
1

Advance Reservation and Scheduling for Bulk

Transfers in Research Networks
Kannan Rajah, Sanjay Ranka and Ye Xia

Abstract

Data-intensive e-science collaborations often require the transfer of large files with predictable performance.

To meet this need, we design novel admission control and scheduling algorithms for bulk data transfer in research

networks for e-science. Due to their small sizes, the research networks can afford a centralized resource management

platform. In our design, each bulk transfer job request, which can be made in advance to the central network

controller, specifies a start time and an end time. If admitted, the network guarantees to complete the transfer before

the end time. However, there is flexibility in how the actual transfer is carried out, that is, in the bandwidth assignment

on each allowed paths of the job on each time interval, and it is up to the scheduling algorithm to decide this. To

improve the network resource utilization or lower the job rejection ratio, the network controller solves optimization

problems in making admission control and scheduling decisions. Our design combines the following elements into

a cohesive optimization-based framework: advance reservation, multi-path routing, and bandwidth reassignment via

periodic re-optimization. We evaluate our algorithm in terms of both network efficiency and the performance level

of individual transfer. We also evaluate the feasibility ofour scheme by studying the algorithm execution time.

I. I NTRODUCTION

The advance of communication and networking technologies, together with the computing and storage technolo-

gies, is dramatically changing the ways how scientific research is conducted. A new term,e-science, has emerged to

describe the “large-scale science carried out through distributed global collaborations enabled by networks, requiring

access to very large scale data collections, computing resources, and high-performance visualization” [1]. Well-

quoted e-science (and the related grid computing [2]) examples include high-energy nuclear physics (HEP), radio

astronomy, geoscience and climate studies.

The need for transporting large volume of data in e-science has been well-argued [3], [4]. For instance, the HEP

data is expected to grow from the current petabytes (PB) (1015) to exabytes (1018) by 2012 to 2015. In particular,

the Large Hadron Collider facility at CERN is expected to generate petabytes of experimental data every year,

The authors are with the Computer and Information Science and Engineering Department, University of Florida, Gainesville, FL.

Ye Xia is the corresponding author. Email: yx1@cise.ufl.edu, Phone: 352-392-2714, Fax:352-392-2714

This work was supported in part by the National Science Foundation (NSF) under Grant ITR 0325459 and 0427110. Any findings,

conclusions or recommendations expressed in this material are those ofthe author(s) and do not necessarily reflect the views of NSF. The

authors would like to thank Rick Cavanaugh and Paul Avery for severaldiscussions and insights.

2

for each experiment. In addition to the large volume, as noted in [5], e-scientists routinely request schedulable

high-bandwidth low-latency connectivity with known and knowable characteristics. Instead of relying on the public

Internet, which has unpredictable service performance, national governments are sponsoring a new generation of

optical networks to support e-science. Examples of such research and education networks include the Internet2

related National Lambda Rail [6] and Abilene [7] networks in the U.S., and CA*net4 [8] in Canada.

To meet the need of e-science, this paper studiesadmission control(AC) and schedulingalgorithms for high-

bandwidth data transfers (also known as jobs) in research networks. The results will not only advance the knowledge

and techniques in that area, but also compliment the protocol, architecture and infrastructure projects currently

underway in support of e-science and grid computing [9], [10], [11], by providing more efficient network resource

reservation and management algorithms. Our AC and scheduling algorithms handle two classes of jobs,bulk data

transferand those that require aminimum bandwidth guarantee(MBG). Bulk transfer is not sensitive to the network

delay but may be sensitive to the delivery deadline. It is useful for distributing high volumes of scientific data,

which currently often relies on ground transportation of the storage media. The MBG class is useful for realtime

rendering or visualization of data remotely. In our framework, the algorithms for handling bulk transfer also contain

the main ingredients of those for handling the MBG class. Forthis reason, we will only focus on bulk transfer.

One distinguishing feature in this study is that each job request can be made in advance and can specify a start

time and an end time. The reservation-based approach gives the network users more predictability and control over

their work schedule and is deemed very useful by the e-science community [12]. If a job is admitted, as determined

by the admission control algorithm, the network guaranteesthat it will finish the data transfer for the job before

the requested end time. The challenge is how to provide this guarantee while maintaining efficient utilization of

the network resources and keeping the request rejection ratio low. (If a request is rejected, there are many possible

follow-up scenarios depending on the design. The simplest isthat the user of the request may modify the end time

and re-submit the request. The re-submission process can be automated and repeated by the user-side software

agent.)

The need for efficient network resource utilization is especially relevant in the context of advance reservation and

large file sizes or long-lasting flows. As argued in [13], there is an undesirable phenomenon known asbandwidth

fragmentation. The simplest example of bandwidth fragmentation occurs when the interval between the end time

of one job and the beginning of another job is not long enough for any other job request. Then, the network or

relevant links will be idle on that interval. If there are toomany of these unusable intervals or if their durations

are long, the job rejection ratio is likely to be high while the network utilization remains low. Over-provisioning

the network capacity may not be the right solution due to the high cost, time delay or other practical constraints.

The solution advocated in this paper for reducing the job rejection ratio and increasing the network utilization

efficiency is to bring in more flexibilities in how the data are transferred. The process of determining the manner

of data transfer is known asscheduling. For instance, one can take advantage of the elastic nature of bulk data

and have the network transferring the data at time-varying bandwidth instead of a constant bandwidth. Another

example is to use multiple paths for each job. In order to achieve the greatest flexibilities, this paper formulates

3

the AC/scheduling problems as optimization problems. A centralized network controller is used to administer AC

and scheduling, including solving the optimization problems. Different from the public Internet, research networks

typically have far less than1000 core nodes in the backbone. Hence, it possible to use a centralized network controller

for making AC and scheduling decisions, setting up network paths, and reserving the allocated bandwidth or optical

circuits. One advantage of the centralized approach is thatresource reservation and allocation decisions are made

based on a global view of the network and on all the job requests. It is possible to manage the network resources

as a whole and make trade-offs among all the jobs in the network. The result is greatly improved efficiency in

network resource utilization.

Recently, some authors have begun to study AC and schedulingfor bulk transfer with advance reservations [14],

[15], [16], [17], [18], [19], [13], [20], [21]. Compared with these earlier studies, our work distinguishes itself for its

comprehensiveness in bringing several important ingredients together under a single optimization framework with

well-defined objectives. These include (1) periodic admission control for handling continuous arrivals of job requests

rather than one-shot admission control, (2) admission control and scheduling for the whole network rather than

for each link separately, (3) multi-path routing, (4) time-varying bandwidth assignment for each job, (5) dynamic

bandwidth re-assignment at each AC/scheduling instance, which leaves more room to accept new requests, and

(6) a novel time discretization scheme (i.e., the congruenttime-slice structures) that allows the admission of new

requests and bandwidth re-allocation to existing jobs while not violating the end-time requirements of the existing

jobs. As will be reviewed in Section V, other studies in this area only incorporate a subset of the features from the

above list.

The rest of the paper is organized as follows. The main technical contribution of this paper is to describe a suite

of algorithms for AC and scheduling (Section II) and compare their performance (Section IV). A key methodology

is the discretization of time into a time slice structure so that the problems can be put into the linear programming

framework. A highlight of our scheme is the introduction of non-uniform time slices (Section III), which can

dramatically shorten the execution time of the AC and scheduling algorithms, making them practical. The related

work is shown in Section V and the conclusion is drawn in SectionVI.

II. A DMISSION CONTROL AND SCHEDULING ALGORITHMS

A. The Setup

For easy reference, notations and definitions frequently used in this paper are summarized in Appendix I. The

network is represented as a (directed) graphG = (V, E), whereV is the set of nodes andE is the set of edges. The

capacity of a link (edge)e ∈ E is denoted byCe. Job requests arrive at the network following a random process.

Each bulk transfer requesti is a 6-tuple(Ai, si, di, Di, Si, Ei), whereAi is the arrival time of the request,si anddi

are the source and destination nodes, respectively,Di is the size of the file,Si andEi are the requested start time

and end time, whereAi ≤ Si ≤ Ei. In words, requesti, which is made at timet = Ai, asks the network to transfer a

file of sizeDi from nodesi to nodedi on the time interval[Si, Ei]. A bulk transfer request may optionally specify a

minimum bandwidth and/or a maximum bandwidth. In practice,even more parameters can be added if needed, such

4

as an estimated range for the demand size or for the end times when the precise information is unknown [22]. For

ease of presentation, we will ignore these options. But, they usually can be incorporated into our optimization-based

AC/scheduling framework by modifying the formulations of the optimization problems. The approach of using a

centralized network controller has an advantage here for anevolving system, since, to accommodate new types of

parameters or functions, the only necessary changes are at the central controller’s software. The user-side software

will be updated only if the user needs the new parameters or functions.

In the basic scheme, AC and scheduling are done periodicallyafter everyτ time units, whereτ is a positive

number. More specifically, at time instanceskτ , k = 1, 2, ..., the controller collects all the new requests that arrived

on the interval[(k − 1)τ, kτ], makes the admission control decision first, and then, schedules the transfer of all

jobs. Both AC and scheduling must take into account theold jobs, i.e., those jobs that were admitted earlier but

remain unfinished. The admission of new jobs is formulated as a feasibility problem subject to the constraint that

the old jobs must retain their performance guarantee. To increase the admission rate, this step takes into account the

possibility that the bandwidth of each old job on different routes can be reassigned. In the second step, scheduling,

the network controller assigns the actual bandwidth to all jobs in the system, including the old jobs, on the allowed

paths so as to optimize a performance objective. Examples that we consider in this paper are to minimize the worst

case link utilization or to minimize an objective that encourages earlier completion of the jobs. The bandwidth

assignment is time-varying. The value ofτ should be small enough so that new job requests can be checkedfor

admission and scheduled as early as possible1. However,τ should be more than the computation time required for

AC and scheduling.

