tigh lsost, time delay or other practical constraints.

The solution advocated in this paper for reducing the jobctije ratio and increasing the network utilization
efficiency is to bring in more flexibilities in how the data arartsferred. The process of determining the manner
of data transfer is known ascheduling For instance, one can take advantage of the elastic nafusallo data
and have the network transferring the data at time-varyiagdividth instead of a constant bandwidth. Another

example is to use multiple paths for each job. In order to ehithe greatest flexibilities, this paper formulates

the AC/scheduling problems as optimization problems. Atredimed network controller is used to administer AC
and scheduling, including solving the optimization prabe Different from the public Internet, research networks
typically have far less thatD00 core nodes in the backbone. Hence, it possible to use a keedraetwork controller

for making AC and scheduling decisions, setting up netwatkg, and reserving the allocated bandwidth or optical
circuits. One advantage of the centralized approach isrésaiurce reservation and allocation decisions are made
based on a global view of the network and on all the job regudssts possible to manage the network resources
as a whole and make trade-offs among all the jobs in the nktwidre result is greatly improved efficiency in
network resource utilization.

Recently, some authors have begun to study AC and schedolirmlk transfer with advance reservations [14],
[15], [16], [17], [18], [19], [13], [20], [21]. Compared wit these earlier studies, our work distinguishes itself for i
comprehensiveness in bringing several important ingreslisogether under a single optimization framework with
well-defined objectives. These include (1) periodic admissiantrol for handling continuous arrivals of job requests
rather than one-shot admission control, (2) admissionrobaind scheduling for the whole network rather than
for each link separately, (3) multi-path routing, (4) timerying bandwidth assignment for each job, (5) dynamic
bandwidth re-assignment at each AC/scheduling instanb@&hweaves more room to accept new requests, and
(6) a novel time discretization scheme (i.e., the congrtiem¢-slice structures) that allows the admission of new
requests and bandwidth re-allocation to existing jobs evhidt violating the end-time requirements of the existing
jobs. As will be reviewed in Section V, other studies in thisaonly incorporate a subset of the features from the
above list.

The rest of the paper is organized as follows. The main techodgaribution of this paper is to describe a suite
of algorithms for AC and scheduling (Section 1) and compéaertperformance (Section V). A key methodology
is the discretization of time into a time slice structure lsattthe problems can be put into the linear programming
framework. A highlight of our scheme is the introduction ajnauniform time slices (Section Ill), which can
dramatically shorten the execution time of the AC and sclieglalgorithms, making them practical. The related

work is shown in Section V and the conclusion is drawn in SecYitn

Il. ADMISSION CONTROL AND SCHEDULING ALGORITHMS
A. The Setup

For easy reference, notations and definitions frequentld irsehis paper are summarized in Appendix I. The
network is represented as a (directed) grépr: (V, E), whereV is the set of nodes anfl is the set of edges. The
capacity of a link (edge} € E is denoted byC.. Job requests arrive at the network following a random E®ce
Each bulk transfer requesis a 6-tuple(A;, s;, d;, D;, Si, E;), whereA; is the arrival time of the request; andd;
are the source and destination nodes, respectiglys the size of the fileS; and E; are the requested start time
and end time, wherd; < S; < F;. In words, request, which is made at timeé = A;, asks the network to transfer a
file of size D, from nodes; to noded; on the time intervalS;, F;]. A bulk transfer request may optionally specify a

minimum bandwidth and/or a maximum bandwidth. In practaesn more parameters can be added if needed, such

as an estimated range for the demand size or for the end times the precise information is unknown [22]. For
ease of presentation, we will ignore these options. Buy; tiseially can be incorporated into our optimization-based
AC/scheduling framework by modifying the formulations bitoptimization problems. The approach of using a
centralized network controller has an advantage here favaiving system, since, to accommodate new types of
parameters or functions, the only necessary changes dne atntral controller's software. The user-side software
will be updated only if the user needs the new parametersratifans.

In the basic scheme, AC and scheduling are done periodieftéy everyr time units, wherer is a positive
number. More specifically, at time instandes k£ = 1,2, ..., the controller collects all the new requests that arrived
on the interval[(k — 1)7, k7], makes the admission control decision first, and then, s¢téedbe transfer of all
jobs. Both AC and scheduling must take into accountdhiejobs i.e., those jobs that were admitted earlier but
remain unfinished. The admission of new jobs is formulated asasilfility problem subject to the constraint that
the old jobs must retain their performance guarantee. Tease the admission rate, this step takes into account the
possibility that the bandwidth of each old job on differeotites can be reassigned. In the second step, scheduling,
the network controller assigns the actual bandwidth toddikjin the system, including the old jobs, on the allowed
paths so as to optimize a performance objective. Examplésvihaonsider in this paper are to minimize the worst
case link utilization or to minimize an objective that enames earlier completion of the jobs. The bandwidth
assignment is time-varying. The value ofshould be small enough so that new job requests can be chémked
admission and scheduled as early as possiblewever, should be more than the computation time required for
AC and scheduling.

1) The Time Slice StructureAt each scheduling instance,= k7, the timeline from¢ onward is partitioned
into time slices, i.e., closed intervals on the timelinejckhare not necessarily uniform in size. The significance of
the time slice is that the bandwidth (rate) assignment tt galz is done at the slice level. That is, the bandwidth
assigned to a particular path of a job remains constant ®retitire time slice, but it may change from slice to
slice.

A set of time slices@, is said to beanchored att = kr if all slices in G, are mutually disjoint and their union
forms an intervalt, t'] for somet’. The set{G, }?2, is called aslice structureif eachgy, is a set of slices anchored
att =kr,fork =1, ...,00.

Definition 1: A slice structure{Gy};2, is said to becongruent if the following property is satisfied for every
pair of positive integersk and &/, wherek’ > k > 1. For any slices’ € G, if s’ overlaps in time with a slice,

s € Gy, thens’ C s.

In words, any slice in a later anchored slice collection mhestcompletely contained in a slice of any earlier
collection, if it overlaps in time with the earlier collegati. Alternatively speaking, if slice € G, overlaps in time
with G, then eithers € Gy, or s is partitioned into multiple slices all belonging &. .

One example of a congruent slice structure isuhdorm slices (US)where the timeline is divided into equal-

!In this scheme, a request generally needs to wait a duration no longer thea the admission decision. We will comment on how to

conduct realtime admission control later.

sized time slices of duration (coinciding with the AC/scheduling interval length). The sé slices anchored at
anyt = kr is all the slices aftet. Figure 1 shows the US at two time instan¢es = andt = 27. In this example,

7 = 4 time units. The arrows point to the scheduling instances. Woecbllections of rectangles are the time slices
anchored at = 7 andt¢ = 27, respectively. It is easy to check the congruent propertthisf slice structure.

Nearly all prior works that discretize the timeline use th8.'he motivation for defining the more general
concept of the congruent slice structure is as follows. @ltdih easy to understand, the US is not necessarily an
ideal slice structure to use because, in our linear progiagiormulation of the AC and scheduling problems,
the number of time slices is positively related to the nuntiferariables, and in turn to the execution time of our
algorithms. We face a problem of covering a long enough sagimiethe timeline for advance reservations with a
small number of slices, say 100. As an example, to cover aa§QO-eservation period with 100 slices, the slice size
in the US is 7.2 hours, too coarse for small to medium sized jsbose requested time windows for data transfer
are well under one hour. In this paper, we advocate a congsliee structure with non-uniform slice sizes, the
nested slices (NS)rhe NS contains different classes of time slices with expbally (geometrically) increasing
sizes. Suppose the current tihe- k7 is a scheduling instance. The timeline neas divided into fine slices. The
timeline away fromt is divided into increasingly larger slices. Later, as timeguesses, say tb'r, some coarse
time slices will become close to the new current tirke;,, and will be divided into fine slices, which will belong
to Gr.. As will be demonstrated later, the NS can cover a large gortif the timeline using a small number of
slices without sacrificing the performance (e.g., job régectatio). Fig. 5 shows a three-level nested slice structure
More detailed description about the NS is deferred to Sedtion

The AC and scheduling algorithms introduced in this paperyapp any congruent slice structure. When a
non-uniform slice structure is used, the congruent prgperthe key to the existence of algorithms that allow the
network to keep the commitment to the old jobs admitted easihile admitting new jobs. The reason is that,
in solving the admission control problem, the bandwidtlvedtion (on each allowed path of each job) on each
time slice is assumed to be constant. When a time slice idetivinto finer slices at a later time, the old jobs are
still admissible since one can keep the bandwidth on the filgessat the same constaniThis will be further
explained in Section lll. For ease of presentation, we usaittii|mrm slices as an example to explain the AC and
scheduling algorithms.

At any AC/scheduling time = k7, let the time slices anchored ati.e., those inG,, be indexedi, 2, ... in
increasing order of time. Let the start and end times of slibe denoted bys7y (i) and ET} (i), respectively, and
let its length beLEN(i). We say a time instance > ¢ falls into slice i if STy (i) < t' < ETy(i). The index of
the slice that’ falls in is denoted by (¢).

