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Abstract—This paper proposes a framework to maximize the lifetime of the wireless sensor networks (WSN) by using a mobile sink
when the underlying applications tolerate delayed information delivery to the sink. Within a prescribed delay tolerance level, each node
does not need to send the data immediately as it becomes available. Instead, the node can store the data temporarily and transmit
it when the mobile sink is at the most favorable location for achieving the longest WSN lifetime. To find the best solution within the
proposed framework, we formulate optimization problems that maximize the lifetime of the WSN subject to the delay bound constraints,
node energy constraints, and flow conservation constraints. We conduct extensive computational experiments on the optimization
problems and find that the lifetime can be increased significantly as compared to not only the stationary sink model but also more
traditional mobile sink models. We also show that the delay tolerance level does not affect the maximum lifetime of the WSN.
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1 INTRODUCTION

A wireless sensor network (WSN) consists of sensor
nodes capable of collecting information from the envi-
ronment and communicating with each other via wire-
less transceivers. The collected data will be delivered to
one or more sinks, generally via multi-hop communica-
tion. The sensor nodes are typically expected to operate
with batteries and are often deployed in not-easily-
accessible or hostile environments, sometimes in large
quantities. It can be difficult or impossible to replace the
batteries of the sensor nodes. On the other hand, the sink
is typically rich in energy. Since the sensor energy is the
most precious resource in a WSN, efficient utilization of
the energy to prolong the network lifetime has been the
focus of much of the research on WSNs.

Although the lifetime of a WSN can be defined in
many ways, we adopt the widely used definition, which
is the time until the first node exhausts its energy. Much
work has been done during recent years to increase
the lifetime of a WSN. Among them, in spite of the
difficulties in realization, taking advantage of mobility
in the WSN has attracted much interest from researchers
[1], [2], [3], [4], [5], [6], [7], [8], [9]. We can take the mobile
sink as an example of mobility in a WSN. Communica-
tion in a WSN often has the many-to-one property in
that data from a large number of sensor nodes needs to
be concentrated to one or a few sinks. Since multi-hop
routing is generally needed for distant sensor nodes to
send data to the sink1, the nodes near the sink can be

1. For ease of discussion, we assume there is only one sink.

burdened with relaying a large amount of traffic from
other nodes. This phenomenon is sometimes called the
“crowded center effect” [10] or the “energy hole prob-
lem” [11], [12], [13]. It results in early energy depletion
at the nodes near the sink, potentially disconnecting the
sink from the remaining sensors that still have plenty of
energy. However, by moving the sink in the sensor field,
one can avoid or mitigate the energy hole problem and
expect an increased network lifetime.

This paper proposes a framework to maximize the
lifetime of a WSN by taking advantage of sink mobility.
Compared with other mobile-sink proposals, the main
novelty is that we consider the case where the underly-
ing applications tolerate delayed information delivery to
the sink. One of the application examples is battle field
surveillance, where sensor nodes are deployed to moni-
tor the movement of enemy vehicles or troops. A mobile
sink attached to an unmanned aerial vehicle flies over
the monitored region regularly to harvest the collected
intelligence. To avoid being intercepted or detected by
enemy forces, the mobile sink needs to operate in only
a few safe locations within a limited operation time.
Another example is habitat monitoring where a mobile
robot is used to collect information from the sensor
nodes in the field. If much of the habitat area is not
accessible by the robot or if it is desirable to minimize
disturbance to the targeted animal species, the mobile
robot will trace predetermined paths and stop by a set
of pre-arranged locations regularly for data collection.

In our proposal, within a prescribed delay tolerance
level, each node does not need to send the data im-
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mediately as it becomes available. Instead, the node
can store the data temporarily and transmit it when
the mobile sink is at the location most favorable for
achieving the longest network lifetime. To find the best
solution within the proposed framework, we formulate
optimization problems that maximize the lifetime of the
WSN subject to the delay bound constraints, node energy
constraints and flow conservation constraints. Another
one of our contributions is that we compare our proposal
with several other lifetime-maximization proposals and
quantify the performance differences among them. Our
computational experiments have shown that our pro-
posal increases the lifetime significantly when compared
to not only the stationary sink model but also more
traditional mobile sink models without delay tolerance.