1) The Time Slice Structure:At each scheduling instance,t = kτ , the timeline fromt onward is partitioned

into time slices, i.e., closed intervals on the timeline, which are not necessarily uniform in size. The significance of

the time slice is that the bandwidth (rate) assignment to each job is done at the slice level. That is, the bandwidth

assigned to a particular path of a job remains constant for the entire time slice, but it may change from slice to

slice.

A set of time slices,Gk, is said to beanchored att = kτ if all slices inGk are mutually disjoint and their union

forms an interval[t, t′] for somet′. The set{Gk}
∞
k=1 is called aslice structureif eachGk is a set of slices anchored

at t = kτ , for k = 1, ...,∞.

Definition 1: A slice structure{Gk}
∞
k=1 is said to becongruent if the following property is satisfied for every

pair of positive integers,k andk′, wherek′ > k ≥ 1. For any slices′ ∈ Gk′ , if s′ overlaps in time with a slices,

s ∈ Gk, thens′ ⊆ s.

In words, any slice in a later anchored slice collection mustbe completely contained in a slice of any earlier

collection, if it overlaps in time with the earlier collection. Alternatively speaking, if slices ∈ Gk overlaps in time

with Gk′ , then eithers ∈ Gk′ or s is partitioned into multiple slices all belonging toGk′ .

One example of a congruent slice structure is theuniform slices (US), where the timeline is divided into equal-

1In this scheme, a request generally needs to wait a duration no longer than τ for the admission decision. We will comment on how to

conduct realtime admission control later.

5

sized time slices of durationτ (coinciding with the AC/scheduling interval length). The set of slices anchored at

any t = kτ is all the slices aftert. Figure 1 shows the US at two time instancest = τ andt = 2τ . In this example,

τ = 4 time units. The arrows point to the scheduling instances. The two collections of rectangles are the time slices

anchored att = τ and t = 2τ , respectively. It is easy to check the congruent property ofthis slice structure.

Nearly all prior works that discretize the timeline use the US. The motivation for defining the more general

concept of the congruent slice structure is as follows. Although easy to understand, the US is not necessarily an

ideal slice structure to use because, in our linear programming formulation of the AC and scheduling problems,

the number of time slices is positively related to the numberof variables, and in turn to the execution time of our

algorithms. We face a problem of covering a long enough segment of the timeline for advance reservations with a

small number of slices, say 100. As an example, to cover a 30-day reservation period with 100 slices, the slice size

in the US is 7.2 hours, too coarse for small to medium sized jobs whose requested time windows for data transfer

are well under one hour. In this paper, we advocate a congruent slice structure with non-uniform slice sizes, the

nested slices (NS). The NS contains different classes of time slices with exponentially (geometrically) increasing

sizes. Suppose the current timet = kτ is a scheduling instance. The timeline neart is divided into fine slices. The

timeline away fromt is divided into increasingly larger slices. Later, as time progresses, say tok′τ , some coarse

time slices will become close to the new current time,k′τ , and will be divided into fine slices, which will belong

to Gk′ . As will be demonstrated later, the NS can cover a large portion of the timeline using a small number of

slices without sacrificing the performance (e.g., job rejection ratio). Fig. 5 shows a three-level nested slice structure.

More detailed description about the NS is deferred to SectionIII.

The AC and scheduling algorithms introduced in this paper apply to any congruent slice structure. When a

non-uniform slice structure is used, the congruent property is the key to the existence of algorithms that allow the

network to keep the commitment to the old jobs admitted earlier while admitting new jobs. The reason is that,

in solving the admission control problem, the bandwidth allocation (on each allowed path of each job) on each

time slice is assumed to be constant. When a time slice is divided into finer slices at a later time, the old jobs are

still admissible since one can keep the bandwidth on the finer slices at the same constant.2 This will be further

explained in Section III. For ease of presentation, we use theuniform slices as an example to explain the AC and

scheduling algorithms.

At any AC/scheduling timet = kτ , let the time slices anchored att, i.e., those inGk, be indexed1, 2, ... in

increasing order of time. Let the start and end times of slicei be denoted bySTk(i) andETk(i), respectively, and

let its length beLENk(i). We say a time instancet′ > t falls into slice i if STk(i) < t′ ≤ ETk(i). The index of

the slice thatt′ falls in is denoted byIk(t
′).

At t = kτ , let the set of jobs in the system yet to be completed be denoted by Jk. Jk contains two types of

jobs, those new requests (also known as new jobs) made on the interval((k − 1)τ, kτ], denoted byJ n
k , and those

old jobs admitted at or before(k − 1)τ , denoted byJ o
k . The old jobs have already been admitted and should not

2However, one can often do better by varying the bandwidth on the finer slices.

6

Uniform Slices

1 16 204 8 120 24 28

1 16 204 8 120 24 28

τ

Fig. 1. Uniform time slice structure

be rejected by the admission control conducted att. But some of the new requests may be rejected.

2) Rounding of the Start and End Times:With the time slice structure and the advancement of time, weadjust

the start and end times of the requests. The main objective is to align the start and end times on the slice boundaries.

After such rounding, the start and the end times will be denoted asŜi andÊi, respectively. For a new requesti, let

the requested response time beTi = Ei − Si. We round the requested start time to be the maximum of the current

time or the end time of the slice in which the requested start time Si falls, i.e.,

Ŝi = max{t, ETk(Ik(Si))}. (1)

For rounding of the requested end time, we allow two policy choices, thestringent policyand therelaxed policy.

Which one is used in practice is a policy issue, left to the decision of the network manager. In the stringent policy,

if the requested end time does not coincide with a slice boundary, it is rounded down, subject to the constraint that

Êi > Ŝi
3. This constraint ensures that there is at least one-slice separation between the rounded start time and

the rounded end time. Otherwise, there is no way to schedule the job. In the relaxed policy, the end time is first

shifted byTi with respect to the rounded start time, and then rounded up. More specifically,

stringent

Êi =

ETk(Ik(Ŝi) + 1) if STk(Ik(Ei)) ≤ Ŝi

Ei else if ETk(Ik(Ei)) = Ei

STk(Ik(Ei)) otherwise.

(2)

relaxed

Êi = ETk(Ik(Ŝi + Ti))

Figure 2 shows the effect of the two policies after three jobs are rounded.

3In the more sophisticated non-uniform slice structure introduced in SectionIII, we allow the end time to be re-rounded at different

scheduling instances. This way, the rounded end time can become closerto the requested end time, as the slice sizes become finer over time.

7

Relaxed Policy

Stringent Policy

Jobs

Jobs

Jobs After Rounding

Jobs After Rounding

Fig. 2. Two rounding policies. The unshaded rectangles are time slices. The shaded rectangles represent jobs. The top ones show the

requested start and end times. The bottom ones show the rounded start and end times.

If a job i is an old one, its rounded start timêSi is replaced by the current timet. The remaining demand is

updated by subtracting from it the total amount of data transferred for jobi on the previous interval,((k−1)τ, kτ].

By definition, the slice set anchored at eacht = kτ , Gk, contains an infinite number of slices. In general, only a

finite subset ofGk is useful to us. LetMk be the index of the last slice in which the rounded end time of some jobs

falls. That is,Mk = Ik(maxi∈Jk
Êi). Let Lk ⊂ Gk be the collection of time slices1, 2, ..., Mk. We call the slices

in Lk as theactive time slices. We will also think ofLk as an array (instead of a set) of slices when there is no

ambiguity. Clearly, the collection{Lk}
∞
k=1 inherits the congruent property from{Gk}

∞
k=1. Therefore, it is sufficient

to consider{Lk}
∞
k=1 for AC and scheduling.

B. Admission Control

For each pair of nodess and d, let the collection of allowable paths froms to d be denoted byPk(s, d). In

general, the set may vary withk. For each jobi, let the remaining demandat time t = kτ be denoted byRk(i),

which is equal to the total demandDi minus the amount of data transferred until timet.

At t = kτ , let J ⊆ Jk be a subset of the jobs in the systems. Letfi(p, j) be the total flow (total data transfer)

allocated to jobi on pathp, wherep ∈ Pk(si, di), on time slicej, wherej ∈ Lk. As part of the admission control

algorithm, the solution to the following feasibility problem is used to determine whether the jobs inJ can all be

admitted.

8

AC(k, J)
Mk
∑

j=1

∑

p∈Pk(si,di)

fi(p, j) = Rk(i), ∀i ∈ J (3)

∑

i∈J

∑

p∈Pk(si,di)
p:e∈p

fi(p, j) ≤ Ce(j)LENk(j), ∀e ∈ E, ∀j ∈ Lk (4)

fi(p, j) = 0, j ≤ Ik(Ŝi) or j > Ik(Êi),

∀i ∈ J,∀p ∈ Pk(si, di) (5)

fi(p, j) ≥ 0, ∀i ∈ J,∀j ∈ Lk,∀p ∈ Pk(si, di). (6)

(3) says that, for every job, the sum of all the flows assigned onall time slices for all paths must be equal to its

remaining demand. (4) says that the capacity constraints must be satisfied for all edges on every time slice. Note

that the allocated rate on pathp for job i on slicej is fi(p, j)/LENk(j), whereLENk(j) is the length of slicej.

The rate is assumed to be constant on the entire slice. Here,Ce(j) is the remaining link capacity of linke on slice

j. (5) is the start and end time constraint for every job on every path. The flow must be zero before the rounded

start time and after the rounded end time.4

Recall that we are assuming every job to be a bulk transfer forsimplicity. If job i is of the MBG class and

requests a minimum bandwidthBi between the start and end times, then the remaining capacityconstraint (3) will

be replaced by the following minimum bandwidth guarantee condition.