At t = k7, let the set of jobs in the system yet to be completed be ddnwte7,. 7. contains two types of
jobs, those new requests (also known as new jobs) made ont#eal ((k — 1), k7|, denoted byJ,", and those

old jobs admitted at or beforgk — 1)7, denoted by7?. The old jobs have already been admitted and should not

2However, one can often do better by varying the bandwidth on the finessslic

Uniform Slices
’

-~

Lo v b v e v e e
A A A) i [} A
01 4 8 12 16 20 24 2€

I Y O T R R
A A) i i A
8 12 16 20 24 2¢

01 4

Fig. 1. Uniform time slice structure

be rejected by the admission control conducted. &ut some of the new requests may be rejected.
2) Rounding of the Start and End Timeglith the time slice structure and the advancement of timeadjast
the start and end times of the requests. The main objectieeabgn the start and end times on the slice boundaries.
After such rounding, the start and the end times will be demhaisS; and £;, respectively. For a new requestet
the requested response timeBe= E; — S;. We round the requested start time to be the maximum of themrur

time or the end time of the slice in which the requested stam 5; falls, i.e.,
S; = max{t, ET,(I,(S:))}. 1

For rounding of the requested end time, we allow two policgichs, thestringent policyand therelaxed policy
Which one is used in practice is a policy issue, left to theiglec of the network manager. In the stringent policy,
if the requested end time does not coincide with a slice bagndt is rounded down, subject to the constraint that
E; > S; 3. This constraint ensures that there is at least one-slicaraépn between the rounded start time and
the rounded end time. Otherwise, there is no way to schetielgob. In the relaxed policy, the end time is first

shifted byT; with respect to the rounded start time, and then rounded upe Mpecifically,

stringent

ETi(Ix(S) + 1) if STi(Ix(Ey)) < Si
E; =4 E; else if ETy(Ix(E;)) = E;

STy (Ix(E;)) otherwise.

2)
relaxed
E; = ET.(Ix(Si + T)))
Figure 2 shows the effect of the two policies after three jatesraunded.

%In the more sophisticated non-uniform slice structure introduced in Setitiowe allow the end time to be re-rounded at different

scheduling instances. This way, the rounded end time can become tddkerrequested end time, as the slice sizes become finer over time.

Relaxed Policy

Jobs I : |

l [1 l [| [] |

Jobs After Rounding

Jobs After Rounding

Fig. 2. Two rounding policies. The unshaded rectangles are time slitessfiaded rectangles represent jobs. The top ones show the

requested start and end times. The bottom ones show the roundecdhstamdtimes.

If a job i is an old one, its rounded start tint® is replaced by the current time The remaining demand is
updated by subtracting from it the total amount of data fiemad for job: on the previous interval,(k — 1), k7].

By definition, the slice set anchored at edch k7, Gi, contains an infinite number of slices. In general, only a
finite subset oty is useful to us. Lef\/;, be the index of the last slice in which the rounded end timeoaiesjobs
falls. That is, M}, = Iy(max;ec, Ei). Let £, C G, be the collection of time slices, 2, ..., M;,. We call the slices
in £ as theactive time slicesWe will also think of £, as an array (instead of a set) of slices when there is no
ambiguity. Clearly, the collectioL; }7° , inherits the congruent property frofd; } 72 ;. Therefore, it is sufficient

to consider{ L}, for AC and scheduling.

B. Admission Control

For each pair of nodes andd, let the collection of allowable paths fromto d be denoted byPy(s,d). In
general, the set may vary with For each johi, let theremaining demandt timet = kr be denoted byRy(7),
which is equal to the total demand; minus the amount of data transferred until time

At t =k, let J C J; be a subset of the jobs in the systems. fgp, j) be the total flow (total data transfer)
allocated to jobi on pathp, wherep € Py(s;,d;), on time slicej, wherej € L. As part of the admission control
algorithm, the solution to the following feasibility prash is used to determine whether the jobs/ircan all be

admitted.

AC(k, J)

M,
> filpd) =Rei), VielJ 3)
J=1 pePy(s;,d;)
o> filpd) < C(HILENL()), Ve € E,Vj € Ly 4)
p:e€p
Vi € J,Vp € Py(sq,d;) (5)
fl(pvj) 207 V’LEJ,V]EEk,VPEPk(Sz,dz) (6)

(3) says that, for every job, the sum of all the flows assignedlbtime slices for all paths must be equal to its
remaining demand. (4) says that the capacity constrain& beisatisfied for all edges on every time slice. Note
that the allocated rate on paghfor job i on slicej is f;(p,7)/LEN(j), where LEN(j) is the length of slice.
The rate is assumed to be constant on the entire slice. Hef¢) is the remaining link capacity of link on slice
j. (5) is the start and end time constraint for every job onyewesth. The flow must be zero before the rounded
start time and after the rounded end tirfie.

Recall that we are assuming every job to be a bulk transfesifoplicity. If job i is of the MBG class and
requests a minimum bandwidiB; between the start and end times, then the remaining capaistraint (3) will
be replaced by the following minimum bandwidth guaranteeddmn.

Y. fipi)=Bi, Vi€l (7)
PEP:(ss,d;)

The AC/scheduling algorithms are triggered everyime units with the AC part before the scheduling part. AC

examines the newly arrived jobs and determines their adboiligs In doing so, we need to ensure that the earlier

commitments to the old jobs are not broken. This can be aathieyeadopting one of the following AC procedures.

1) Subtract-Resource (SRANn updated (remaining) network is obtained by subtracthmg bandwidth assigned
to old jobs on future time slices, from the link capacity. Theme determine a subset of the new jobs that
can be accommodated in this remaining network. This methbelisful to perform quick admission tests
However, it runs the risk of rejecting new jobs that can dttuze accommodated by reassigning the flows

to the old jobs on different paths and time slices.

“The current research networks generally use routers over optaramission technologies instead of using optical switches alone.
Routers can split or aggregate traffic before transmission. Hencerabé&ém in this paper is fine-grained bandwidth assignment rather than
wavelength assignment, as would be the case in a wavelength-basetdsviitthed optical network. It is possible to reserve an end-to-end
wavelength path in the current research networks. But, our formulaficghe bandwidth assignment problem will be unaffected since we
can simply remove the reserved wavelength from the link capacity. Wer tleé wavelength assignment problem in an all optical network

to future research.
SWe can perform realtime admission with this method.

2) Reassign-Resource (RRhis method attempts to reassign flows to the old jobs. Firstcareel the existing
flow assignment to the old jobs on the future time slices antbreshe network to its original capacity.
Then, we determine a subset of the new jobs that can be adnaitbed with all the old jobs under the
original network capacity. This method is expected to haveetéeb acceptance ratio than SR. However, it
is computationally more expensive because the flow assignimeomputed for all the jobs in the system,
both the old and the new.

The actual admission control is as follows. In the SR schengetgmaining capacity of link on slicej, C.(j),

is computed by subtracting frorf¥, (the original link capacity), the total bandwidth allocditen slice;j for all
paths crossing, during the previous run of the AC/scheduling algorithmist(a= (k — 1)7). In the RR scheme,
simply letC.(j) = C,, for all e and .

In the SR scheme, we list theewjobs, 7", in a sequencel, 2, ..., m. The particular order of the sequence is
flexible, possibly dependent on some customizable policyiristance, the order may be arbitrary, or based on the
priority the jobs, or based on increasing order of the regtie®s. In a more sophisticated, price-based scheme,
the network controller can order the jobs based on the amoiupayment per unit of data transferred that a job
requester is willing to pay. We apply a binary search to thgusace to find the last jop, 1 < j < m, in the
sequence such that all jobs before and including it are egilohés That is,; is the largest index for which the
subset of the new jobg = {1,2,...,j} is feasible forAC(k, .J). All the jobs after; are rejected.

In the RR scheme, at time= k7, all the jobs are listed in a sequence where the old jgfsare ahead of
the new jobs7;" in the sequence. The order among the old jobs is arbitrary. Tdier among the new jobs is
again flexible. Denote this sequence1ag, ..., m, in which jobs1 through! are the old ones. We then apply a
binary search to the sequencen®w jobs,! + 1,1+ 2,...,m, to find the last jobj, [< 7 < m, such that all jobs
before and including it are admissible. That jsis the largest index for which the resulting subset of thesjob
J=A{1,2,..,1,l+1,..,j} is feasible forAC(k, J) under the original network capacity.

Discussion The binary search technique assumes a pre-defined list of jubsdentifies the firstj jobs that
can be admitted into the system without violating the deadtonstraints. The presence of an exceptionally large
job with unsatisfiable demand will cause other jobs followihgo be rejected, even though it may be possible
to accommodate them after removing the large job. The rejecttio tends to be higher when the large job lies
closer to the head of the list. An interesting problem is hovadmit as many new jobs as possible, after all the
old jobs are admitted. This combinatorial problem appearbeiajuite difficult. One can always use a standard
integer programming formulation and solution for it. We dat know any solution techniques that run faster than
the integer programming techniques. But, a solution to pinéblem is orthogonal to the main issues addressed in
this paper and, once found, can always be incorporated int@eneral AC/scheduling framework.