Our proposal is more sophisticated than most previous
lifetime-improvement proposals that we know of. It inte-
grates the following energy-saving techniques, multipath
routing, a mobile sink, delayed data delivery and active
region control, into a single optimization problem. Such
sophistication comes at a cost. Whether the proposal
should be adopted in practice will depend on the trade-
off between the lifetime gain and the actual system cost.
The latter includes all costs/complexity in implement-
ing the proposal and in actual operations. These may
include extra communication protocols for coordination
and control, e.g., new routing and rate control protocols,
extra memory for keeping delayed data and memory-
management costs, and application-level costs incurred
by delayed information delivery. Even if the decision is
not to adopt it due to a high cost or high complexity,
the framework in the paper is still useful because it can
supply the practitioners with a performance benchmark,
e.g., how much lifetime improvement opportunity there
is. By also formulating the optimization problems related
to other proposals and providing cross comparison, the
paper provides extra convenience for comparing and
understanding different proposals.

Being one of the early papers on extending the net-
work lifetime with mobility and delay tolerance, the
paper focuses on formulating several simple and typi-
cal lifetime-maximization problems and evaluating the
lifetime improvement. There can be many variants of
the problem formulation, some of which can be very
difficult, often involving NP-hard combinatorial sub-
problems. The degree of lifetime improvement demon-
strated by this paper can justify further work on more
difficult problems.

We now briefly review the most relevant work on how
to exploit mobility to increase the network lifetime. In
[4], the authors introduced mobile agents, which move
around and collect data from nearby sensor nodes on be-
half of the immobile sink. When the mobile agents move
to the vicinity of the sink, they forward the collected data
to the sink. In that framework, communication occurs
only from the sensor nodes to the mobile agents or
from the mobile agents to the sink via a single hop; the
sensor nodes do not relay traffic. Hence, it is different

from our multi-hop communication framework. It was
assumed that the mobile agents have plenty of energy.
The movement of each mobile agent is modeled as a
random walk. It was shown that the queues in the
mobile agents and the sensor nodes are finite and the
delay of the collected data is bounded. However, the
authors did not show the quantitative improvement of
the network lifetime by using mobile agents.

In [1], the authors formulated a linear programming
problem of determining how to move the mobile sink
and how long to park the mobile sink at each stop
along the path of the sink so as to maximize the life-
time of the WSN. However, in their model, data flows
are not decision variables of the lifetime optimization
problem. On the contrary, in our formulations, not only
the sink sojourn times at different sink stops but also
the routing scheme are decision variables. The analysis
and experiments in [1] were conducted under a simple
structured network topology where the sensor nodes
are deployed in a grid-like pattern. In [5] and [14], the
authors further extended the research of [1]. The model
proposed in [5] [14] includes the cost of moving the
mobile sink (such as nodal energy consumption for route
establishment/release when the sink moves to a new
stop) and the sink mobility rate determined by the min-
imum sink sojourn time at the sink stops. Furthermore,
the model incorporates a hop-length limit when the sink
moves to next stop. This restricts the packet latency,
which is related to the traveling time of the sink between
stops. The authors proposed an MILP (Mixed Integer
Linear Programming) problem formulation to obtain the
optimal travel route of the sink and the sojourn times at
the sink stops for maximizing the lifetime of the system.
They also suggested a distributed heuristic algorithm to
circumvent the complexity of the proposed mathematical
formulation.

The authors of [3] showed that the network lifetime
can be extended significantly if the mobile sink moves
around the periphery of the WSN. They assumed that, if
the mobile sink can balance the traffic load of the nodes,
the lifetime of the network can increase. Therefore, they
proposed an optimization problem for choosing a mo-
bility strategy that minimizes the maximum traffic load
of the nodes. However, they assumed the shortest path
routing, which, in general, does not produce the best
lifetime.

The problem of finding the trajectory of the mobile
sink so as to optimize the lifetime of the WSN is hard to
solve due to its infinite search space when the locations
for the sink stops are not constrained. In [9], the authors
studied how to find the optimal sink stops and the
schedule of visit to each of the stops. If the candidate
locations for the stops are unconstrained, this problem
is also NP-hard. However, if the stops are constrained
to be selected from a finite set of known locations,
the problem can be easily formulated into linear pro-
gramming. They proposed an approximation algorithm
to the unconstrained problem by properly dividing the
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whole sensor field into a finite number of disjoint small
areas, and then, converted the unconstrained problem
into a constrained problem. However, to obtain a good
approximation ratio, the number of small areas can po-
tentially be very large, making the linear programming
computation time-consuming. Therefore, in this paper,
we restrict the set of potential sink stops to be from
a small number of given locations rather than from
arbitrary locations.

The WSN model proposed in [7] is close to ours. The
authors studied the maximum lifetime problem of the
WSN where the mobile sink can visit only a small num-
ber of locations. They showed that the lifetime can be
further increased by optimizing not only the schedule of
sink visits but also routing of the traffic. However, they
did not consider applications where delayed information
delivery is allowed.