∑

p∈Pk(si,di)

fi(p, j) ≥ Bi, ∀j ∈ Lk. (7)

The AC/scheduling algorithms are triggered everyτ time units with the AC part before the scheduling part. AC

examines the newly arrived jobs and determines their admissibility. In doing so, we need to ensure that the earlier

commitments to the old jobs are not broken. This can be achieved by adopting one of the following AC procedures.

1) Subtract-Resource (SR): An updated (remaining) network is obtained by subtractingthe bandwidth assigned

to old jobs on future time slices, from the link capacity. Then, we determine a subset of the new jobs that

can be accommodated in this remaining network. This method ishelpful to perform quick admission tests5.

However, it runs the risk of rejecting new jobs that can actually be accommodated by reassigning the flows

to the old jobs on different paths and time slices.

4The current research networks generally use routers over optical transmission technologies instead of using optical switches alone.

Routers can split or aggregate traffic before transmission. Hence, theproblem in this paper is fine-grained bandwidth assignment rather than

wavelength assignment, as would be the case in a wavelength-based circuit-switched optical network. It is possible to reserve an end-to-end

wavelength path in the current research networks. But, our formulationof the bandwidth assignment problem will be unaffected since we

can simply remove the reserved wavelength from the link capacity. We defer the wavelength assignment problem in an all optical network

to future research.
5We can perform realtime admission with this method.

9

2) Reassign-Resource (RR): This method attempts to reassign flows to the old jobs. First, wecancel the existing

flow assignment to the old jobs on the future time slices and restore the network to its original capacity.

Then, we determine a subset of the new jobs that can be admittedalong with all the old jobs under the

original network capacity. This method is expected to have a better acceptance ratio than SR. However, it

is computationally more expensive because the flow assignment is computed for all the jobs in the system,

both the old and the new.

The actual admission control is as follows. In the SR scheme, the remaining capacity of linke on slicej, Ce(j),

is computed by subtracting fromCe (the original link capacity), the total bandwidth allocated on slicej for all

paths crossinge, during the previous run of the AC/scheduling algorithms (at t = (k − 1)τ). In the RR scheme,

simply let Ce(j) = Ce, for all e and j.

In the SR scheme, we list thenew jobs,J n
k , in a sequence,1, 2, ..., m. The particular order of the sequence is

flexible, possibly dependent on some customizable policy. For instance, the order may be arbitrary, or based on the

priority the jobs, or based on increasing order of the request times. In a more sophisticated, price-based scheme,

the network controller can order the jobs based on the amountof payment per unit of data transferred that a job

requester is willing to pay. We apply a binary search to the sequence to find the last jobj, 1 ≤ j ≤ m, in the

sequence such that all jobs before and including it are admissible. That is,j is the largest index for which the

subset of the new jobsJ = {1, 2, ..., j} is feasible forAC(k, J). All the jobs afterj are rejected.

In the RR scheme, at timet = kτ , all the jobs are listed in a sequence where the old jobsJ o
k are ahead of

the new jobsJ n
k in the sequence. The order among the old jobs is arbitrary. The order among the new jobs is

again flexible. Denote this sequence as1, 2, ..., m, in which jobs1 through l are the old ones. We then apply a

binary search to the sequence ofnew jobs, l + 1, l + 2, ..., m, to find the last jobj, l < j ≤ m, such that all jobs

before and including it are admissible. That is,j is the largest index for which the resulting subset of the jobs

J = {1, 2, ..., l, l + 1, ..., j} is feasible forAC(k, J) under the original network capacity.

Discussion The binary search technique assumes a pre-defined list of jobs and identifies the firstj jobs that

can be admitted into the system without violating the deadline constraints. The presence of an exceptionally large

job with unsatisfiable demand will cause other jobs followingit to be rejected, even though it may be possible

to accommodate them after removing the large job. The rejection ratio tends to be higher when the large job lies

closer to the head of the list. An interesting problem is how to admit as many new jobs as possible, after all the

old jobs are admitted. This combinatorial problem appears tobe quite difficult. One can always use a standard

integer programming formulation and solution for it. We do not know any solution techniques that run faster than

the integer programming techniques. But, a solution to thisproblem is orthogonal to the main issues addressed in

this paper and, once found, can always be incorporated into our general AC/scheduling framework.

We now comment on the computation complexity for the admission control, AC(k, J). If standard linear

programming techniques are used, such as the Simplex method,the practical computation time depends on the

number of variables and the number of constraints. InAC(k, J), the number of variables is no more than|J |×M×P .

Here,P is the maximum number of paths allowed for any job.M is the maximum number of (future) time slices

10

that need to be considered. It depends on how far into the future advance reservations can be allowed, e.g., three

months, and on the type of the congruent slice structure used. The value of|J | depends on whether SR or RR is

used. In the former case, it is equal to the number of new job requests that have arrived on an interval of length

τ ; in the latter case, it is equal to all the jobs in the system, including both the old jobs and the new requests.

The number of non-trivial constraints is no more than|J | + |E| ×M , where |E| is the number of edges in the

network. To reduce the execution time of the admission control algorithm, we need to limit the number of paths

allowed per job, the number of time slices and the number of jobs that need to be considered. In Section IV-C,

we show by experimental results that having 4 to 10 paths per job is generally sufficient to achieve near-optimal

performance for research networks. If ever needed, SR is a wayof reducing the number of jobs that need to be

considered. What remains is how to reduce the number of time slices while not sacrificing performance by much.

Section III is dedicated to that purpose. Section IV will continue to address the complexity issue in terms of the

algorithm execution time obtained experimentally.

C. Scheduling Algorithm

Given the set of admitted jobs,J a
k , which always includes the old jobs, the scheduling algorithm allocates flows

to these jobs to optimize a certain objective. We consider two objectives,Quick-Finish (QF) andLoad-Balancing

(LB). Given a set of admissible jobsJ , the problem associated with the former is

Quick-Finish(k, J)

min
∑

j∈Lk

γ(j)
∑

i∈J

∑

p∈Pk(si,di)

fi(p, j) (8)

subject to(3)− (6).

In the above,γ(j) is a weight function increasing inj, which is chosen to beγ(j) = j + 1 in our experiments. In

this problem, the cost increases as time increases. The intention is to finish a job early rather than later, when it

is possible. The solution tends to pack more flows in the earlierslices but leaves the load light in later slices. The

problem associated with the LB objective is,

Load-Balancing(k, J)

max Z (9)

subject to
Mk
∑

j=1

∑

p∈Pk(si,di)

fi(p, j) = ZRk(i), ∀i ∈ J (10)

(4)− (6).

Let the optimal solution beZ∗ and f∗
i (p, j) for all i, j, and p. The actual flows assigned aref∗

i (p, j)/Z∗.

Note that (10) ensures thatf∗
i (p, j)/Z∗ satisfies (3). Also,Z∗ ≥ 1 must be true sinceJ is admissible. Hence,

f∗
i (p, j)/Z∗’s are a feasible solution to theAC(k, J) problem. TheLoad-Balancing(k, J) problem above is

written in the maximizing concurrent throughput form. It reveals its load-balancing nature when written in the

11

equivalent minimizing congestion form. For that, make a substitution of variables,fi(p, j) ⇐ fi(p, j)/Z, and let

µ = 1/Z.

We have,

Load-Balancing-1(k, J)

min µ (11)

subject to
∑

i∈J

∑

p∈Pk(si,di)
p:e∈p

fi(p, j) ≤ µCe(j)LENk(j),

∀e ∈ E, ∀j ∈ Lk (12)

(3), (5) and (6).

Hence, the solution minimizes the worst link congestion across all time slices inLk.

The scheduling algorithm is to applyJ = J a
k to Quick-Finish(k, J) or Load-Balancing(k, J). This determines

an optimal flow assignment to all jobs on all allowed paths and on all time slices. Given the flow assignment

fi(p, j), the allocated rate on each time slice is denoted byxi(p, j) = fi(p, j)/LENk(j) for all j ∈ Lk. The

remaining capacity of each link on each time slice is given by,

Ce(j) =

Ce −
∑

i∈J a

k

∑

p∈Pk(si,di)
p:e∈p

xi(p, j) if SR

Ce if RR.

(13)

Finally, the complexity of the scheduling algorithms can be analyzed similarly as for the admission control

algorithm. The general conclusion is also similar.

D. Putting It Together: The AC and Scheduling Algorithms

In this section, we integrate various algorithmic components and present the complete AC and scheduling

algorithms.

On the interval((k− 1)τ, kτ], the system keeps track of the new requests arriving on that interval. It also keeps

track of the status of the old jobs. If an old job is completed,it is removed from the system. If an old job is

serviced on the interval, the amount of data transferred forthat job is recorded. Att = kτ , the steps described in

Algorithm 1 are taken.

Finally, in Figure 3, we show a very simple example of the AC and scheduling algorithms at work. The network

has only one link with a capacity of 10 Gbps. The US is used and the AC/scheduling interval length isτ = 100s.

QF is used for scheduling. The top figure shows the job requests.The sizes of job 1 and 2 are 3 terabits and 500

gigabits, respectively. The requested start and end times are 100s and700s for job 1; and200s and300s for job

2. In this case, job 1 is admitted att = 100s. The middle figure shows the schedule att = 100s. At t = 200s, job

2 is also admitted. The bottom figure shows the schedule att = 200s. Note that, byt = 200s, 1 terabits of data

have already been transferred for job 1. Note also how the bandwidth assignment for job 1 is changedt = 200s,

12

Algorithm 1 Admission Control and Scheduling
1: Construct the anchored slice set att = kτ , Gk.

2: Construct the job setsJk, J o
k andJ n

k , which are the collection of all jobs, the collection of old jobs, and the

collection of new jobs in the system, respectively.

3: For each old jobi, update the remaining demandRk(i) by subtracting from it the amount of data transferred

for i on the interval((k − 1)τ, kτ]. Round the start times aŝSi = t.