We now comment on the computation complexity for the admissiontrol, AC(k, J). If standard linear
programming techniques are used, such as the Simplex metmdyractical computation time depends on the
number of variables and the number of constraint®\@gk, J), the number of variables is no more thalx M x P.

Here, P is the maximum number of paths allowed for any jdl.is the maximum number of (future) time slices

10

that need to be considered. It depends on how far into theefl#gdvance reservations can be allowed, e.g., three
months, and on the type of the congruent slice structure. ugeel value of|J| depends on whether SR or RR is
used. In the former case, it is equal to the number of new jgests that have arrived on an interval of length
7; in the latter case, it is equal to all the jobs in the systemoluiding both the old jobs and the new requests.
The number of non-trivial constraints is no more thamn+ |E| x M, where|E| is the number of edges in the
network. To reduce the execution time of the admission obrmiigorithm, we need to limit the number of paths
allowed per job, the number of time slices and the number lo$ jihat need to be considered. In Section IV-C,
we show by experimental results that having 4 to 10 pathsgieig generally sufficient to achieve near-optimal
performance for research networks. If ever needed, SR is aolvagducing the number of jobs that need to be
considered. What remains is how to reduce the number of tiimesswhile not sacrificing performance by much.
Section 1l is dedicated to that purpose. Section IV will coog to address the complexity issue in terms of the

algorithm execution time obtained experimentally.

C. Scheduling Algorithm

Given the set of admitted jobg/*, which always includes the old jobs, the scheduling alpariallocates flows
to these jobs to optimize a certain objective. We consider dbjectives Quick-Finish (QF) andL oad-Balancing

(LB). Given a set of admissible job$, the problem associated with the former is
Quick-Finish(k, J)
min Y ()Y Y. filpd) ®)
je[,k eJ pEPk(Si,di)

subject to(3) — (6).

In the above;y(j) is a weight function increasing i, which is chosen to be(j) = j + 1 in our experiments. In
this problem, the cost increases as time increases. Theiorten to finish a job early rather than later, when it
is possible. The solution tends to pack more flows in the easliees but leaves the load light in later slices. The

problem associated with the LB objective is,

L oad-Balancing(k, J)

max A 9)

M;,

subject tod > fi(p.j) = ZRi(i), VieJ (10)
J=1 pePy(s:,d:)

(4) = (6).

Let the optimal solution beZ* and f(p,j) for all i, j, and p. The actual flows assigned amg (p,;j)/Z".
Note that (10) ensures thdf (p,j)/Z* satisfies (3). Also,Z* > 1 must be true since/ is admissible. Hence,
fi(p,j)/Z*'s are a feasible solution to thaC(k, J) problem. ThelL oad-Balancing(k, J) problem above is

written in the maximizing concurrent throughput form. lwveals its load-balancing nature when written in the

11

equivalent minimizing congestion form. For that, make assitition of variablesf;(p,j) < fi(p,7)/Z, and let

w=1/Z.
We have,

L oad-Balancing-1(k, J)
min W (11)

subject tod > fi(p,j) < uCe(§)LEN(H),

p:e€p

Ve € E\Vj € Ly, (12)
(3),(5) and (6).

Hence, the solution minimizes the worst link congestioroasrall time slices irCy.

The scheduling algorithm is to apply = 7 to Quick-Finish(k, J) or Load-Balancing(k, J). This determines
an optimal flow assignment to all jobs on all allowed paths andalh time slices. Given the flow assignment
fi(p,j), the allocated rate on each time slice is denotedely, j) = fi(p,7)/LEN(j) for all j € Li. The
remaining capacity of each link on each time slice is given by

Ce - ZZEJ,? ZpEPk(sq,,d,,) xi(paj> if SR
Ce(j) = pie€p (13)

Ce if RR.
Finally, the complexity of the scheduling algorithms can malgzed similarly as for the admission control

algorithm. The general conclusion is also similar.

D. Putting It Together: The AC and Scheduling Algorithms

In this section, we integrate various algorithmic compdseand present the complete AC and scheduling
algorithms.

On the interval((k — 1)7, k7], the system keeps track of the new requests arriving on titetval. It also keeps
track of the status of the old jobs. If an old job is completitds removed from the system. If an old job is
serviced on the interval, the amount of data transferredhat job is recorded. At = k, the steps described in
Algorithm 1 are taken.

Finally, in Figure 3, we show a very simple example of the AC actieduling algorithms at work. The network
has only one link with a capacity of 10 Gbps. The US is used aadAtb/scheduling interval length is = 100s.

QF is used for scheduling. The top figure shows the job requéktssizes of job 1 and 2 are 3 terabits and 500
gigabits, respectively. The requested start and end tinee$0as and 700s for job 1; and200s and 300s for job

2. In this case, job 1 is admitted at= 100s. The middle figure shows the scheduletat 100s. At ¢ = 200s, job

2 is also admitted. The bottom figure shows the schedute=aR00s. Note that, byt = 200s, 1 terabits of data

have already been transferred for job 1. Note also how theaigith assignment for job 1 is changeéd= 200s,

12

Algorithm 1 Admission Control and Scheduling
1: Construct the anchored slice settat kr, Gy.

2: Construct the job sets), J2 and 7}, which are the collection of all jobs, the collection of olwbg, and the
collection of new jobs in the system, respectively.

3: For each old jok, update the remaining dematit}.(:) by subtracting from it the amount of data transferred
for i on the interval((k — 1)7, k7]. Round the start times a& = t.

4: For each new job, let R, (1) = D;. Round the requested start and end time according to (1)2nddpending
on whether the stringent or relaxed rounding policy is udétds produces the rounded start and end tintgs,
and E.

5: Derive My, = I (max;c 7, EZ-). This determines the finite collection of slic€g = {1,2, ..., M}, the first M},
slices ofG;.

6: Perform admission control as in Algorithm 2. This producesligteof admitted jobs7}.

7: Schedule the admitted jobs as in Algorithm 3. This yields the feawmount f;(p, j) for each admitted job
i € J, over all paths for jok, and all time sliceg € Lj.

8: Compute the remaining network capacity by (13).

Algorithm 2 AC - Step 6 of Algorithm 1
1: if Subtract-Resource is usélden

2: Sequence theewjobs (7,") in the system. Denote the sequence(by?, ..., m).

3: Find the last jobj in the sequence so that the set of jobs- {1,2,..., 5} is admissible byAC(k, J).

4. else if Reassign-Resource is ustten

5: Sequencall the jobs (J;) in the system, so that the old jobg){) are ahead of the new jobg/['). Denote
the sequence of jobs by, 2, ...,1,1+ 1,...,m), where the first jobs are the old jobs, followed by the new
jobs.

6: Apply binary search to the subsequence of new jéhsl, [+ 2, ...,m). Find the last joly in the subsequence
so that the set of jobd = {1,2,...,j} is admissible byAC(k, J).

7: end if

8: Return the admissible sefj = J.

Algorithm 3 Scheduling - Step 7 of Algorithm 1
1: if Quick-Finish is preferredhen

2: Solve Quick-Finish(k, J)

3: else

4: Solvel oad-Balancing(k, J)

5. end if

13

when compared to that at= 100s. This is in response to the admission of job 2, which has ag&rihend time

requirement. Furthermore, it can be seen that the bandwsdtigranent for job 1 is time-varying.

job 2, size = 500Gh

[%)

job 1, size =3Tb

job 1 request job 2 request

| | | | | | | |
A A I} A I} A I} :
400 500 600 700 god™e®

o
N

o

S

N
N~
<]

w

S

<]

Schedule at t = 100s
10 Gbp

5 Gbps

-
-

1 "time (s)
0 100 200 300 400 500 600 700 800

Schedule at t = 200s
10 Gbp:

o //// | | | |

[
0 100 200 300 400 500 600 700 sod™Me®

-
-

Fig. 3. An AC and scheduling example for a network with one link with a ciypd® Gbps.

I1l. NON-UNIFORM SLICE STRUCTURE

As discussed in Section II-A.1 and Section II-B, the numbeiroétslices directly affects the number of variables
in our AC and scheduling linear programs, and in turn the @ttec time of our algorithms. We face a problem of
covering a large enough segment of the timeline for advaeservations with a small number of slices, say about
100. In this section, we will design a new slice structurehwibn-uniform slice sizes. They contain a geometrically
(exponentially) increasing subsequence, and therefoeealle to cover a large timeline with a small number of
slices. The key is that, as time progresses, coarse times slitlkbe further divided into finer slices. The challenge
is that the slice structure must remain congruent.

Recall that the congruent property means that, if a sliceniralier anchored slice set overlaps in time with a
later anchored slice set, it either remains as a slice, oaiiitipned into smaller slices in the later slice set. The
definition is motivated by the need for maintaining consisyen bandwidth assignment across time. As an example,
suppose at timgk — 1)7, a job is assigned a bandwidthon a path on the slicg,_;. At the next scheduling
instancet = k7, suppose the slicg,_; is partitioned into two slices. Then, we understand that adwath «
has been assigned on both slices. Without the congruenegtypiit is likely that a slice, sayy, in the slice set
anchored atr cuts across several slices in the slice set anchoréd at1)r. If the bandwidth assignments at
(k — 1)7 are different for these latter slices, the bandwidth aseimt for slicej; is not well defined just before

the AC/scheduling run at timér.