The rest of the paper is organized as follows. Section
2 describes various related lifetime maximization prob-
lems that we will compare against. The mathematical
formulations of the models are provided for the purpose
of comparison. In section 3, we propose two novel mod-
els with a mobile sink and delayed information delivery.
We show some nice properties that our models possess.
In section 4, we compare our models with others by
simulation and numerical experiments. The conclusions
are given in Section 5.

2 RELATED LIFETIME MAXIMIZATION PROB-
LEMS

In this section, we discuss related lifetime maximization
problems that have been published in the literature.
We will later compare their performance with our new
proposal.

First, we will describe the general assumptions about
the WSN models. Let the set of sensor nodes be denoted
by N . For experimental convenience, we suppose they
are uniformly randomly deployed into a circular area
with radius R. Let the center of the disk be the origin.
Each node i is assumed to generate data at a constant
rate of di during its life span and the initial energy of i is
denoted by Ei. Furthermore, the nodes have the ability
of adjusting their transmission power level to match
the transmission distance. Similar to [15], the energy
required per unit of time to transmit data at the rate
of xij from node i to j can be determined as follows.

Et
ij = Ct

ij · xij , (1)

where Ct
ij is the required energy for transmitting one

unit of data from node i to j and it can be modeled as
follows [16].

Ct
ij = α + β · d(i, j)e, (2)

where d(i, j) is the Euclidean distance between node i
and j, α and β are nonnegative constants, and e is the
path loss exponent. Typically, e is in the range of 2 to 6,
depending on the environment. Here, the energy cost per

unit of data does not depend on the link rate, and this is
valid for the low rate regime. Hence, we need to assume
that the traffic rate xij is sufficiently small compared to
the capacity of the wireless link.

The energy consumed at node i per unit of time for
receiving data from node k is given by [15]

Er
ki = γ · xki, (3)

where γ is a given constant. Hence the total energy
consumption per unit time at node i is

∑

j∈N
Et

ij +
∑

k∈N
Er

ki =
∑

j∈N
Ct

ij · xij +
∑

k∈N
γ · xki. (4)

We assume that each sensor node has the same trans-
mission range. Let l denote the sink. In this paper,
we take the convention that the sink is a special node
different from the sensor nodes and l /∈ N . The required
energy for transmitting one unit of data from a sensor
node i to the sink l is denoted by Ct

il, and it is given
by (2) with j replaced by l. We define the (downstream)
neighbors of node i as N(i) = {j ∈ N ∪ {l}|d(i, j) ≤
d̄, j 6= i}, when the transmission range is d̄. Note that
the neighbors may include the sink.

The paper does not consider MAC-layer contention. It
is assumed that contention is resolved by some MAC-
layer protocol. The operation of the MAC-layer protocol
determines the link rates, which are assumed to be
large enough so that they do not impose a constraint
on the data rates. Future work may try to relax these
assumptions. Conversely, if the data rates are small, then
even simple MAC-layer protocols will be able to deliver
the required link rates. In other words, it can be easy to
design such a protocol.

2.1 Static Sink Model

In the static sink model (SSM), the sink is located at the
origin and remains stationary during the operation of
the WSN. Data originated from the sensor nodes flows
into the sink in a multi-hop fashion. As soon as the data
becomes available at a node, it gets transmitted toward
the sink. Typically, the rate at which each sensor node
i harvests data from the outside world is a constant.
We denote it by di. The data generated by a source is
sometimes called a commodity or a sub-flow [17], [18]. Let
xc

ij be the rate assignment from node i to node j for the
traffic generated by node c (commodity c). The problem
of maximizing the lifetime in this model is formulated
as follows [19], [20].



4

Per-Commodity Static Sink Model (SSM) (5)

max Z (6)

s. t.
∑

j∈N(i)

xc
ij −

∑

k:i∈N(k)

xc
ki =

{
di, if i = c

0, otherwise
,

∀i,∀c ∈ N (7)
 ∑

j∈N(i)

∑
c

Ct
ij · xc

ij +
∑

k:i∈N(k)

∑
c

γ · xc
ki


 · Z ≤ Ei,

∀i ∈ N (8)
xc

ij ≥ 0, ∀i, ∀c ∈ N ; ∀j ∈ N(i) (9)
Z ≥ 0. (10)

The constraint (7) is the “flow conservation constraint”,
which states that, at a node i, the sum of all outgoing
flows for a commodity c is equal to the sum of all
incoming flows for the commodity c. If i = c, the
incoming flows should include the flows generated at
node i itself, or di. The inequality (8) is the energy con-
straint and it means that the total energy consumed by
a node during the lifetime (Z) cannot exceed the initial
energy of the node. With this formulation, the routing is
dynamic and allows multipath communications. There
is no assumption on fixed-path routing, such as the
shortest path routing. The above optimization problem
can be easily converted into a linear programming (LP)
problem.