4: For each new jobl, let Rk(l) = Dl. Round the requested start and end time according to (1) and (2), depending

on whether the stringent or relaxed rounding policy is used.This produces the rounded start and end times,Ŝl

and Êl.

5: Derive Mk = Ik(maxi∈Jk
Êi). This determines the finite collection of slicesLk = {1, 2, ..., Mk}, the firstMk

slices ofGk.

6: Perform admission control as in Algorithm 2. This produces thelist of admitted jobsJ a
k .

7: Schedule the admitted jobs as in Algorithm 3. This yields the flowamountfi(p, j) for each admitted job

i ∈ J a
k , over all paths for jobi, and all time slicesj ∈ Lk.

8: Compute the remaining network capacity by (13).

Algorithm 2 AC - Step 6 of Algorithm 1
1: if Subtract-Resource is usedthen

2: Sequence thenew jobs (J n
k) in the system. Denote the sequence by(1, 2, ..., m).

3: Find the last jobj in the sequence so that the set of jobsJ = {1, 2, ..., j} is admissible byAC(k, J).

4: else if Reassign-Resource is usedthen

5: Sequenceall the jobs (Jk) in the system, so that the old jobs (J o
k) are ahead of the new jobs (J n

k). Denote

the sequence of jobs by(1, 2, ..., l, l + 1, ..., m), where the firstl jobs are the old jobs, followed by the new

jobs.

6: Apply binary search to the subsequence of new jobs(l+1, l+2, ..., m). Find the last jobj in the subsequence

so that the set of jobsJ = {1, 2, ..., j} is admissible byAC(k, J).

7: end if

8: Return the admissible set,J a
k = J .

Algorithm 3 Scheduling - Step 7 of Algorithm 1
1: if Quick-Finish is preferredthen

2: SolveQuick-Finish(k, J a
k)

3: else

4: SolveLoad-Balancing(k, J a
k)

5: end if

13

when compared to that att = 100s. This is in response to the admission of job 2, which has a stringent end time

requirement. Furthermore, it can be seen that the bandwidth assignment for job 1 is time-varying.

����
����
����

����
����
����

����
����
����

����
����
����

0 100 200 400300 500 600 700 800

0 100 200 400300 500 600 700 800

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��

��

����
����
����
����

����
����
����
��������
����
����
����

����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��

��

����
����
����
����

����
����
����
����

�����������������������
�����������������������
�����������������������
�����������������������

����
����
����

����
����
����

Schedule at t = 200s

time (s)

time (s)

time (s)

job 1

job 2

job 2, size = 500Gb

job 1, size = 3Tb

job 1 request job 2 request

10 Gbps

5 Gbps

10 Gbps

5 Gbps

0 100 200 400300 500 600 700 800

Schedule at t = 100s

Fig. 3. An AC and scheduling example for a network with one link with a capacity 10 Gbps.

III. N ON-UNIFORM SLICE STRUCTURE

As discussed in Section II-A.1 and Section II-B, the number of time slices directly affects the number of variables

in our AC and scheduling linear programs, and in turn the execution time of our algorithms. We face a problem of

covering a large enough segment of the timeline for advance reservations with a small number of slices, say about

100. In this section, we will design a new slice structure with non-uniform slice sizes. They contain a geometrically

(exponentially) increasing subsequence, and therefore, are able to cover a large timeline with a small number of

slices. The key is that, as time progresses, coarse time slices will be further divided into finer slices. The challenge

is that the slice structure must remain congruent.

Recall that the congruent property means that, if a slice in an earlier anchored slice set overlaps in time with a

later anchored slice set, it either remains as a slice, or is partitioned into smaller slices in the later slice set. The

definition is motivated by the need for maintaining consistency in bandwidth assignment across time. As an example,

suppose at time(k − 1)τ , a job is assigned a bandwidthx on a path on the slicejk−1. At the next scheduling

instancet = kτ , suppose the slicejk−1 is partitioned into two slices. Then, we understand that a bandwidth x

has been assigned on both slices. Without the congruent property, it is likely that a slice, sayjk, in the slice set

anchored atkτ cuts across several slices in the slice set anchored at(k − 1)τ . If the bandwidth assignments at

(k − 1)τ are different for these latter slices, the bandwidth assignment for slicejk is not well defined just before

the AC/scheduling run at timekτ .

14

A. Nested Slice Structure

In the nested slice structure, there arel types of slices, known as level-i slices,i = 1, 2, ..., l. Each level-i slice

has a duration∆i, with the property that∆i = κi∆i+1, whereκi > 1 is an integer, fori = 1, ..., l − 1. Hence,

the slice size increases at least geometrically asi decreases. For practical applications, a small number of levels

suffices. We also require that, fori such that∆i+1 ≤ τ < ∆i, τ is an integer multiple of∆i+1 and ∆i is an

integer multiple ofτ . This ensures that each scheduling interval contains an integral number of slices and that the

sequence of scheduling instances does not skip any level-j slice boundaries, for1 ≤ j ≤ i.

The nested slice structure can be defined by construction. Att = 0, the timeline is partitioned into level-1 slices.

The first j1 level-1 slices, wherej1 ≥ 1, are each partitioned into level-2 slices. This removesj1 level-1 slices

but addsj1κ1 level-2 slices. Next, the firstj2 level-2 slices, wherej2 ≤ j1κ1, are each partitioned into level-3

slices. This removesj2 level-2 slices but addsj2κ2 level-3 slices. This process continues until, in the last step, the

first jl−1 level-(l − 1) slices are partitioned intojl−1κl−1 level-l slices. Then, the firstjl−1 level-(l − 1) slices are

removed andjl−1κl−1 level-l slices are added at the beginning. In the end, the collectionof slices att = 0 contains

σl , jl−1κl−1 (, means “defined as”) level-l slices,σl−1 , jl−2κl−2− jl−1 level-(l− 1) slices, ...,σ2 , j1κ1− j2

level-2 slices, and followed by an infinite number of level-1 slices. The sequence ofji’s must satisfyj2 ≤ j1κ1,

j3 ≤ j2κ2, ..., jl−1 ≤ jl−2κl−2. This collection of slices is denoted byG0.

As an example, to cover a maximum of 30-day period, we can take∆1 = 1 day, ∆2 = 1 hour, and∆3 = 10

minutes. Hence,κ1 = 24 and κ2 = 6. The first two days are first divided into a total48 one-hour slices, out

of which the first8 hours are further divided into48 10-minute slices. The final slice structure has 48 level-3

(10-minute) slices, 40 level-2 (one-hour) slices, and as many level-1 (one-day) slices as needed, in this case, 28.

The total number of slices is 116.

For the subsequent scheduling instances, the objective is to maintain the same number of slices at each level as

in G0 (since it is what the system designer wants). But this cannotbe done while satisfying the slice congruent

property. Hence, we allow the number of slices at each level to deviate fromσj , for j = 2, ..., l. This can be done

in various ways. Letzj be the current number of level-j slices att = kτ , for j = 1, 2, ..., l. Setz1 =∞.

1) At-Least-σ: For j from l down to 2, if the number of slices at levelj, zj , is less thanσj , bring in (and

remove) the next level-(j − 1) slice and partition it intoκj−1 level-j slices. This scheme maintains at least

σj and at mostσj + κj−1 − 1 level-j slices forj = 2, ..., l.

2) At-Most-σ: In this scheme, we try to bring the current number of slices atlevel j, zj , to σj , for j = 2, ..., l,

subject to the constraint that new slices at levelj can only be created ift is an integer multiple of∆j−1.

More specifically, att = kτ , the following is repeated forj from l down to 2. Ift is not an integer multiple of

∆j−1, then nothing is done. Otherwise, ifzj < σj , we try to create level-j slices out of a level-(j − 1) slice.

In the creation process, if a level-(j − 1) slice exists, then bring in the first one and partition it. Otherwise,

we try to create more level-(j − 1) slices, providedt is an integer multiple of∆j−2. Hence, a recursive

slice-creation process may be involved.

15

Fig. 4 and 5 show a two-level and three-level nested slice structure, respectively, under the At-Most-σ design.

In the special but typical case ofσj > κj−1, for j = 2, ..., l, the At-Most-σ algorithm can be simplified as follows.

For j from l down to 2, if zj ≤ σj − κj−1, bring in (and remove) the next level-(j − 1) slice and partition it into

κj−1 level-j slices. This scheme maintains at leastσj − κj−1 and at mostσj level-j slices forj = 2, ..., l.

Nested Slices

1 16 204 8 120 24 28

1 16 204 8 120 24 28

1 16 204 8 120 24 28

τ ∆2 ∆1

Fig. 4. Two-level nested time-slice structure.τ = 2, ∆1 = 4 and ∆2 = 1. The anchored slice sets shown are fort = τ, 2τ and 3τ ,

respectively. At-Most-σ Design.σ2 = 8.

Nested Slices

1 16 204 8 120 24

1 16 204 8 120 24

28

28

1 16 204 8 120 24 28

32 36 40 44 48

32 36 40 44 48

32 36 40 44 48

∆3 ∆2 ∆1

τ

Fig. 5. Three-level nested time-slice structure.τ = 2, ∆1 = 16, ∆2 = 4 and∆3 = 1. The anchored slice sets shown are fort = τ, 2τ

and8τ , respectively. At-Most-σ Design.σ3 = 8, σ2 = 2.

B. Variant of Nested Slice Structure

When someκj is large, it may be unappealing that the number of level-j slices varies byκj−1 (sometimes more

thanκj−1). To solve this problem, we next introduce another congruence slice structure related to the nested slice

structure. We will called it theAlmost-σ Variant of the nested slice structure, because it maintains at leastσj and

at mostσj + 1 level-j slices forj = 2, ..., l.

The Almost-σ Variant starts the same way as the nested slice structure att = 0. As time progresses from(k−1)τ

to kτ , for k = 1, 2, ..., the collection of slices anchored att = kτ , i.e.,Gk, is updated fromGk−1 as in algorithm 4.