14

A. Nested Slice Structure

In the nested slice structure, there anypes of slices, known as leveélslices,i = 1,2, ..., 1. Each level slice
has a duratiom);, with the property that\; = x;A;+1, wherex; > 1 is an integer, fori = 1,...,1 — 1. Hence,
the slice size increases at least geometrically decreases. For practical applications, a small numberveide
suffices. We also require that, fersuch thatA;; < 7 < A;, 7 is an integer multiple ofA;; and A; is an
integer multiple ofr. This ensures that each scheduling interval contains agradtaumber of slices and that the
sequence of scheduling instances does not skip any jesite boundaries, fot < j <.
The nested slice structure can be defined by construction=Ad, the timeline is partitioned into levdl-slices.
The first j; level-1 slices, wherej; > 1, are each partitioned into levelslices. This removeg; level-1 slices
but addsj;x1 level2 slices. Next, the firsg, level2 slices, wherejs < jix1, are each partitioned into leval-
slices. This removeg, level-2 slices but addgs«- level-3 slices. This process continues until, in the last step, the
first j;_1 level(l — 1) slices are partitioned intg_,x;_; leveld slices. Then, the firsf;_; level-(l — 1) slices are
removed andj;_;x;_1 leveld slices are added at the beginning. In the end, the colledfigtices att = 0 contains
o1 = ji_1k1-1 (2 means “defined as”) levélslices,o;_1 = j;_ak;_o — 511 level{l — 1) slices, ...02 = jik1 — j2
level2 slices, and followed by an infinite number of leveklices. The sequence gfs must satisfyjs < j1k1,
j3 < joka, -y ji—1 < Ji_2Ki_o. This collection of slices is denoted Ig}.
As an example, to cover a maximum of 30-day period, we can fake- 1 day, As = 1 hour, andAz = 10
minutes. Hencex, = 24 and ko = 6. The first two days are first divided into a tot& one-hour slices, out
of which the first8 hours are further divided intd8 10-minute slices. The final slice structure has 48 level-3
(10-minute) slices, 40 level-2 (one-hour) slices, and asyravel-1 (one-day) slices as needed, in this case, 28.
The total number of slices is 116.
For the subsequent scheduling instances, the objectiwerigtntain the same number of slices at each level as
in Gy (since it is what the system designer wants). But this cabeotione while satisfying the slice congruent
property. Hence, we allow the number of slices at each leveleviate fromo;, for j = 2,...,1. This can be done
in various ways. Let; be the current number of levglslices att = k7, for j =1,2,...,1. Setz; = occ.
1) At-Least-o: For j from [down to 2, if the number of slices at levg] z;, is less tharns;, bring in (and
remove) the next levels — 1) slice and partition it intas;_; level-j slices. This scheme maintains at least
oj and at most; + x;_1 — 1 levelj slices forj =2, ..., 1.

2) At-Most-o: In this scheme, we try to bring the current number of slicelewal j, z;, to o;, for j =2,...,1,
subject to the constraint that new slices at leyelan only be created if is an integer multiple of\;_;.
More specifically, at = kr, the following is repeated fof from [down to 2. Ift is notan integer multiple of
Aj_1, then nothing is done. Otherwise,4f < o;, we try to create levej-slices out of a level(y — 1) slice.
In the creation process, if a leve]-— 1) slice exists, then bring in the first one and partition it. @ise,
we try to create more leveli — 1) slices, provided: is an integer multiple ofA;_,. Hence, a recursive

slice-creation process may be involved.

15

Fig. 4 and 5 show a two-level and three-level nested slicectstre, respectively, under the At-Mostdesign.
In the special but typical case of > x;_1, for j = 2,...,[, the At-Moste algorithm can be simplified as follows.
For j from [down to 2, ifz; < o; — k1, bring in (and remove) the next levg]-— 1) slice and partition it into

kj—1 level-j slices. This scheme maintains at least— ~;_; and at mosu; level-j slices forj =2,...,l.

Nested Slices

T AQ Al
- -

LLLTTT | | | | |
Loy v e v by e b e b e by |
[L
01 4 8 12 16 20 24 2€
LLITTIT | | | |
Lo g b b g o
[O O . O O) [)
01 4 8 12 16 20 24 2¢
LLLTTT | | | |
Lo b g e b b g o
[. . O O) [)
01 4 8 12 16 20 24 2¢

Fig. 4. Two-level nested time-slice structure.= 2, A; = 4 and A, = 1. The anchored slice sets shown are foe 7,27 and 37,

respectively. At-Mostz Design.o; = 8.

Nested Slices

01 4 8 12 16 20 24 28 32 36 40 44

Fig. 5. Three-level nested time-slice structure= 2, A; = 16, As = 4 and A3 = 1. The anchored slice sets shown are foe 7,27

and8r, respectively. At-Mostr Design.os = 8, o2 = 2.

B. Variant of Nested Slice Structure

When somes; is large, it may be unappealing that the number of lgvslices varies by:;_; (sometimes more
thanx;_1). To solve this problem, we next introduce another congraesiice structure related to the nested slice
structure. We will called it théA\Imost-o Variant of the nested slice structure, because it maintains at ¢gamhd
at mosto; + 1 level-j slices forj =2,...,1.

The Almoste Variant starts the same way as the nested slice structure @t As time progresses frorfk —1)7
to k7, for k = 1,2, ..., the collection of slices anchored @t k7, i.e., G, is updated fronG,_; as in algorithm 4.

The price to pay is that the Almost-Variant introduces new slice types different from the pedited level:

slices, fori =1, ...,1. Fig. 6 shows a three-level Almost-Variant.

16

Algorithm 4 Almost-o-Variant

1: for j =1 down to 2do

2:

3:

4.

if Zj < o; then

Bring in (and remove) the next available slice of a largee sind create additional; — z; level-; slices.

Z]' — O']'.

The remaining portion of the removed levgl— 1) slice forms another slice.

end if

end for

Nested Slices Almost Variant

Fig. 6. Three-level nested slice structure Almes¥ariant.7 = 2, A; = 16, A, =4 and Az = 1. The anchored slice sets shown are for

t = 1,27 and 3T, respectivelyos = 8, oo = 2. The shaded areas are also slices, but are different in size frortewlyj slice,j =1, 2

or 3.

IV. EVALUATION

evaluate the required computation time to determine thkalsidity of our algorithms.

This section describes the performance results of diffevanations of our AC/scheduling algorithms. We also

Most of the experiments are conducted on the Abilene netwehich consists of 11 backbone nodes connected

by 10 Gbps links. Each backbone node is connected to a randgembrated stub network. The link speed between

each stub network and the backbone node is 1 Ghps. The entiserkehas 121 nodes and 490 links. For the

scalability study of the algorithms, we use random netwaovkh the number of nodes ranging frob@0 to 1000.

The random network generator takes the number of nodes arav¢in@ge node degree as arguments, from which it

computes the total number of links in the network. Then, iesgpdly picks a node pair uniformly at random from

those unconnected node pairs, and connects them with a fpliiks in both directions. This process is repeated

until all links are assigned. We use the commercial CPLEX paeKag solving linear programs on Intel-based

workstations. Each workstation has a dual-core processb#@a®B of memory.

Unless mentioned otherwise, we use the following expertalemodels and parameters. Job requests arrive

following a Poisson process. In order to simulate the file size, {he demand siz®;) distribution, we resort to

the heavy-tailed Pareto distribution, with the distribatifunction #'(x) = 1 — (z/b)~%, wherex > b anda > 1.

It is known that the Internet traffic has the heavy-tail disition. The heavy-tail Pareto distribution is widely used

for generating simulated Internet traffic. It has the propémat large files occur with a non-negligible probability.

17

As argued in Section |, files in e-science are often much ladgen those in the ordinary Internet environment.
That is, the file size distribution in e-science is more heaitgd than the Internet traffic. It appears appropriate to
use the Pareto distribution to generate very large files irsonulation. The closew is to 1, the more heavy-tailed

is the distribution, and the more likely it is to have jobstwitery large sizes. In most of our experiments, the
average file size i50 GB anda = 1.3. By default, each job usesshortest paths. We adopt this approach because
our experiments on multi-path scheduling revealed theatig result (See also [16].): For a typical network with
several hundred nodes, 8 shortest paths are sufficient foevadp near optimal performance while keeping the
algorithm execution time within the range of practicdlityVe evaluate our algorithms under three traffic loads,
namely, light, medium and heavy. By light, medium and heasffit loads, we mean that the average inter-arrival
time between jobs is 5 minutes, 2 minutes and 30 secondseatbsgly. In order to obtain stable results, we
generated jobs under these different traffic loads for a gesfa3 days. For the heavy traffic load, roughly 10,000
file transfer requests were generated.