The particular formulation above is equivalent to the
following formulation, where the flows of the commodi-
ties are aggregated into a single arc flow. The new
formulation has much reduced complexity and is useful
for finding numerical solutions quickly. However, it is
less generalizable.

Aggregate-Traffic SSM (11)

max Z (12)

s. t.
∑

j∈N(i)

xij −
∑

k:i∈N(k)

xki = di, ∀i ∈ N (13)


 ∑

j∈N(i)

Ct
ij · xij +

∑

k:i∈N(k)

γ · xki


 · Z ≤ Ei,

∀i ∈ N (14)
xij ≥ 0, ∀i ∈ N ; ∀j ∈ N(i) (15)
Z ≥ 0. (16)

Here, xij is the aggregate flow rate of all commodities
from node i to node j, i.e.,

∑
c xc

ij = xij . The equivalence
of the problems, (5) and (11), can be argued as follows.
Clearly, we can always construct a feasible solution to
problem (11) from any feasible solution to problem (5)
by letting xij =

∑
c xc

ij . Conversely, given a feasible
solution {xij} to problem (11), one can apply the flow
decomposition algorithm [17] to the arc flows {xij} and

obtain path flows for the commodities2. The path flows
in turn give the per-commodity arc flows {xc

ij} feasible
to problem (5).
Remark: The equivalence is only true for the particu-
lar constraints considered here. The two formulations
are not usually equivalent in more general settings,
for instance, if the costs of the commodities (energy
per unit of data transmitted or received) are different,
or if some individual commodity rate at some link
is upper bounded or lower bounded by a non-zero
value, which in turn might be the result of assigning
different importance levels to different commodities. The
per-commodity formulation (5) is more generalizable.
The aggregate-traffic formulation (11) is not necessarily
useful if one wishes to incorporate more constraints. But
it is useful in this paper because it is easier to compute.

2.2 Mobile Sink Model
In the mobile sink model (MSM), we assume that the
sink can move around within the sensor field and stop
at certain locations to gather the data from the sensor
nodes. Let L be the set of possible locations where
the sink can stop (also known as sink stops). The sink
does not necessarily stop at (i.e., stays for a positive
duration) all locations in L in the interest of maximizing
the network lifetime [1], [9].

As previous authors [9], throughout the paper, we
make the assumption that the traveling time of the sink
between locations is negligible. This way, the resulting
problem formulations are simple enough for us to obtain
precise numerical solutions for evaluation purpose. The
assumption is appropriate when the traveling time is
much smaller than the time spent by the sink to collect
data in each location.

In this model, the order of visit to the stops has no
effect on the network lifetime and can be arbitrary. The
sink sojourn time at a location l ∈ L is denoted by zl;
it is the time that the sink spends at l to collect data
from the sensor nodes. The overall network lifetime is
Z =

∑
l∈L zl. When the sink is at stop l, we denote the

(downstream) neighbors of node i as

N(i, l) = {j ∈ N ∪ {l}|d(i, j) ≤ d̄, j 6= i}. (17)

To find the optimal network lifetime, we need to con-
sider the routing of the traffic as well as the duration of
the sink’s sojourn time at each stop (also see [9], [2], [1],
[7]).

Similar to the case of the static sink model in Section
2.1, there is a per-commodity-based formulation of the
lifetime-maximization problem, and there is an equiv-
alent, simpler, aggregate-traffic-based formulation. For
brevity, we will only present the latter. However, we
re-iterate that, if additional constraints are present, the

2. In general, the flow decomposition algorithm produces both path
flows and cycle flows. However, in any optimal solution of (11), the
flows on every cycle must be zero. Hence, we can restrict ourself to
the set of feasible flows that can be decomposed into path flows only.
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per-commodity-based formulation may be necessary. Let
x

(l)
ij be the aggregate flow on link (i, j) while the sink

is at stop l. The lifetime maximization problem can be
formulated as follows.