The price to pay is that the Almost-σ Variant introduces new slice types different from the pre-defined level-i

slices, fori = 1, ..., l. Fig. 6 shows a three-level Almost-σ Variant.

16

Algorithm 4 Almost-σ-Variant
1: for j = l down to 2do

2: if zj < σj then

3: Bring in (and remove) the next available slice of a larger size and create additionalσj − zj level-j slices.

4: zj ← σj .

5: The remaining portion of the removed level-(j − 1) slice forms another slice.

6: end if

7: end for

32 36 40 44 48

32 36 40 44 48

32 36 40 44 48

1 16 204 8 120 24

1 16 204 8 120 24

28

28

1 16 204 8 120 24 28

∆1∆2∆3

τ

Nested Slices Almost-σ Variant

Fig. 6. Three-level nested slice structure Almost-σ Variant. τ = 2, ∆1 = 16, ∆2 = 4 and∆3 = 1. The anchored slice sets shown are for

t = τ, 2τ and3τ , respectively.σ3 = 8, σ2 = 2. The shaded areas are also slices, but are different in size from anylevel-j slice, j = 1, 2

or 3.

IV. EVALUATION

This section describes the performance results of differentvariations of our AC/scheduling algorithms. We also

evaluate the required computation time to determine the scalability of our algorithms.

Most of the experiments are conducted on the Abilene network, which consists of 11 backbone nodes connected

by 10 Gbps links. Each backbone node is connected to a randomlygenerated stub network. The link speed between

each stub network and the backbone node is 1 Gbps. The entire network has 121 nodes and 490 links. For the

scalability study of the algorithms, we use random networkswith the number of nodes ranging from100 to 1000.

The random network generator takes the number of nodes and theaverage node degree as arguments, from which it

computes the total number of links in the network. Then, it repeatedly picks a node pair uniformly at random from

those unconnected node pairs, and connects them with a pair of links in both directions. This process is repeated

until all links are assigned. We use the commercial CPLEX package for solving linear programs on Intel-based

workstations. Each workstation has a dual-core processor and 4 GB of memory.

Unless mentioned otherwise, we use the following experimental models and parameters. Job requests arrive

following a Poisson process. In order to simulate the file size (i.e., the demand sizeDi) distribution, we resort to

the heavy-tailed Pareto distribution, with the distribution functionF (x) = 1 − (x/b)−α, wherex ≥ b andα > 1.

It is known that the Internet traffic has the heavy-tail distribution. The heavy-tail Pareto distribution is widely used

for generating simulated Internet traffic. It has the property that large files occur with a non-negligible probability.

17

As argued in Section I, files in e-science are often much larger than those in the ordinary Internet environment.

That is, the file size distribution in e-science is more heavy-tailed than the Internet traffic. It appears appropriate to

use the Pareto distribution to generate very large files in oursimulation. The closerα is to 1, the more heavy-tailed

is the distribution, and the more likely it is to have jobs with very large sizes. In most of our experiments, the

average file size is50 GB andα = 1.3. By default, each job uses8 shortest paths. We adopt this approach because

our experiments on multi-path scheduling revealed the following result (See also [16].): For a typical network with

several hundred nodes, 8 shortest paths are sufficient for achieving near optimal performance while keeping the

algorithm execution time within the range of practicality6. We evaluate our algorithms under three traffic loads,

namely, light, medium and heavy. By light, medium and heavy traffic loads, we mean that the average inter-arrival

time between jobs is 5 minutes, 2 minutes and 30 seconds, respectively. In order to obtain stable results, we

generated jobs under these different traffic loads for a period of 3 days. For the heavy traffic load, roughly 10,000

file transfer requests were generated.

We will compare the uniform slice (US) and the nested slice structures (NS) of the Almost-σ Variant type. For

US, the time slice and AC/scheduling interval (τ) is 21.17 minutes. This corresponds to 68 slices in every 24-hour

period. For NS, we use a two-level NS structure with 48 fine (level-2) slices and 20 coarse (level-1) slices. The fine

slice size is∆2 = 5 minutes, and the coarse slice size is∆1 = 60 minutes. These parameters are chosen so that the

first 24-hour period is divided into 68 fine and coarse slices, the same number as the US case. The AC/scheduling

interval τ is 5 minutes, which is finer than the US case.

The plots and tables use acronyms to denote the algorithms used in the experiments. Recall that SR stands for

Subtract-Resource and RR stands for Reassign-Resource in admission control; LB stands for Load-Balancing as

the scheduling objective and QF stands for Quick-Finish.

The performance measures are:

• Rejection ratio: This is the ratio between the number of jobs rejected and total number of job requests. From

the network’s perspective, it is desirable to admit as many jobs as possible.

• Response time: This is the difference between the completiontime of a job and the time when it is first being

transmitted. From an individual job’s perspective, it is desirable to have shorter response time.

A. Comparison of Algorithm Execution Time

Before comparing the performance of the algorithms, we first compare their execution time. Short execution time

is important for the practicality of our centralized network control strategy. The results on the execution time put

the performance comparison (Section IV-B) in perspective: Better performance often comes with longer execution

time. Table I shows the execution time of different schemes under two representative traffic conditions.

6We ignore the connection setup (path setup) time because, due to the small network size, we can pre-compute and store the allowed

paths for every possible source-destination pair.

18

TABLE I

AVERAGE AC/SCHEDULING ALGORITHM EXECUTION TIME (S)

Algorithm Heavy Load Light Load

AC Scheduling AC Scheduling

US+SR+LB 13.13 5.70 0.40 0.61

US+SR+QF 12.03 1.86 0.32 0.23

US+RR+LB 80.89 5.89 1.05 0.65

US+RR+QF 34.36 4.74 0.36 0.21

NS+SR+LB 1.54 4.50 0.14 0.60

NS+SR+QF 1.57 1.60 0.13 0.07

NS+RR+LB 25.16 4.30 1.07 0.61

NS+RR+QF 17.43 3.54 0.17 0.06

1) SR vs. RR and LB vs. QF:The results show that, for admission control, SR can have much shorter average

execution time than RR. This is because, in SR, AC works only on the new jobs, whereas in RR, AC works on all

the jobs currently in the system. Hence, for SR, theAC(k, J) feasibility problem usually has much fewer variables.

When the AC algorithm is fixed, the choice of the scheduling algorithm, LB or QF, also affects the execution

time for AC. For instance, the RR+LB combination has much longer execution time for AC than the RR+QF

combination. This is because, in LB, each job tends to be stretched over time in an effort to reduce the network

load on each time slice. This results in more jobs and more active slices (slices inLk) in the system at any moment,

which means more variables for the linear program.

For scheduling, since LB and QF are very different linear programs, it is difficult to explain the differences in

their execution time. But,we do observe that LB has longer execution time, again, possibly due to more variables

for the reason stated in the previous paragraph.

2) US vs. NS:Depending on the number of levels for the NS, the number of slices at each level and the slice

sizes, the NS can be configured to achieve different objectives: improving the algorithm performance, reducing

the execution time, or doing both simultaneously. Our experimental results in Table I correspond to the third case.

Since the two-level NS structure has∆1 = 60 minutes and the US has the uniform slice size∆ = 21.17 minutes,

the NS typically has fewer slices than the US. For instance, under heavy load, US+RR+QF uses 150.5 active slices

on average for AC, while NS+RR+QF uses 129.6 active slices on average. The number of variables, which directly

affect the computation time of the linear programs, is generally proportional to the number of slices.

Part of the performance advantage of the NS (to be shown in Section IV-B) is attributed to the smaller scheduling

interval τ . To reduce the scheduling interval for the US, we must reduce the slice size∆, since∆ = τ in the US.

In the next experiment, we set the US slice size to be5 minutes, which is equal to the size of the finer slice in

the NS. Table II shows the performance and execution time comparison between the US and NS. Here, we use RR

for admission control and QF for Scheduling. The US and NS have nearly identical performance in terms of the

response time and job rejection ratio. But, the NS is far superior in execution times for both AC and scheduling.

19

Upon closer inspection (Table III), the NS requires far fewer active time slices than the US on average.

TABLE II

COMPARISON OFUS AND NS (τ = 5 M INUTES)

Response Rejection Execution Time (s)

Time (min) Ratio AC Scheduling

LIGHT LOAD

US 6.064 0 0.469 0.309

NS 5.821 0 0.162 0.062

MEDIUM LOAD

US 9.767 0.006 3.177 2.694

NS 9.354 0.006 0.587 0.387

HEAVY LOAD

US 16.486 0.183 131.958 26.453

NS 17.107 0.173 17.428 3.539

TABLE III

AVERAGE NUMBER OF SLICES OFUS AND NS (τ = 5 M INUTES)

Average Number of Slices

AC Scheduling

Light Load US 299.0 299.9

NS 68.9 69.0

Medium Load US 421.6 462.9

NS 79.1 82.1

Heavy Load US 975.1 799.8

NS 129.6 113.4

In summary,

• SR is much faster than RR for admission control.

• LB tends to be slower than QF for both AC and scheduling.

• The NS requires much shorter execution time than the US, or achieves better performance, or has both

properties.

The advantage of the NS can be extended by increasing the number of slice levels. In practice, it is likely that the

US is too time consuming and the NS is a must.

B. Performance Comparison of the Algorithms

In this subsection, the experimental parameters are as stated in the introduction for Section IV. In particular, we

fix the number of paths per job (K) to be 8. Table IV shows the response time and rejection ratio of different

algorithms.