We will compare the uniform slice (US) and the nested slicacstires (NS) of the Almost Variant type. For
US, the time slice and AC/scheduling interva) {s 21.17 minutes. This corresponds to 68 slices in everyd@#-h
period. For NS, we use a two-level NS structure with 48 fine ({&yeslices and 20 coarse (level-1) slices. The fine
slice size iIsA; = 5 minutes, and the coarse slice sizeNis = 60 minutes. These parameters are chosen so that the
first 24-hour period is divided into 68 fine and coarse slices,stdime number as the US case. The AC/scheduling
interval 7 is 5 minutes, which is finer than the US case.

The plots and tables use acronyms to denote the algorithnisingbe experiments. Recall that SR stands for
Subtract-Resource and RR stands for Reassign-Resourcenissioh control; LB stands for Load-Balancing as
the scheduling objective and QF stands for Quick-Finish.

The performance measures are:

» Rejection ratio: This is the ratio between the number of j@jeated and total number of job requests. From
the network’s perspective, it is desirable to admit as maing jas possible.
» Response time: This is the difference between the complétios of a job and the time when it is first being

transmitted. From an individual job’s perspective, it isicide to have shorter response time.

A. Comparison of Algorithm Execution Time

Before comparing the performance of the algorithms, we foatgare their execution time. Short execution time
is important for the practicality of our centralized netwarontrol strategy. The results on the execution time put
the performance comparison (Section IV-B) in perspectivettdd performance often comes with longer execution
time. Table | shows the execution time of different schemasdeu two representative traffic conditions.

®We ignore the connection setup (path setup) time because, due to the stmaitknsize, we can pre-compute and store the allowed

paths for every possible source-destination pair.

18

TABLE |

AVERAGE AC/SCHEDULING ALGORITHM EXECUTION TIME (S)

Algorithm Heavy Load Light Load

AC Scheduling| AC Scheduling
US+SR+LB || 13.13 5.70 0.40 0.61
US+SR+QF || 12.03 1.86 0.32 0.23

US+RR+LB || 80.89 5.89 1.05 0.65
US+RR+QF || 34.36 4.74 0.36 0.21
NS+SR+LB | 1.54 4.50 0.14 0.60
NS+SR+QF | 1.57 1.60 0.13 0.07
NS+RR+LB || 25.16 4.30 1.07 0.61
NS+RR+QF || 17.43 3.54 0.17 0.06

1) SR vs. RR and LB vs. QH:he results show that, for admission control, SR can have micties average
execution time than RR. This is because, in SR, AC works onlyhemew jobs, whereas in RR, AC works on all
the jobs currently in the system. Hence, for SR, A&k, J) feasibility problem usually has much fewer variables.

When the AC algorithm is fixed, the choice of the schedulingpdllgm, LB or QF, also affects the execution
time for AC. For instance, the RR+LB combination has much &negxecution time for AC than the RR+QF
combination. This is because, in LB, each job tends to be bedtover time in an effort to reduce the network
load on each time slice. This results in more jobs and moregeaslices (slices ii;) in the system at any moment,
which means more variables for the linear program.

For scheduling, since LB and QF are very different linear protg, it is difficult to explain the differences in
their execution time. But,we do observe that LB has longec@ixen time, again, possibly due to more variables
for the reason stated in the previous paragraph.

2) US vs. NS:Depending on the number of levels for the NS, the number oéslat each level and the slice
sizes, the NS can be configured to achieve different objectiveproving the algorithm performance, reducing
the execution time, or doing both simultaneously. Our expental results in Table | correspond to the third case.
Since the two-level NS structure has = 60 minutes and the US has the uniform slice sixe= 21.17 minutes,
the NS typically has fewer slices than the US. For instancdeuheavy load, US+RR+QF uses 150.5 active slices
on average for AC, while NS+RR+QF uses 129.6 active slicesverage. The number of variables, which directly
affect the computation time of the linear programs, is galheproportional to the number of slices.

Part of the performance advantage of the NS (to be shown ino&d¥tB) is attributed to the smaller scheduling
interval 7. To reduce the scheduling interval for the US, we must redneseslice sizeA, sinceA = 7 in the US.

In the next experiment, we set the US slice size toshbminutes, which is equal to the size of the finer slice in
the NS. Table Il shows the performance and execution time aosgn between the US and NS. Here, we use RR
for admission control and QF for Scheduling. The US and NS haegly identical performance in terms of the

response time and job rejection ratio. But, the NS is far sapén execution times for both AC and scheduling.

19

Upon closer inspection (Table 111), the NS requires far fewetive time slices than the US on average.

TABLE I

COMPARISON OFUS AND NS (r = 5 MINUTES)

Response || Rejection Execution Time (S)
Time (min) Ratio AC Scheduling
LIGHT LOAD
us 6.064 0 0.469 0.309
NS 5.821 0 0.162 0.062
MEDIUM LOAD
us 9.767 0.006 3.177 2.694
NS 9.354 0.006 0.587 0.387
HEAVY LOAD
us 16.486 0.183 131.958 26.453
NS 17.107 0.173 17.428 3.539
TABLE 1l

AVERAGE NUMBER OF SLICES OFUS AND NS (r = 5 MINUTES)

Average Number of Slices
AC Scheduling
Light Load usS || 299.0 299.9
NS || 68.9 69.0
Medium Load || US || 421.6 462.9
NS || 79.1 82.1
Heavy Load us || 975.1 799.8
NS || 129.6 113.4

In summary,
« SR is much faster than RR for admission control.
» LB tends to be slower than QF for both AC and scheduling.
o The NS requires much shorter execution time than the US, orwashibetter performance, or has both
properties.
The advantage of the NS can be extended by increasing the nuhbkce levels. In practice, it is likely that the

US is too time consuming and the NS is a must.

B. Performance Comparison of the Algorithms

In this subsection, the experimental parameters are adstathe introduction for Section IV. In particular, we
fix the number of paths per jobk() to be 8. Table IV shows the response time and rejection ratio ofechffit

algorithms.

20

TABLE IV

PERFORMANCECOMPARISON OFDIFFERENTALGORITHMS

Algorithm Light Load Medium Load Heavy Load
Response Time (s) Rejection RatjoResponse Time (s) Rejection RatjoResponse Time (s) Rejection Ratio

US+SR+LB 46.55 0 42.35 0.056 35.56 0.423
US+SR+QF 21.51 0.014 22.21 0.100 23.56 0.477
US+RR+LB 46.55 0 40.73 0.026 35.73 0.313
US+RR+QF 21.55 0 23.36 0.021 25.16 0.312
NS+SR+LB 49.60 0 43.83 0.021 28.74 0.237
NS+SR+QF 5.73 0.006 7.56 0.052 11.06 0.403
NS+RR+LB 49.60 0 43.88 0.011 30.16 0.168
NS+RR+QF 5.82 0 9.35 0.006 17.11 0.173

1) US vs. NSin Table 1V, the algorithms with the NS have a comparable teimbetter performance than those
with the US. Furthermore, it has already been established iticBel&/-A that the NS has much shorter algorithm
execution time.

2) Best PerformanceThe best performance in terms of both response time and tbetigg) ratio is achieved
by the RR+QF combination.

Suppose we fix the slice structure and the scheduling algariffitan, SR has worse rejection ratio than RR
because SR does not allow flow reassignment for the old jobsigitihie admission control. Since response time
increases with the admitted traffic load, an algorithm thati$eto lower rejection ratio can have higher response
time. This explains why RR often has higher response time tivmorresponding SR algorithm. Note that a lower
rejection ratio does noalwayslead to higher traffic load since some algorithms, such as RR,the network
capacity more efficiently.

Suppose we fix the slice structure and the AC algorithm. Then, L8sdouch worse than QF in terms of
response time, because LB tends to stretch a job until itsestgd end time while QF tries to complete a job early
if possible. If RR is used for admission control, then undighHoad, the different scheduling algorithms have a
similar effect on the rejection ratio of the next admissi@mtcol operation. However, for medium load we notice
that the work conserving nature of QF contributes to a lovegeation ratio than LB, which tends to waste some
bandwidth.

3) Merits of SR and LB:Given the above discussion, one may quickly dismiss SR and LB. & we have
noted in Section IV-A, SR can have considerably shorter ei@tuime than RR. Furthermore, it is a candidate
for conducting realtime admission control at the instantemva request is made, which is not possible with RR.

If SR is used, then LB often has a lower rejection ratio than Qe fidason is that QF tends to highly utilize
the network on earlier time slices, making it more likely &ect small jobs requested for the near future. This
is a legitimate concern because, in practice, it is mordylikeat small jobs are requested to be completed in the
near future rather than the more distant future.

There is indication that the more heavy-tailed is the file sigtribution, the larger is the difference in rejection

21

ratio between LB and QF. The evidence is shown in Fig. 7 for thiet licaffic load. As the Pareto parameter

approaches 1 while the average job size is held constanghtiece of having very large files increases. Even
if they are transmitted at the full network capacity as in ®@kch large files can still congest the network for a
long time, causing more future jobs to be rejected. The cbtténg to do, if SR is used, is to spread out the

transmission of a large file over its requested time interval.