Aggregate-Traffic Mobile Sink Model (MSM) (18)

max Z = z1 + z2 + · · ·+ z|L| (19)

s. t.
∑

j∈N(i,l)

x
(l)
ij −

∑

k:i∈N(k,l)

x
(l)
ki = di,

∀i ∈ N , ∀l ∈ L (20)
|L|∑

l=1

zl(
∑

j∈N(i,l)

Ct
ijx

(l)
ij +

∑

k:i∈N(k,l)

γx
(l)
ki ) ≤ Ei,

∀i ∈ N (21)

x
(l)
ij ≥ 0, ∀i ∈ N ;∀l ∈ L;∀j ∈ N(i, l) (22)

zl ≥ 0, ∀l ∈ L.(23)

Constraint (20) denotes the flow conservation for all
nodes when the sink is at l. Constraint (21) says that
the total energy consumed at the node i can not exceed
the initial energy Ei. By multiplying (20) with zl and
substituting x

(l)
ij · zl with a new variable y

(l)
ij , we can

replace (20) with the following new constraint.

∑

j∈N(i,l)

y
(l)
ij −

∑

k:i∈N(k,l)

y
(l)
ki = zl · di

∀i ∈ N ; ∀l ∈ L. (24)

Similarly, constraint (21) can be changed into

|L|∑

l=1


 ∑

j∈N(i,l)

Ct
ij · y(l)

ij +

∑

k:i∈N(k,l)

γ · y(l)
ki


 ≤ Ei, ∀i ∈ N . (25)

With the constraints (24), (25), (23), and the non-
negativity constraints for y

(l)
ij , the above optimization

problem is converted into an LP problem. Here, y
(l)
ij is

interpreted as the total traffic volume that node i sends
to node j while the sink stays at l.

3 LIFETIME MAXIMIZATION IN DELAY TOLER-
ANT MOBILE SINK MODEL

In this section ,we consider how to maximize the lifetime
of WSN with the mobile sink in applications that can
tolerate a certain amount of delay. We call the resulting
WSN model delay tolerant mobile sink model (DT-MSM). In
this setting, each nodes can postpone the transmission
of data until the sink is at the stop most favorable for
extending the network lifetime. This way, the nodes can
collectively achieve a longer network lifetime. In con-
trast, the SSM and MSM do not exploit this possibility.

1 1 1 1

OL1N1 L2 N2

Fig. 1. Examples of the static sink model (SSM), mobile
sink model (MSM), and delay tolerant mobile sink model
(DT-MSM)

Let D be the maximum tolerable delay, or the delay
tolerance level. We assume that the sink finishes one
round of visit to all the stops (where the sink stays for
a positive duration to collect data) in D time units, and
then, repeats with another round again and again. Note
that two consecutive visits to the same stop takes a time
D.

Let’s take an example to show how our framework can
outperform other ones. Consider the two-node example
shown in Figure 1. N1 and N2 are two sensor nodes and
L1 and L2 are the candidate stops of the mobile sink.
Suppose we ignore the receiving energy requirement and
suppose the transmission energy per unit of data is equal
to the square of the distance between the sender and
the receiver. Both nodes N1 and N2 generate data at 1
bps and have 100 units of energy initially. If the sink is
located at O in the SSM, both nodes spend 4 units of
energy for sending a bit of data. It is obvious that the
optimal lifetime is 25 seconds. In the MSM with sink
locations {L1, L2}, due to the symmetry of the structure,
the sink stays at both L1 and L2 for the same amount
of time to achieve the maximum lifetime. Each node
spends 1 or 9 units of energy for sending 1 bit of data
depending whether the sink is at L1 or L2. The average
energy consumption per bit is 5 units. Thus, the lifetime
is 20 seconds. In the DT-MSM, we assume that the sink
alternates between the two stops and stays for 1 second
at each stop in each cycle. Hence, this is the case that
D = 2 seconds. When the sink stays at L1, only N1

sends 2 bits of data to the sink; when the sink moves
to L2, only N2 transmits 2 bits of data (N2 keeps its data
while the sink is at L1). Both nodes spend 2 units of
energy every 2 seconds or 1 unit of energy per second on
average. Thus, the lifetime is 100 seconds, a significant
increase compared to the SSM and MSM. This is because,
in the DT-MSM, the nodes do not always participate in
communication for all the sink stops; they each wait until
the sink’s location is most favorable for energy saving,
and then send data at the higher rate. Recall that we
have assumed that the traffic rate is sufficiently small
compared to the capacity of the wireless link, and hence,
sending data at a higher rate does not alter the per-bit
energy consumption.