20

TABLE IV

PERFORMANCECOMPARISON OFDIFFERENTALGORITHMS

Algorithm Light Load Medium Load Heavy Load

Response Time (s) Rejection RatioResponse Time (s) Rejection RatioResponse Time (s) Rejection Ratio

US+SR+LB 46.55 0 42.35 0.056 35.56 0.423

US+SR+QF 21.51 0.014 22.21 0.100 23.56 0.477

US+RR+LB 46.55 0 40.73 0.026 35.73 0.313

US+RR+QF 21.55 0 23.36 0.021 25.16 0.312

NS+SR+LB 49.60 0 43.83 0.021 28.74 0.237

NS+SR+QF 5.73 0.006 7.56 0.052 11.06 0.403

NS+RR+LB 49.60 0 43.88 0.011 30.16 0.168

NS+RR+QF 5.82 0 9.35 0.006 17.11 0.173

1) US vs. NS:In Table IV, the algorithms with the NS have a comparable to much better performance than those

with the US. Furthermore, it has already been established in Section IV-A that the NS has much shorter algorithm

execution time.

2) Best Performance:The best performance in terms of both response time and the rejection ratio is achieved

by the RR+QF combination.

Suppose we fix the slice structure and the scheduling algorithm. Then, SR has worse rejection ratio than RR

because SR does not allow flow reassignment for the old jobs during the admission control. Since response time

increases with the admitted traffic load, an algorithm that leads to lower rejection ratio can have higher response

time. This explains why RR often has higher response time thanthe corresponding SR algorithm. Note that a lower

rejection ratio does notalways lead to higher traffic load since some algorithms, such as RR, use the network

capacity more efficiently.

Suppose we fix the slice structure and the AC algorithm. Then, LB does much worse than QF in terms of

response time, because LB tends to stretch a job until its requested end time while QF tries to complete a job early

if possible. If RR is used for admission control, then under high load, the different scheduling algorithms have a

similar effect on the rejection ratio of the next admission control operation. However, for medium load we notice

that the work conserving nature of QF contributes to a lower rejection ratio than LB, which tends to waste some

bandwidth.

3) Merits of SR and LB:Given the above discussion, one may quickly dismiss SR and LB. But, as we have

noted in Section IV-A, SR can have considerably shorter execution time than RR. Furthermore, it is a candidate

for conducting realtime admission control at the instance when a request is made, which is not possible with RR.

If SR is used, then LB often has a lower rejection ratio than QF. The reason is that QF tends to highly utilize

the network on earlier time slices, making it more likely to reject small jobs requested for the near future. This

is a legitimate concern because, in practice, it is more likely that small jobs are requested to be completed in the

near future rather than the more distant future.

There is indication that the more heavy-tailed is the file size distribution, the larger is the difference in rejection

21

ratio between LB and QF. The evidence is shown in Fig. 7 for the light traffic load. As the Pareto parameterα

approaches 1 while the average job size is held constant, thechance of having very large files increases. Even

if they are transmitted at the full network capacity as in QF,such large files can still congest the network for a

long time, causing more future jobs to be rejected. The correct thing to do, if SR is used, is to spread out the

transmission of a large file over its requested time interval.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

1.81.51.31.1

R
ej

ec
tio

n
R

at
io

Alpha

US+SR+LB
US+SR+QF

Fig. 7. Rejection ratio for differentα’s under SR.

To summarize the key points, between the admission control methods, RR is much more efficient in utilizing

the network capacity, which leads to fewer jobs being rejected, while SR is suitable for fast or realtime admission

control; if SR is used for admission control, then the scheduling method LB is superior to QF in terms of the

rejection ratio.

C. Single vs Multi-path Scheme

The effect of using multiple paths is shown in Fig. 8 for the light, medium and heavy traffic loads. Here, the NS

is used along with the admission control scheme RR, and the scheduling objective QF. For every source-destination

node pair, theK shortest paths between them are selected and used by every job between the node pair. We varyK

from 1 to 10 and find that multiple paths often produce better response time and always produce a lower rejection

ratio. The amount of improvement depends on many factors suchas the traffic load, the version of the algorithm,

and the network parameters. For the light load, no job is rejected. As the number of paths per job increases from 1

to 8, we get 35% reduction in the response time. No further improvement is gained with more than 8 paths. For the

medium load, the response time is almost halved as the numberof paths varies from 1 to 10. The improvement in

the rejection ratio is even more impressive, from 13.3% downto 0.3%. For the heavy load, there is no improvement

in the response time due to the significant reduction in the rejection ratio: With multiple paths, many more jobs

are admitted, resulting in a large increase of the actual network load.

Fig. 9 and Fig. 10 show the response time and the rejection ratio, respectively, under the medium traffic load for

all algorithms. It is observed that the rejection ratio decreases significantly for all algorithms asK increases. All

the algorithms that use LB for scheduling experience an increase in the response time due to the reduction in the

rejection ratio. But, this is not a disappointing result because it is not a goal of LB to reduce the response time. All

22

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8 9 10A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
in

ut
es

)

Number of paths (K)

Light
Medium
Heavy

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4 5 6 7 8 9 10

R
ej

ec
tio

n
R

at
io

Number of paths (K)

Light
Medium
Heavy

(b)

Fig. 8. Single vs. multiple paths under different traffic load. (a) Response time; (b) Rejection ratio.

the algorithms using QF for scheduling experience a decrease in the response time. Inspite of the increased load,

QF is able to pack more jobs in earlier slices by utilizing theadditional paths.

 5

 10

 15

 20

 25

 30

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
in

ut
es

)

Number of paths (K)

US+SR+QF
US+RR+QF
NS+SR+QF
NS+RR+QF

(a)

 20

 25

 30

 35

 40

 45

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(m
in

ut
es

)

Number of paths (K)

US+SR+LB
US+RR+LB
NS+SR+LB
NS+RR+LB

(b)

Fig. 9. Single vs. multiple paths under medium traffic load for different algorithms. (a) Response time for QF; (b) Response time for LB.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8 9 10

R
ej

ec
tio

n
R

at
io

Number of paths (K)

US+SR+QF
US+RR+QF
NS+SR+QF
NS+RR+QF

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 2 3 4 5 6 7 8 9 10

R
ej

ec
tio

n
R

at
io

Number of paths (K)

US+SR+LB
US+RR+LB
NS+SR+LB
NS+RR+LB

(b)

Fig. 10. Single vs. multiple paths under medium traffic load for different algorithms. (a) Rejection ratio for QF; (b) Rejection ratio for LB.

D. Comparison against Typical AC/Scheduling Algorithm

The next experiment compares our AC/scheduling algorithms with a simple, incremental AC/scheduling algorithm,

which will be called thesimple scheme. The simple scheme decouples AC from routing, and assumes a single default

23

path given by the routing protocol. AC is conducted in realtime upon the arrival of a request. The requested resource

is compared with the remaining resource in the network on thedefault path. If the latter is sufficient, then the job

is admitted. The remaining resource is updated by subtracting from it what is allocated to the new request by the

scheduling step (See next.).

Compared to our AC/scheduling algorithms, the simple scheme resembles our SR admission control algorithm

but allows only one path for each job. For bulk transfer with start and end time constraints, the simple scheme still

requires a scheduling stage, because bandwidth needs to be allocated to the newly admitted job over the time slices

on its default path. We can apply the time slice structure andthe scheduling objective of LB or QF to the newly

admitted job. However, unlike our scheduling algorithm, the scheduling algorithm in the simple scheme does not

reschedule theold jobs; that is, it does not change the bandwidth allocation for the old jobs.

The reason we use the simple scheme as the baseline for comparison with our algorithms is that it is fairly

general: The basic part of the simple scheme is really what most other systems or proposals use. If we remove

the advance reservation part, the AC in the simple scheme resembles a typical AC algorithm proposed for most

traditional QoS architectures for large networks [23], [24], [25], [26]. With advance reservation, it is similar to

most proposals for AC in research networks [13], [22]. But, compared with most other schemes, the simple scheme

has something extra: The bandwidth for a job can be different from slice to slice. Hence, the performance of the

simple scheme is at least as good as, and nearly always betterthan, that of other exiting schemes.

Table V shows the rejection ratio of the simple scheme with different slice structures and scheduling algorithms

for different traffic loads. This should be compared with TableIV. The simple scheme leads to considerably

higher rejection ratios than all of our algorithms involving SR, which in turn have higher rejection ratios than the

corresponding algorithms involving RR.

TABLE V

REJECTIONRATIO OF THE SIMPLE SCHEME

Light Load Medium Load Heavy Load

US+SR+LB 0.010 0.345 0.781

US+SR+QF 0.031 0.308 0.792

NS+SR+LB 0 0.225 0.596

NS+SR+QF 0.026 0.249 0.642

E. Scalability of AC/Scheduling Algorithms

For this experiment, we assume that all job requests arrive at the same time and have the same start and end time

requirement. Hence, the AC/scheduling algorithms run onlyonce. The objective is to determine how the execution

time of the algorithms scales with the number of simultaneous jobs in the system, the number of time slices used,

or the network size. In this case, RR and SR are indistinguishable. In the following results, we use the US+SR+QF

scheme.

24

Fig. 11 shows the execution time of AC and scheduling as a function of the number of jobs. The interval between

the start and end times is partitioned into 24 uniform time slices. It is observed that the increase in the execution

time is linear or slightly faster than linear. Scaling up to thousands of simultaneous jobs appears to be possible.

Fig. 12 shows the execution time against the number of time slices for 100 requests. The increase is linear. With

respect to the execution time, the practical limit is several hundred slices. This is sufficient if the NS is used. But

with the US, the slice size may be too coarse if one wishes to cover several months of advance reservations.

Fig. 13 shows the scalability of the algorithms against the network size. For this, we generate random networks

with 100 to 1000 nodes in 100-node increments. The average node degree is5, 5, 7, 9, 9, 10, 10, 11, 11, and 11,

respectively, so that the number of edges also increases. Thenetwork link capacity ranges from0.1 Gbps to10

Gbps. There are 100 jobs to be admitted and scheduled. It is observed that the execution time increases slightly

faster than linear, indicating acceptable scaling behavior.