0.1 US+SR+LB ==
o 008 US+SR+QF#ssiis
&
= 006
2
2 004t
)
x
0.02 - N
O
1.1 1.3 1.5 1.8
Alpha

Fig. 7. Rejection ratio for different’s under SR.

To summarize the key points, between the admission contethods, RR is much more efficient in utilizing
the network capacity, which leads to fewer jobs being regctvhile SR is suitable for fast or realtime admission
control; if SR is used for admission control, then the scheduimethod LB is superior to QF in terms of the

rejection ratio.

C. Single vs Multi-path Scheme

The effect of using multiple paths is shown in Fig. 8 for the tighedium and heavy traffic loads. Here, the NS
is used along with the admission control scheme RR, and thedsiting objective QF. For every source-destination
node pair, thek shortest paths between them are selected and used by ebdrgtjgeen the node pair. We vaky
from 1 to 10 and find that multiple paths often produce better response @ind always produce a lower rejection
ratio. The amount of improvement depends on many factors asdhe traffic load, the version of the algorithm,
and the network parameters. For the light load, no job ictege As the number of paths per job increases from 1
to 8, we get 35% reduction in the response time. No furtheravgment is gained with more than 8 paths. For the
medium load, the response time is almost halved as the nuoflpaths varies from 1 to 10. The improvement in
the rejection ratio is even more impressive, from 13.3% dw®.3%. For the heavy load, there is no improvement
in the response time due to the significant reduction in thectigin ratio: With multiple paths, many more jobs
are admitted, resulting in a large increase of the actualoritload.

Fig. 9 and Fig. 10 show the response time and the rejection raspectively, under the medium traffic load for
all algorithms. It is observed that the rejection ratio @ases significantly for all algorithms ds§ increases. All
the algorithms that use LB for scheduling experience an as&ran the response time due to the reduction in the

rejection ratio. But, this is not a disappointing resultdese it is not a goal of LB to reduce the response time. All

22

m
Q
=}
£ 18 0.6 —
\E/ ;(.................. K * |_|ght —F—
(0] 16 g g 05 Medium -
g S ° 5% aull ol
g ¥ Light = g oal y
@ Medium - e : X...
g 12 Heavy - Ko S 03 =
<) S 8 .
2 10[[e 2 Koo ‘
&) 8 i 7 6])_; 0.2 R S Ko
@ e 1 I ok *
5] - = t) Kt
g 0O—& A - X
< 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of paths (K) Number of paths (K)
(@) (b)

Fig. 8. Single vs. multiple paths under different traffic load. (a) Respdime; (b) Rejection ratio.

the algorithms using QF for scheduling experience a deergathe response time. Inspite of the increased load,

QF is able to pack more jobs in earlier slices by utilizing #ulitional paths.

m m

o 30

£ K. g

= £

E et~y £

2 B e 2

o 20 '

2 2

& 15E1”"' &

. &

5 ‘- g 5

s 10r : ®

g oo e Koo " .

< < NS+RR+LB [
5 : 20 e
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of paths (K) Number of paths (K)
(a) (b)

Fig. 9. Single vs. multiple paths under medium traffic load for differenbriigms. (a2) Response time for QF; (b) Response time for LB.

0.35

0.3

US+SR+QF—— 4 US+SR+LB ——
0.31 US+RR+QF--- | \ US+RR+LB -5
: \ NS+SR+QF-¥-- 0.25 NS+SR+LB -]
o o025k NS+RR+QF & o NS+RR+LB &
T T
o : o
c c
2 2
& 015 8
g g
0.1
0.05 t
o j - j R —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of paths (K) Number of paths (K)
(a) (b)

Fig. 10. Single vs. multiple paths under medium traffic load for differégrithms. (a) Rejection ratio for QF; (b) Rejection ratio for LB.

D. Comparison against Typical AC/Scheduling Algorithm

The next experiment compares our AC/scheduling algorithittsawsimple, incremental AC/scheduling algorithm,

which will be called thesimple schemél'he simple scheme decouples AC from routing, and assumeg|la siefault

23

path given by the routing protocol. AC is conducted in readtiupon the arrival of a request. The requested resource
is compared with the remaining resource in the network ordefault path. If the latter is sufficient, then the job
is admitted. The remaining resource is updated by subtétom it what is allocated to the new request by the
scheduling step (See next.).

Compared to our AC/scheduling algorithms, the simple seéhesmsembles our SR admission control algorithm
but allows only one path for each job. For bulk transfer wilirtsand end time constraints, the simple scheme still
requires a scheduling stage, because bandwidth needs tiodeted to the newly admitted job over the time slices
on its default path. We can apply the time slice structure tedscheduling objective of LB or QF to the newly
admitted job. However, unlike our scheduling algorithne #theduling algorithm in the simple scheme does not
reschedule theld jobs; that is, it does not change the bandwidth allocatiorttie old jobs.

The reason we use the simple scheme as the baseline for ceopavith our algorithms is that it is fairly
general: The basic part of the simple scheme is really what wtber systems or proposals use. If we remove
the advance reservation part, the AC in the simple schenamniadses a typical AC algorithm proposed for most
traditional QoS architectures for large networks [23],][225], [26]. With advance reservation, it is similar to
most proposals for AC in research networks [13], [22]. Botnpared with most other schemes, the simple scheme
has something extra: The bandwidth for a job can be diffenemhfslice to slice. Hence, the performance of the
simple scheme is at least as good as, and nearly always beterthat of other exiting schemes.

Table V shows the rejection ratio of the simple scheme wiffeint slice structures and scheduling algorithms
for different traffic loads. This should be compared with Table The simple scheme leads to considerably
higher rejection ratios than all of our algorithms involgi®R, which in turn have higher rejection ratios than the

corresponding algorithms involving RR.

TABLE V

REJECTIONRATIO OF THE SIMPLE SCHEME

Light Load | Medium Load | Heavy Load
US+SR+LB 0.010 0.345 0.781
US+SR+QF 0.031 0.308 0.792
NS+SR+LB 0 0.225 0.596
NS+SR+QF 0.026 0.249 0.642

E. Scalability of AC/Scheduling Algorithms

For this experiment, we assume that all job requests artitleeasame time and have the same start and end time
requirement. Hence, the AC/scheduling algorithms run amlge. The objective is to determine how the execution
time of the algorithms scales with the number of simultaisgjobs in the system, the number of time slices used,
or the network size. In this case, RR and SR are indistinghlshén the following results, we use the US+SR+QF

scheme.

24

Fig. 11 shows the execution time of AC and scheduling as aifumaf the number of jobs. The interval between
the start and end times is partitioned into 24 uniform timeesl. It is observed that the increase in the execution
time is linear or slightly faster than linear. Scaling up toubands of simultaneous jobs appears to be possible.

Fig. 12 shows the execution time against the number of tinceslior 100 requests. The increase is linear. With
respect to the execution time, the practical limit is selvbuadred slices. This is sufficient if the NS is used. But
with the US, the slice size may be too coarse if one wishes tercesveral months of advance reservations.

Fig. 13 shows the scalability of the algorithms against thevoek size. For this, we generate random networks
with 100 to 1000 nodes in 100-node increments. The average dedree is,5,7,9,9,10,10,11,11, and 11,
respectively, so that the number of edges also increasesndtimrk link capacity ranges froi.1 Gbps to10
Gbps. There are 100 jobs to be admitted and scheduled. It enakthat the execution time increases slightly

faster than linear, indicating acceptable scaling belavio

35 .

30

25 rd
//

20 x

K - X
/L/ﬂ\"wxschec AC ——
- ‘ uling -

100 300 500 700 900
Number of Jobs

Average Execution Time (s)

Fig. 11. Scalability of the execution times with the number of jobs.

N
\
X

/K,,) B Ne

1 L

AC ——
_ Scheduling -

10 20 30 40 50 60 70 80 90 100
Number of Timeslices

'

Average Execution Time (s)
o [l N w N (6] »

Fig. 12. Scalability of the execution times with the number of time slices.

V. RELATED WORK

Compared with the traditional QoS frameworks, such as 8#er [27], DiffServ [28], the ATM network [23], or
MPLS [24], admission control and scheduling for research agtsvare recent concerns with much fewer published

studies.

25

w
GE) = AC ——
\C —— I
= 200 Scheduling - 1
c
S
£ 150 . A
(&)
; 4/
N 100 /
o
g 50 / /
< e S
< Y A S

2000 4000 6000 8000 10000
Number of Edges

Fig. 13. Scalability of the execution times with the network size.

A. Bulk Transfer

Recent papers on AC and scheduling algorithms for bulk teangith advance reservations include [14], [15],
[16], [17], [18], [19], [13], [20], [21]. In [13], the AC anda&heduling problem is considered only for the single link
case. Network-level AC and scheduling are considered tabsde the scope of [13]. As a result, multi-path routing
and network-level bandwidth allocation and re-allocati@ve no counter-part in [13]. Moreover, the solution is a
heuristic one instead of an optimal one. Finally, once a johdmiitted permanently, it won't be reconsidered in
the future. In contrast, we periodically re-optimize thendbaidth assignment for all the new and old jobs.