Unlike the MSM or SSM, the sink in the DT-MSM
can collect data from only a subset of the set of all
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sensor nodes, N , at each stop. Let Rl be the subset of
N such that only nodes in Rl can participate in the
communication toward the sink when the sink is at
l ∈ L. We call Rl the coverage of the sink location l.
Note that the union of Rl over l ∈ L must be the set
of all sensor nodes, N . In other words, any sensor node
should be covered by at least one sink location. When
the node i is in Rl, node i is said to be active at l ∈ L.
Although we can construct Rl in many ways depending
on the application of interest, in this paper, a very simple
method of constructing Rl is considered. Fix a positive
number r. We call r the radius of coverage of the sink.
For each l ∈ L, if d(i, l) ≤ r, where i ∈ N , then i ∈ Rl.
Here, the radius of coverage of the sink (r) should be
large enough so that every sensor node belongs to at
least one Rl. Note that the minimum r depends on the
locations of the sink stops.
Remark: In our problem formulations, we take Rl as
parameters, although we will show that the larger Rl,
the longer the network lifetime is. However, when Rl

is small, the routing and rate allocation decisions are
confined within a small area around the current sink
location. This is likely to reduce the protocol complexity
for handling routing and rate allocation. In the simplest
case, the coverage may be within the broadcast range
of the sink so that routing and rate allocation can be
done locally with the help of a broadcast-based control
protocol. By incorporating the coverage in our formula-
tions, we can evaluate the tradeoff between the lifetime
performance and protocol complexity, e.g., how much
the loss in lifetime is when we reduce Rl.

In both SSM and MSM, the sink collects data from each
node i at the same rate at which node i generates the
data. However, in the DT-MSM, the data transmission
rate at node i during the collection time is no longer
the same as the constant data generation rate di. When
node i is not active (i.e., not covered by the current sink
location), it continues to gather data and should store the
newly generated data. Hence, data buffering is required
by our framework. Within a cycle of D time units, the
total stored data at each node i is at most D ·di. For ease
of presentation, we assume the sink visits all locations in
L in the order of 1 → 2 → · · · |L| → 1 · · · . The sink may
stay at some location for zero time. With slight abuse
of terminology, we define the network lifetime T to be
the number of cycles made by the sink until the first
node dies due to energy exhaustion. The actual lifetime
is T ·D.

Once traffic is allowed to be buffered, there are dif-
ferent strategies on whose traffic is buffered. Which
strategy gets adopted in practice probably depends on
the application, other practical concerns, and the de-
signer’s preference. Since we do not know these factors
in advance, we next describe two strategies, or two
variants of the model: the sub-flow-based model and the
queue-based model. The main purpose is to illustrate that
choices exist and they lead to different performance-
complexity tradeoffs.

3.1 Sub-Flow-Based Model

In the sub-flow-based model, the nodes in the current
coverage Rl are not allowed to buffer the relayed traffic
from other nodes; as soon as a node in Rl receives the
data from other nodes, it immediately forwards the data
to its neighboring nodes. To model this constraint at each
node i, we need to differentiate the data generated by
node i itself and the data originally generated by other
nodes but forwarded to node i. Again, let x

(c,l)
ij be the

rate assignment from node i to node j, while the sink is
at l, for the traffic generated by node c (commodity c).
Let x

(l)
ij be the aggregated rate of traffic that needs to be

forwarded to node j from node i when the sink is at l.
That is,

x
(l)
ij =

∑

c∈Rl

x
(c,l)
ij , ∀l ∈ L; ∀i, ∀j ∈ Nl(i). (26)

Here, we define Nl(i) = Rl ∩N(i, l), where N(i, l) is as
given in (17). It is the set of the downstream neighbors
of node i that are in the coverage Rl.

Since at node i ∈ N , the commodity or sub-flow of
other nodes c ∈ Rl, c 6= i must be forwarded as soon as
it has been received, we should have

∑

k:i∈Nl(k)

x
(c,l)
ki =

∑

j∈Nl(i)

x
(c,l)
ij . (27)

The flow conservation at node i can be expressed as
follows, which is the same as in the MSM except that
the amounts of traffic originated from node i itself,
(w(l)

i ; l ∈ L, i ∈ Rl), are now decision variables.

zl


 ∑

j∈Nl(i)

x
(l)
ij −

∑

k:i∈Nl(k)

x
(l)
ki


 = w

(l)
i . (28)

The data buffered during the previous sink-movement
cycle must be cleared in the current cycle. This require-
ment can be written as

∑

l:i∈Rl

w
(l)
i = D · di. (29)

Due to (27), it may appear that we need a per-
commodity-based formulation of the problem. Similar to
the case of the SSM problem (5) in Section 2.1, there is
also a simpler, equivalent, aggregate-traffic formulation,
using only the aggregate arc flow variables x