 0

 5

 10

 15

 20

 25

 30

 35

 100 300 500 700 900

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Number of Jobs

AC
Scheduling

Fig. 11. Scalability of the execution times with the number of jobs.

 0

 1

 2

 3

 4

 5

 6

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Number of Timeslices

AC
Scheduling

Fig. 12. Scalability of the execution times with the number of time slices.

V. RELATED WORK

Compared with the traditional QoS frameworks, such as InterServ [27], DiffServ [28], the ATM network [23], or

MPLS [24], admission control and scheduling for research networks are recent concerns with much fewer published

studies.

25

 0

 50

 100

 150

 200

 250

 2000 4000 6000 8000 10000

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Number of Edges

AC
Scheduling

Fig. 13. Scalability of the execution times with the network size.

A. Bulk Transfer

Recent papers on AC and scheduling algorithms for bulk transfer with advance reservations include [14], [15],

[16], [17], [18], [19], [13], [20], [21]. In [13], the AC and scheduling problem is considered only for the single link

case. Network-level AC and scheduling are considered to be outside the scope of [13]. As a result, multi-path routing

and network-level bandwidth allocation and re-allocationhave no counter-part in [13]. Moreover, the solution is a

heuristic one instead of an optimal one. Finally, once a job isadmitted permanently, it won’t be reconsidered in

the future. In contrast, we periodically re-optimize the bandwidth assignment for all the new and old jobs.

In one of our earlier papers [16], we focus on a one-time scheduling subproblem, as apposed to periodic schedul-

ing, and conduct a detailed performance comparison betweensingle-slice scheduling and multi-slice scheduling

under various slice sizes, and between single-path routing, multi-path routing and an arc-flow formulation, which

is equivalent to allowing all possible paths for every job. We conclude that having a small number of paths per

job is usually sufficient to yield near-optimal throughput, which is defined as what is achievable when all possible

paths are allowed. Multi-slice scheduling is justified for its significant performance (e.g., throughput) improvement.

Another research team has also considered the similar problem but with different emphasis [14].

In [17], [18], [19], the authors consider single-link admission control or link-by-link admission control under

single-path routing. The admission control uses heuristic algorithms instead of solutions to optimization problems.

Based on its size and the deadline, the average required bandwidth of a bulk transfer job is computed. The admission

control is based on the job’s average bandwidth requirement. The bandwidth of existing jobs may be re-allocated

in the single link case but not in the network case.

The authors of [21] propose a malleable reservation scheme for bulk transfer, which checks every possible interval

between the requested start time and end time for the job and tries to find a path that can accommodate the entire

job on that interval. The scheme favors intervals with earlier deadlines. In [20], the computational complexity of a

related path-finding problem is studied and an approximationalgorithm is suggested. [15] starts with an advance

reservation problem for bulk transfer. Then, the problem is converted into a constant bandwidth allocation problem

at a single time instance to maximize the job acceptance rate. This is shown to be an NP-hard problem. Heuristic

algorithms are then proposed. In [15], all the requests are known at the time of the admission control and no

additional requests come later. The AC/scheduling is carried out only once. Our focus is quite different. We assume

26

that the requests continue to arrive and the AC/scheduling must be done repeatedly. The concern for us is how

to optimize and re-optimize the bandwidth assignment to thejobs as new job requests arrive, so that the early

commitments are not violated and the network resource is used efficiently. In [15], the bandwidth constraints are

at the ingress and egress links only. As a result, there is no routing issue. In our case, we have a full network and

we use multiple paths for each job. We may alter the bandwidthassignment on the paths for each existing job in

the system in order to accommodate later jobs.

B. MBG Traffic

Several earlier studies [29], [30], [31], [32] have considered admission control at an individual link for the MBG

(minimum bandwidth guarantee) traffic class with start and end times. The concern is typically about designing

efficient data structures, such as the segment tree [30], for keeping track of and querying bandwidth usage at the

link on different time intervals. The admission of a new job isbased on the availability of the requested bandwidth

between the job’s start time and end time. [20], [33], [21], [34] and [31] go beyond single-link advance reservation

and tackle the more general path-finding problem for the MBG class, but typically only for new requests, one at

a time. The routes and bandwidth of existing jobs are unchanged. [35] considers a network with known routing in

which each admitted job derives a profit. It gives approximation algorithms for admitting a subset of the jobs so

as to maximize the total profit.

C. Other Related Work

The authors of [36] also advocate periodic re-optimization to determine new bandwidth allocation in optical

networks. However, they do not assume that users make advance reservations with requested end times. As a result,

[36] does not have the admission control step. In the scheduling step, it uses a multi-commodity flow formulation for

bandwidth assignment, similar to our formulation but without the time dimension. That is, the scheduling problem in

[36] is for a single (large) time slice, rather than over multiple time slices. Many papers study advance reservation,

re-routing, or re-optimization of lightpaths, at the granularity of a wavelength, in WDM optical networks [37], [38].

But, they do not consider the start and end time constraint.

D. Control Plane Protocols, Architectures and Tools

This paper focuses on the AC and schedulingalgorithms. A complete solution for the intended e-science

application will also need the control plane protocols, architectures and middleware toolkits, which are considered

outside the scope of the paper. In the control plane, [22] presents an architecture for advance reservation of intra

and interdomain lightpaths. The DRAGON project [11] develops control plane protocols for multi-domain traffic

engineering and resource allocation on GMPLS-capable [39] optical networks. GARA [9], the reservation and

allocation architecture for the grid computing toolkit Globus [10], supports advance reservation of network and

computing resources. [40] adapts GARA to support advance reservation of lightpaths, MPLS paths and DiffServ

paths. GridJIT [41] is another signaling protocol for setting up and managing lightpaths in optical networks for grid

27

computing applications. ODIN [42] is a toolkit for optical network control and management for supporting grid

computing. Another such toolkit is reported in [43]. [44] discusses the architectural and signaling-protocol issues

for advance reservation of network resources.

VI. CONCLUSION

This study aims at contributing to the management and resource allocation of research networks for data-intensive

e-science collaborations. The need for large file transfer andhigh-bandwidth, low-latency network paths is among the

main requirements posed by such applications. The opportunities lie in the fact that research networks are generally

much smaller in size than the public Internet, and hence afford a centralized resource management platform. This

paper combines the following novel elements into a cohesiveframework of admission control and flow scheduling:

advance reservation for bulk transfer and minimum bandwidth guaranteed traffic, multi-path routing, and bandwidth

reassignment via periodic re-optimization.

To handle the start and end time requirement of advance reservation, as well as the advancement of time, we

identify a suitable family of discrete time-slice structures, namely, the congruent slice structures. With such a

structure, we avoid the combinatorial nature of the problemand are able to formulate several linear programs as

the core of our AC and scheduling algorithms. Moreover, we can develop simple algorithms that can retain the

performance guarantee for the existing jobs in the system while admitting new jobs. Our main algorithms apply to

all congruent slice structures, which are fairly rich. In particular, we describe the design of the nested slice structure

and its variants. They allow the coverage of a long segment of time for advance reservation with a small number of

slices without compromising performance. They lead to reduced execution time of the AC/scheduling algorithms,

thereby making it practical. The following inferences were drawn from our experiments.

• The algorithms can handle up to several hundred time slices within the time limit imposed by practicality

concern. If the NS is used, this number can cover months, evenyears, of advance reservation with sufficient

time slice resolution. If the US is used, either the durationof coverage must be significantly shortened or the

time slice be kept very coarse. Either approach tends to degrade the algorithms’ utility or performance.

• We have argued that between the admission control methods, RR is much more efficient than SR in utilizing

the network capacity, thereby, leading to fewer jobs being rejected. On the other hand, SR is suitable for fast

or realtime admission control. If SR is used for admission control, then the scheduling method LB is superior

to QF in terms of the rejection ratio. We have also observed that using multiple paths improves the network

utilization dramatically.

• The execution time of our AC/scheduling algorithms exhibitsacceptable scaling behavior, i.e., linear or slightly

faster than linear scaling, with respect to the network size, the number of simultaneous jobs, and the number

of slices. We have high confidence that they can be practical. The execution time can be further shortened by

using fast approximation algorithms, more powerful computers, and better decomposition of the algorithms

for parallel implementation.

28

Even in the limited application context of e-science, admission control and scheduling are large and complex

problems. In this paper, we have limited our attention to a set of issues that we think are unique and important. This

work can be extended in many directions. To name just a few, one can develop and evaluate faster approximation

algorithms as in [45], [46]; address additional policy constraints for the network usage; incorporate the discrete

lightpath scheduling problem; develop a price-based bidding system for making admission request; or address more

carefully the needs of the MBG traffic class, such as minimizing the end-to-end delay.

The AC/scheduling algorithms presented in this paper are only part of a complete solution for the intended e-

science applications. Control plane protocols and middleware are needed for setting up the network paths, controlling

the bandwidth allocation, and for the end systems to take advantage of the new networking capabilities. The software

tools should also automate the user-network interaction, such as the request submission and re-negotiation process.

There are several projects in protocol, architecture and toolkit development, mainly in the grid computing community,

as discussed in Section V. Developing similar protocols and adding new components to the existing toolkits in

support of our algorithms are among the future tasks.

APPENDIX I

FREQUENTLY USED NOTATIONS

Frequently used notations and definitions are summarized in Table VI.

REFERENCES

[1] The U.K. Research Councils, http://www.research-councils.ac.uk/escience/, site last visited on Feb. 18, 2008.

[2] I. Foster and C. Kesselman,The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, 1999.

[3] H. B. Newman, M. H. Ellisman, and J. A. Orcutt, “Data-intensive e-science frontier research,”Communications of the ACM, vol. 46,

no. 11, pp. 68–77, Nov. 2003.

[4] J. Bunn and H. Newman, “Data-intensive grids for high-energy physics,” in Grid Computing: Making the Global Infrastructure a

Reality, F. Berman, G. Fox, and T. Hey, Eds. John Wiley & Sons, Inc, 2003.