In one of our earlier papers [16], we focus on a one-time sgalvagl subproblem, as apposed to periodic schedul-
ing, and conduct a detailed performance comparison betwiwe-slice scheduling and multi-slice scheduling
under various slice sizes, and between single-path rquimuiti-path routing and an arc-flow formulation, which
is equivalent to allowing all possible paths for every jobe \@bnclude that having a small number of paths per
job is usually sufficient to yield near-optimal throughputyieh is defined as what is achievable when all possible
paths are allowed. Multi-slice scheduling is justified far significant performance (e.g., throughput) improvement.
Another research team has also considered the similargaroblt with different emphasis [14].

In [17], [18], [19], the authors consider single-link adsien control or link-by-link admission control under
single-path routing. The admission control uses heuridgjordhms instead of solutions to optimization problems.
Based on its size and the deadline, the average requireavizithaf a bulk transfer job is computed. The admission
control is based on the job’s average bandwidth requirentére bandwidth of existing jobs may be re-allocated
in the single link case but not in the network case.

The authors of [21] propose a malleable reservation schenimifk transfer, which checks every possible interval
between the requested start time and end time for the jobraslto find a path that can accommodate the entire
job on that interval. The scheme favors intervals with eadieadlines. In [20], the computational complexity of a
related path-finding problem is studied and an approximatigorithm is suggested. [15] starts with an advance
reservation problem for bulk transfer. Then, the problenoisverted into a constant bandwidth allocation problem
at a single time instance to maximize the job acceptance This is shown to be an NP-hard problem. Heuristic
algorithms are then proposed. In [15], all the requests amvk at the time of the admission control and no

additional requests come later. The AC/scheduling is choig only once. Our focus is quite different. We assume

26

that the requests continue to arrive and the AC/schedulingthe done repeatedly. The concern for us is how
to optimize and re-optimize the bandwidth assignment tojois as new job requests arrive, so that the early
commitments are not violated and the network resource id aeffeciently. In [15], the bandwidth constraints are

at the ingress and egress links only. As a result, there i®atng issue. In our case, we have a full network and
we use multiple paths for each job. We may alter the bandwadignment on the paths for each existing job in

the system in order to accommodate later jobs.

B. MBG Traffic

Several earlier studies [29], [30], [31], [32] have cons@tkadmission control at an individual link for the MBG
(minimum bandwidth guarantee) traffic class with start and #mes. The concern is typically about designing
efficient data structures, such as the segment tree [30],efepikg track of and querying bandwidth usage at the
link on different time intervals. The admission of a new jolb&sed on the availability of the requested bandwidth
between the job’s start time and end time. [20], [33], [2B}][and [31] go beyond single-link advance reservation
and tackle the more general path-finding problem for the MB#&&s;l but typically only for new requests, one at
a time. The routes and bandwidth of existing jobs are unchhr{§8] considers a network with known routing in
which each admitted job derives a profit. It gives approxioratlgorithms for admitting a subset of the jobs so

as to maximize the total profit.

C. Other Related Work

The authors of [36] also advocate periodic re-optimizatiordétermine new bandwidth allocation in optical
networks. However, they do not assume that users make aglvaservations with requested end times. As a result,
[36] does not have the admission control step. In the scheglstep, it uses a multi-commaodity flow formulation for
bandwidth assignment, similar to our formulation but withthe time dimension. That is, the scheduling problem in
[36] is for a single (large) time slice, rather than over npldt time slices. Many papers study advance reservation,
re-routing, or re-optimization of lightpaths, at the grkamity of a wavelength, in WDM optical networks [37], [38].

But, they do not consider the start and end time constraint.

D. Control Plane Protocols, Architectures and Tools

This paper focuses on the AC and scheduladgorithms A complete solution for the intended e-science
application will also need the control plane protocols h#exctures and middleware toolkits, which are considered
outside the scope of the paper. In the control plane, [228emes an architecture for advance reservation of intra
and interdomain lightpaths. The DRAGON project [11] devsl@ontrol plane protocols for multi-domain traffic
engineering and resource allocation on GMPLS-capable [39¢aphetworks. GARA [9], the reservation and
allocation architecture for the grid computing toolkit &its [10], supports advance reservation of network and
computing resources. [40] adapts GARA to support advanservation of lightpaths, MPLS paths and DiffServ
paths. GridJIT [41] is another signaling protocol for segtup and managing lightpaths in optical networks for grid

27

computing applications. ODIN [42] is a toolkit for opticaktwork control and management for supporting grid
computing. Another such toolkit is reported in [43]. [44kdiusses the architectural and signaling-protocol issues

for advance reservation of network resources.

VI. CONCLUSION

This study aims at contributing to the management and res@limcation of research networks for data-intensive
e-science collaborations. The need for large file transfehagtdbandwidth, low-latency network paths is among the
main requirements posed by such applications. The opptdsitie in the fact that research networks are generally
much smaller in size than the public Internet, and hencedffocentralized resource management platform. This
paper combines the following novel elements into a cohdsamework of admission control and flow scheduling:
advance reservation for bulk transfer and minimum bandwggiaranteed traffic, multi-path routing, and bandwidth
reassignment via periodic re-optimization.

To handle the start and end time requirement of advancevagisr, as well as the advancement of time, we
identify a suitable family of discrete time-slice struesy namely, the congruent slice structures. With such a
structure, we avoid the combinatorial nature of the probdamd are able to formulate several linear programs as
the core of our AC and scheduling algorithms. Moreover, we davelop simple algorithms that can retain the
performance guarantee for the existing jobs in the systeitevadmitting new jobs. Our main algorithms apply to
all congruent slice structures, which are fairly rich. Intjgaular, we describe the design of the nested slice stractu
and its variants. They allow the coverage of a long segmeningf for advance reservation with a small number of
slices without compromising performance. They lead to reduexecution time of the AC/scheduling algorithms,

thereby making it practical. The following inferences weraveh from our experiments.

« The algorithms can handle up to several hundred time slicdsnnvihe time limit imposed by practicality
concern. If the NS is used, this number can cover months, gears, of advance reservation with sufficient
time slice resolution. If the US is used, either the duratbroverage must be significantly shortened or the
time slice be kept very coarse. Either approach tends to deghre algorithms’ utility or performance.

« We have argued that between the admission control methdRiss Riuch more efficient than SR in utilizing
the network capacity, thereby, leading to fewer jobs begjgated. On the other hand, SR is suitable for fast
or realtime admission control. If SR is used for admissiontmdnthen the scheduling method LB is superior
to QF in terms of the rejection ratio. We have also observed wsing multiple paths improves the network
utilization dramatically.

« The execution time of our AC/scheduling algorithms exhibitseptable scaling behavior, i.e., linear or slightly
faster than linear scaling, with respect to the network,dize number of simultaneous jobs, and the number
of slices. We have high confidence that they can be practica.ekacution time can be further shortened by
using fast approximation algorithms, more powerful corepsit and better decomposition of the algorithms

for parallel implementation.

28

Even in the limited application context of e-science, admisgontrol and scheduling are large and complex
problems. In this paper, we have limited our attention totakessues that we think are unique and important. This
work can be extended in many directions. To name just a fee,aam develop and evaluate faster approximation
algorithms as in [45], [46]; address additional policy doasits for the network usage; incorporate the discrete
lightpath scheduling problem; develop a price-based higldiystem for making admission request; or address more
carefully the needs of the MBG traffic class, such as miningizime end-to-end delay.

The AC/scheduling algorithms presented in this paper arg pait of a complete solution for the intended e-
science applications. Control plane protocols and middievare needed for setting up the network paths, controlling
the bandwidth allocation, and for the end systems to takargtdge of the new networking capabilities. The software
tools should also automate the user-network interactioch s the request submission and re-negotiation process.
There are several projects in protocol, architecture an#itatevelopment, mainly in the grid computing community,
as discussed in Section V. Developing similar protocols adirey new components to the existing toolkits in

support of our algorithms are among the future tasks.

APPENDIX |

FREQUENTLY USED NOTATIONS

Frequently used notations and definitions are summarizedbte 4.