(l)
ij , as given

in (26).
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Aggregate-Traffic Sub-Flow-Based DT-MSM (30)

max T (31)

s. t. zl


 ∑

j∈Nl(i)

x
(l)
ij −

∑

k:i∈Nl(k)

x
(l)
ki


 = w

(l)
i ,

∀l ∈ L; ∀i ∈ Rl (32)


|L|∑

l=1

zl


 ∑

j∈Nl(i)

Ct
ij · x(l)

ij +

∑

k:i∈Nl(k)

γ · x(l)
ki






 · T ≤ Ei, ∀i ∈ N (33)

∑

l:i∈Rl

w
(l)
i = D · di, ∀i ∈ N (34)

x
(l)
ij ≥ 0, ∀l ∈ L; ∀i ∈ Rl;∀j ∈ Nl(i)(35)

w
(l)
i ≥ 0, ∀l ∈ L, ∀i ∈ Rl (36)

zl ≥ 0, ∀l ∈ L (37)
T ≥ 0. (38)

3.2 Queue-Based Model

In the queue-based model, each sensor node can buffer data
originated from any node. Let q

(l)
i be the queue length at

node i just before the sink moves from location l to l+1.
Assume that each node i has D ·di amount of data at the
beginning of a cycle, which is denoted by q

(0)
i . When the

sink finishes a cycle of visit, the queue at node i must be
cleared. Thus we have q

(|L|)
i = 0. In this model, the flow

conservation constraint is replaced by the queue length
dynamics, which is expressed as follows.

zl(
∑

k:i∈Nl(k)

x
(l)
kj ) + q

(l−1)
i − zl(

∑

j∈Nl(i)

x
(l)
ij ) = q

(l)
i ,

∀l ∈ L;∀i ∈ N . (39)

The energy constraints can be expressed in the same
way as in the sub-flow based MSM. From the above
discussion, we have the following optimization problem
for maximizing the lifetime.

Queue-Based DT-MSM (40)
max T (41)

s. t. zl(
∑

k:i∈Nl(k)

x
(l)
ki ) + q

(l−1)
i − zl(

∑

j∈Nl(i)

x
(l)
ij ) = q

(l)
i ,

∀l ∈ L;∀i ∈ N (42)


|L|∑

l=1

zl


 ∑

j∈Nl(i)

Ct
ij · x(l)

ij +

∑

k:i∈Nl(k)

γ · x(l)
ki






 · T ≤ Ei, ∀i ∈ N (43)

q
(0)
i = D · di, ∀i ∈ N (44)

q
(|L|)
i = 0, ∀i ∈ N (45)

x
(l)
ij ≥ 0, ∀l ∈ L; ∀i ∈ Rl; ∀j ∈ Nl(i) (46)

q
(l)
i ≥ 0, ∀i ∈ N ; ∀l ∈ L (47)

zl ≥ 0, ∀l ∈ L (48)
T ≥ 0. (49)

The problem shown above can be converted into an LP
problem by substituting y

(l)
ij for zl · x(l)

ij and introducing
the new variable u = 1/T . This linearization method can
also be applied to the sub-flow based MSM. Once y

(l)
kj is

solved, we can assign an arbitrary positive value to zl, as
along as

∑|L|
l=1 zl ≤ D, and assign x

(l)
kj = y

(l)
kj /zl. The root

reason that we can do this is that there is no upper bound
on the link rate x

(l)
kj . If such an upper bound were in our

formulations, the situation would be very different and
the problem would become very hard.
Discussion on the two delay-tolerant models:
• The two delay-tolerance formulations represent two

strategies on what data to buffer. The sub-flow-
based formulation allows buffering of only self-
generated traffic; the queue-based formulation al-
lows buffering of any traffic, which naturally leads
to the best lifetime performance among different
strategies. The two models can be considered as two
“extreme cases”, and various intermediate strategies
can be similarly formulated.

• In the sub-flow-based formulation, the maximum
required buffer size at node i is Ddi. In the queue-
based case, the maximum buffer size at a node may
depend on the total number of other nodes in the
same coverage area, which can be much larger.

• The sub-flow-based formulation looks more similar
to the standard multi-commodity flow problem. It
can be easier to find fast, specialized algorithms to
solve this problem.

3.3 Properties of Delay-Tolerant Mobile Sink Model
Both delay-tolerant models include the coverage of each
sink location in the formulation. This is motivated by
practical concerns, in particular, how easy it is to design
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practical protocols for coordinating the communication.
When at a sink location, it is far easier for the sink to
coordinate with the nearby sensors and set up the data
collection process. Hence, a small radius of coverage is
preferable from the protocol complexity point of view.
However, the radius of coverage can affect the network
lifetime, which we will explore next.