[5] T. DeFanti, C. d. Laat, J. Mambretti, K. Neggers, and B. Arnaud, “TransLight: A global-scale LambdaGrid for e-science,”

Communications of the ACM, vol. 46, no. 11, pp. 34–41, Nov. 2003.

[6] National Lambda Rail, http://www.nlr.net, site last visited on Feb. 18, 2008.

[7] Abilene Network, http://www.internet2.edu/network/, site last visited on Feb. 18, 2008.

[8] CA*net4, http://www.canarie.ca/canet4/index.html, site last visited on Feb. 18, 2008.

[9] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, “A distributed resource management architecture that supports

advance reservations and co-allocation,” inProceedings of the International Workshop on Quality of Service (IWQoS ’99), 1999.

[10] The Globus Aliance, http://www.globus.org/, site last visited on Feb. 18, 2008.

[11] T. Lehman, J. Sobieski, and B. Jabbari, “DRAGON: A framework for service provisioning in heterogeneous grid networks,”IEEE

Communications Magazine, March 2006.

[12] T. Ferrari,Grid Network Services Use Cases from the e-Science Community, The Open Grid Forum, Dec. 2007, http://www.ogf.org/,

site last visited on Feb. 18, 2008.

[13] S. Naiksatam and S. Figueira, “Elastic reservations for efficient bandwidth utilization in LambdaGrids,”The International Journal of

Grid Computing, vol. 23, no. 1, pp. 1–22, January 2007.

[14] B. B. Chen and P. V.-B. Primet, “Scheduling deadline-constrained bulk data transfers to minimize network congestion,” inProceedings

of the Seventh IEEE International Symposium on Cluster Computing and theGrid (CCGRID), May 2007.

29

TABLE VI

FREQUENTLY USED NOTATIONS AND DEFINITIONS

Ce Capacity of linke

Di Demand size of jobi

Si, Ŝi Start time and rounded start time of jobi

Ei, Êi End time and rounded end time of jobi

τ Interval between consecutive AC/scheduling runs

∆i Duration of a level-i slice in the NS

σi Number of level-i slices in the NS

In the following, assumet = kτ .

Gk Slice set anchored at timekτ

Mk Index of the last slice in which some rounded

end time falls

Lk ⊂ Gk Finite slice set1, ..., Mk

STk(i), ETk(i) Start and end times of slicei

LENk(i) Length of slicei

Ik(t) Index of the slice that timet falls in

J
o

k Set of the old jobs

J
n

k Set of the new jobs

J
a

k Set of the admitted jobs

Pk(s, d) Allowable paths from nodes to d

Rk(i) Remaining demand of jobi

fi(p, j) Total flow allocated to jobi on pathp on slicej

Ce(j) Remaining capacity of linke on slicej

[15] L. Marchal, P. Primet, Y. Robert, and J. Zeng, “Optimal bandwidthsharing in grid environment,” inProceedings of IEEE High

Performance Distributed Computing (HPDC), June 2006.

[16] K. Rajah, S. Ranka, and Y. Xia, “Scheduling bulk file transfers withstart and end times,”Computer Networks, to Appear. Manuscript

avaiable at http://dx.doi.org/10.1016/j.comnet.2007.12.005. A shortversion is published at NCA 2007.

[17] K. Munir, S. Javed, M. Welzl, and M. Junaid, “Using an event based priority queue for reliable and opportunistic scheduling of bulk

data transfers in grid networks,” inProceedings of the 11th IEEE International Multitopic Conference (INMIC2007), December 2007.

[18] K. Munir, S. Javed, M. Welzl, H. Ehsan, and T. Javed, “An end-to-end QoS mechanism for grid bulk data transfer for supporting

virtualization,” in Proceedings of IEEE/IFIP International Workshop on End-to-end Virtualization and Grid Management (EVGM

2007), San Jose, California, October 2007.

[19] K. Munir, S. Javed, and M. Welzl, “A reliable and realistic approachof advance network reservations with guaranteed completion time

for bulk data transfers in grids,” inProceedings of ACM International Conference on Networks for Grid Applications (GridNets 2007),

San Jose, California, October 2007.

[20] R. Guerin and A. Orda, “Networks with advance reservations: The routing perspective,” inProceedings of IEEE INFOCOM 99, 1999.

[21] L.-O. Burchard and H.-U. Heiss, “Performance issues of bandwidth reservation for grid computing,” inProceedings of the 15th

Symposium on Computer Archetecture and High Performance Computing (SBAC-PAD’03), 2003.

[22] E. He, X. Wang, V. Vishwanath, and J. Leigh, “AR-PIN/PDC: Flexible advance reservation of intradomain and interdomain lightpaths,”

in Proceedings of the IEEE GLOBECOM 2006, 2006.

[23] D. E. McDysan and D. L. Spohn,ATM Theory and Applications. McGraw-Hill, 1998.

[24] E. Rosen, A. Viswanathan, and R. Callon,Multiprotocol label switching architecture, RFC 3031, IETF, Jan. 2001.

30

[25] F. P. Kelly, P. B. Key, and S. Zachary, “Distributed admission control,” IEEE Journal On Selected Areas In Communications, vol. 18,

no. 12, Dec. 2000.

[26] G. de Veciana, G. Kesidis, and J. Walrand, “Resource management in wide-area ATM networks using effective bandwidths,”IEEE

Journal on Selected Areas in Communications, vol. 13, no. 6, pp. 1081–1090, Aug. 1995.

[27] R. Braden, D. Clark, and S. Shenker,Integrated services in the internet architecture: An overview, RFC 1633, IETF, June 1994.

[28] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An architecture for differentiated services, RFC 2475, IETF, Dec.

1998.

[29] O. Scheĺen, A. Nilsson, J. Norrg̊ard, and S. Pink, “Performance of QoS agents for provisioning network resources,” inProceedings of

IFIP Seventh International Workshop on Quality of Service (IWQoS’99), London, UK, June 1999.

[30] A. Brodnik and A. Nilsson, “A static data structure for discrete advance bandwidth reservations on the Internet,” Department of

Computer Science and Electrical Engineering, Luleå University of Technology, Sweden, Tech. Rep. Tech report cs.DS/0308041, 2003.

[31] L.-O. Burchard, J. Schneider, and B. Linnert, “Rerouting strategies for networks with advance reservations,” inProceedings of the First

IEEE International Conference on e-Science and Grid Computing (e-Science 2005), Melbourne, Australia, Dec. 2005.

[32] Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang, “A linked-list data structure for advance reservation admission control,” inICCNMC

2005, 2005, lecture Notes in Computer Science, Volume 3619/2005.

[33] T. Wang and J. Chen, “Bandwidth tree - A data structure for routingin networks with advanced reservations,” inProceedings of the

IEEE International Performance, Computing and Communications Conference (IPCCC 2002), April 2002.

[34] T. Erlebach, “Call admission control for advance reservation requests with alternatives,” Computer Engineering and Networks Laboratory,

Swiss Federal Institute of Technology (ETH) Zurich, Tech. Rep. TIK-Report Nr. 142, 2002.

[35] L. Lewin-Eytan, J. Naor, and A. Orda, “Routing and admission control in networks with advance reservatione,” inProceedings of the

Fifth International Workshop on Approximation Algorithms for CombinatorialOptimization (APPROX 02), 2002.

[36] R. Bhatia, M. Kodialam, and T. V. Lakshman, “Fast network re-optimization schemes for MPLS and optical networks,”Computer

Networks, vol. 50, no. 3, Feb. 2006.

[37] D. Banerjee and B. Mukherjee, “Wavelength-routed optical networks: linear formulation, resource budgeting tradeoffs, and a

reconfiguration study,”IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp. 598–607, Oct. 2000.

[38] E. Bouillet, J.-F. Labourdette, R. Ramamurthy, and S. Chaudhuri, “Lightpath re-optimization in mesh optical networks,”IEEE/ACM

Transactions on Networking, vol. 13, no. 2, pp. 437–447, 2005.

[39] E. Mannie,Generalized multi-protocol label switching (GMPLS) architecture, RFC 3945, IETF, Oct. 2004.

[40] C. Curti, T. Ferrari, L. Gommans, B. van Oudenaarde, E. Ronchieri, F. Giacomini, and C. Vistoli, “On advance reservation of

heterogeneous network paths,”Future Generation Computer Systems, vol. 21, no. 4, pp. 525–538, Apr. 2005.

[41] S. R. Thorpe, D. Stevenson, and G. K. Edwards, “Using just-in-time to enable optical networking for grids,” inFirst ICST/IEEE

International Workshop on Networks for Grid Applications (GridNets 2004), 2004.

[42] J. Mambretti, et al., “The photonic TeraStream: enabling next generation applications through intelligent optical networking at

iGRID2002,” Future Generation Computer Systems, vol. 19, no. 6, p. 897908, August 2003.

[43] R. Boutaba, W. Golab, Y. Iraqi, T. Li, and B. Arnaud, “Grid-controlled lightpaths for high performance grid applications,”Journal of

Grid Computing, vol. 1, no. 4, pp. 387–394, December 2003.

[44] L.-O. Burchard, “Networks with advance reservations: applications, architecture, and performance,”Journal of Network and Systems

Management, vol. 13, no. 4, pp. 429–449, Dec. 2005.

[45] N. Garg and J. K̈oenemann, “Faster and simpler algorithms for multi-commodity flow and other fractional packing problems,” in

Proceedings of the 39th Annual Symposium on Foundations of ComputerScience, November 1998, pp. 300–309.

[46] B. Awerbuch and F. T. Leighton, “Improved approximation algorithms for multi-commodity flow problem and local competitive routing

in dynamic networks,” inProceedings of the ACM Symposium on Theory of Computing, 1994, pp. 487–496.