REFERENCES

[1] The U.K. Research Councils, http://www.research-councilskéesaience/, site last visited on Feb. 18, 2008.
[2] 1. Foster and C. Kesselmaithe Grid: Blueprint for a New Computing InfrastructureMorgan Kaufmann, 1999.
[3] H. B. Newman, M. H. Ellisman, and J. A. Orcutt, “Data-intensivece&ence frontier researchCommunications of the ACMol. 46,
no. 11, pp. 68-77, Nov. 2003.
[4] J. Bunn and H. Newman, “Data-intensive grids for high-energysics,” in Grid Computing: Making the Global Infrastructure a
Reality F. Berman, G. Fox, and T. Hey, Eds. John Wiley & Sons, Inc, 2003.
[5] T. DeFanti, C. d. Laat, J. Mambretti, K. Neggers, and B. Arnau@itafsLight: A global-scale LambdaGrid for e-science,”
Communications of the ACMol. 46, no. 11, pp. 34-41, Nov. 2003.
[6] National Lambda Rail, http://www.nlr.net, site last visited on Feb. 18,8200
[7] Abilene Network, http://www.internet2.edu/network/, site last visited oh. A&, 2008.
[8] CA*net4, http://www.canarie.ca/canetd/index.html, site last visited dn E8, 2008.
[9] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and 8y, RA distributed resource management architecture that supports
advance reservations and co-allocation,’Piroceedings of the International Workshop on Quality of Service (18/@8), 1999.
[10] The Globus Aliance, http://www.globus.org/, site last visited on Feb.2088.
[11] T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: A framewénr service provisioning in heterogeneous grid networkEEE
Communications Magazindlarch 2006.
[12] T. Ferrari,Grid Network Services Use Cases from the e-Science CommuihigyOpen Grid Forum, Dec. 2007, http://www.ogf.org/,
site last visited on Feb. 18, 2008.
[13] S. Naiksatam and S. Figueira, “Elastic reservations for efficiandtvidth utilization in LambdaGrids,The International Journal of
Grid Computing vol. 23, no. 1, pp. 1-22, January 2007.
[14] B. B. Chen and P. V.-B. Primet, “Scheduling deadline-constchimdk data transfers to minimize network congestion,Pimoceedings
of the Seventh IEEE International Symposium on Cluster Computing ar@ridl CCGRID) May 2007.

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]
[24]

29

TABLE VI

FREQUENTLY USED NOTATIONS AND DEFINITIONS

Ce Capacity of linke

D; Demand size of joh

S:, Ss Start time and rounded start time of jéb

E;, B End time and rounded end time of jeb

T Interval between consecutive AC/scheduling ryns
A; Duration of a level: slice in the NS

oi Number of level: slices in the NS

In the following, assume = k.
Gk Slice set anchored at timer

My, Index of the last slice in which some rounded

end time falls

Ly C G Finite slice setl, ..., My
STy(i), ETy(¢) | Start and end times of slice
LEN(4) Length of slice:
I, (%) Index of the slice that time falls in
N/ Set of the old jobs
il Set of the new jobs
N/ Set of the admitted jobs
Py (s,d) Allowable paths from node to d
Ry (4) Remaining demand of job
filp,) Total flow allocated to jok on pathp on slicej
Ce(4) Remaining capacity of link on slicej

L. Marchal, P. Primet, Y. Robert, and J. Zeng, “Optimal bandwiskiaring in grid environment,” irProceedings of IEEE High
Performance Distributed Computing (HPDC)une 2006.

K. Rajah, S. Ranka, and Y. Xia, “Scheduling bulk file transfers wgitirt and end timesComputer Networksto Appear. Manuscript
avaiable at http://dx.doi.org/10.1016/j.comnet.2007.12.005. A skagion is published at NCA 2007.

K. Munir, S. Javed, M. Welzl, and M. Junaid, “Using an eventdehpriority queue for reliable and opportunistic scheduling of bulk
data transfers in grid networks,” ifroceedings of the 11th IEEE International Multitopic Conference (INM0D7) December 2007.

K. Munir, S. Javed, M. Welzl, H. Ehsan, and T. Javed, “An ¢éménd QoS mechanism for grid bulk data transfer for supporting
virtualization,” in Proceedings of IEEE/IFIP International Workshop on End-to-endudiization and Grid Management (EVGM
2007) San Jose, California, October 2007.

K. Munir, S. Javed, and M. Welzl, “A reliable and realistic approatfadvance network reservations with guaranteed completion time
for bulk data transfers in grids,” iRroceedings of ACM International Conference on Networks for Gridliégjions (GridNets 2007)
San Jose, California, October 2007.

R. Guerin and A. Orda, “Networks with advance reservationg fduting perspective,” iffroceedings of IEEE INFOCOM 99999.
L.-O. Burchard and H.-U. Heiss, “Performance issues afdwadth reservation for grid computing,” ifProceedings of the 15th
Symposium on Computer Archetecture and High Performance Comp&BaQ-PAD’03) 2003.

E. He, X. Wang, V. Vishwanath, and J. Leigh, “AR-PIN/PDC: Rl#& advance reservation of intradomain and interdomain lightpaths,”
in Proceedings of the IEEE GLOBECOM 2Q08)06.

D. E. McDysan and D. L. SpohiATM Theory and Applications McGraw-Hill, 1998.

E. Rosen, A. Viswanathan, and R. Calldvultiprotocol label switching architectureRFC 3031, IETF, Jan. 2001.

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

30

F. P. Kelly, P. B. Key, and S. Zachary, “Distributed admissiontadfi IEEE Journal On Selected Areas In Communicatjors. 18,
no. 12, Dec. 2000.

G. de Veciana, G. Kesidis, and J. Walrand, “Resource managein wide-area ATM networks using effective bandwidth&§EE
Journal on Selected Areas in Communicationsl. 13, no. 6, pp. 1081-1090, Aug. 1995.

R. Braden, D. Clark, and S. Shenkéregrated services in the internet architecture: An overyiBK¥C 1633, IETF, June 1994.

S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Wess architecture for differentiated serviceRFC 2475, IETF, Dec.
1998.

O. Schekn, A. Nilsson, J. Norgrd, and S. Pink, “Performance of QoS agents for provisioning mitvesources,” irProceedings of
IFIP Seventh International Workshop on Quality of Service (IWQg$'B8ndon, UK, June 1999.

A. Brodnik and A. Nilsson, “A static data structure for discrete ambeabandwidth reservations on the Internet,” Department of
Computer Science and Electrical Engineering, Buléniversity of Technology, Sweden, Tech. Rep. Tech report@9808041, 2003.
L.-O. Burchard, J. Schneider, and B. Linnert, “Reroutingtstyges for networks with advance reservations,Pioceedings of the First
IEEE International Conference on e-Science and Grid Computing i&e 2005) Melbourne, Australia, Dec. 2005.

Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang, “A linked-list datiusture for advance reservation admission control [GENMC
2005 2005, lecture Notes in Computer Science, Volume 3619/2005.

T. Wang and J. Chen, “Bandwidth tree - A data structure for routingetworks with advanced reservations,” Pnoceedings of the
IEEE International Performance, Computing and Communications Cenéer (IPCCC 2002)April 2002.

T. Erlebach, “Call admission control for advance reservatémuests with alternatives,” Computer Engineering and Networks Ltdvgra
Swiss Federal Institute of Technology (ETH) Zurich, Tech. Rep. Réport Nr. 142, 2002.

L. Lewin-Eytan, J. Naor, and A. Orda, “Routing and admissiontan in networks with advance reservatione,”Rnoceedings of the
Fifth International Workshop on Approximation Algorithms for Combinato@gitimization (APPROX 022002.

R. Bhatia, M. Kodialam, and T. V. Lakshman, “Fast network pthoization schemes for MPLS and optical network€mputer
Networks vol. 50, no. 3, Feb. 2006.

D. Banerjee and B. Mukherjee, “Wavelength-routed optical netaolinear formulation, resource budgeting tradeoffs, and a
reconfiguration study,JEEE/ACM Transactions on Networkingol. 8, no. 5, pp. 598-607, Oct. 2000.

E. Bouillet, J.-F. Labourdette, R. Ramamurthy, and S. ChaugdtLightpath re-optimization in mesh optical networkdEEE/ACM
Transactions on Networkingol. 13, no. 2, pp. 437-447, 2005.

E. Mannie,Generalized multi-protocol label switching (GMPLS) architectU®é-C 3945, IETF, Oct. 2004.

C. Curti, T. Ferrari, L. Gommans, B. van Oudenaarde, E. Rang F. Giacomini, and C. Vistoli, “On advance reservation of
heterogeneous network pathgiture Generation Computer Systerasl. 21, no. 4, pp. 525-538, Apr. 2005.

S. R. Thorpe, D. Stevenson, and G. K. Edwards, “Using jusiiie- to enable optical networking for grids,” iRirst ICST/IEEE
International Workshop on Networks for Grid Applications (GridNets 20Q804.

J. Mambretti, et al.,, “The photonic TeraStream: enabling nextegsion applications through intelligent optical networking at
iIGRID2002,” Future Generation Computer Systerasl. 19, no. 6, p. 897908, August 2003.

R. Boutaba, W. Golab, Y. Iraqi, T. Li, and B. Arnaud, “Grid-d¢oslled lightpaths for high performance grid applicationdgurnal of
Grid Computing vol. 1, no. 4, pp. 387-394, December 2003.

L.-O. Burchard, “Networks with advance reservations: apfitice, architecture, and performancdgurnal of Network and Systems
Managementvol. 13, no. 4, pp. 429-449, Dec. 2005.

N. Garg and J. Kenemann, “Faster and simpler algorithms for multi-commodity flow anérdfitactional packing problems,” in
Proceedings of the 39th Annual Symposium on Foundations of Confpeitarce November 1998, pp. 300-309.

B. Awerbuch and F. T. Leighton, “Improved approximation altfons for multi-commodity flow problem and local competitive routing
in dynamic networks,” inProceedings of the ACM Symposium on Theory of Computie@4, pp. 487—496.