For illustration, consider the optimization problem
for the sub-flow-based model. Depending on the ra-
dius of coverage, we may obtain different instances of
the optimization problem. Thus, we can parameterize
these instances according to the radius of coverage. Let
P (N ,L, r) be the optimization problem when the radius
of coverage of the sink is r, the set of sensor nodes is N ,
and the set of sink locations is L. The value r must be
large enough so that all sensor nodes can be covered by
at least one sink location and we denote this minimum
radius of coverage for connectivity by r0. Under the
same configuration with N and L, different r values only
affect Rl and Nl(i). We will use the notations Rl(r) and
Nl(i, r) if it is necessary to specify the radius of coverage.
In the next theorem, we prove that the bigger the radius
of coverage,the longer the optimal lifetime is.

Theorem 1. If r0 ≤ r1 < r2, then the optimal objective value
for the problem P (N ,L, r2) is greater than or equal to that
for the problem P (N ,L, r1).

Proof: Consider the two optimization problems
P (N ,L, r1) and P (N ,L, r2) with r1 < r2. It is obvious
that Nl(i, r1) ⊆ Nl(i, r2) for all i ∈ N , l ∈ L. Therefore,
we can split the larger set Nl(i, r2) into two sets A and
Ā, where A = Nl(i, r1), and Ā = Nl(i, r2)\A. Similarly,
we can also split the upstream neighbor set for node
i into B = {k ∈ N|i ∈ Nl(k, r1)} and B̄ = {k ∈
N|i ∈ Nl(k, r2)}\B. In other words, Ā and B̄ are the sets
of additional downstream and upstream neighbors for
node i, respectively, as the radius of coverage increases
from r1 to r2.

Suppose that (x̂, ŵ, ẑ, T̂ ) is a feasible solution to the
problem P (N ,L, r1). Now, consider equation (32) for
the optimization problem P (N ,L, r2). For ∀l ∈ L,∀i ∈
Rl(r2),

zl


 ∑

j∈Nl(i,r2)

x
(l)
ij −

∑

k:i∈Nl(k,r2)

x
(l)
ki


 = w

(l)
i . (50)

We have the following by separating the neighbor sets
into A, Ā,B, and B̄.

zl


∑

j∈A

x
(l)
ij +

∑

j∈Ā

x
(l)
ij −

∑

k∈B

x
(l)
ki −

∑

k∈B̄

x
(l)
ki


 = w

(l)
i .

(51)
Fix l ∈ L. Suppose i ∈ Rl(r1). We extend the vector x̂ so
that x̂

(l)
ij = 0 when j ∈ Ā and x̂

(l)
ki = 0 when k ∈ B̄. Then,

for such l and i, the extended vector (x̂, ŵ, ẑ, T̂ ) satisfies
(51) since the original vector satisfies (32) for i ∈ Rl(r1).

Next suppose i ∈ Rl(r2)\Rl(r1). Then, we can extend
the vector x̂ further by setting x̂

(l)
ij = 0 for all j ∈ Nl(i, r2)

and x̂
(l)
ki = 0 for all k such that i ∈ Nl(k, r2). Furthermore,

we extend ŵ by setting ŵ
(l)
i = 0. After such extension,

(x̂, ŵ, ẑ, T̂ ) satisfies (51) for i ∈ Rl(r2)\Rl(r1) (since all
terms are zero).

For the energy constraint (33), we can apply a simi-
lar procedure. Hence, we can conclude that any feasi-
ble solution to the problem P (N ,L, r1), after suitable
extension, is also a feasible solution to the problem
P (N ,L, r2).

Next, the queue-based model is less constraining than
the sub-flow-based model; this results in lifetime gains
in the former model. The following theorem formalizes
the fact that the queue-based model always outperforms
the sub-flow-based model.

Theorem 2. Let T̂ be the optimal objective value to problem
(30), and T ∗ be the optimal objective value to problem (40)
with the same configuration (N ,L) and the same radius of
coverage r. Then T̂ ≤ T ∗.

Proof: Let ((x̂(l)
ij ), (ŵ(l)

i ), (ẑk), T̂ ) be the optimal so-
lution to problem (30). We will prove this theorem by
constructing a feasible solution to problem (40) with
((x̂(l)

ij ), (ŵ(l)
i ), (Ẑk), T̂ ) and showing that under this feasi-

ble solution, the objective value of problem (40) is T̂ .
We now define a vector w as follows. For each l ∈ L,

we let w
(l)
i = ŵ

(l)
i if i ∈ Rl, and w

(l)
i = 0 otherwise. Then,

we let q
(0)
i = D · di, and q

(l)
i = q

(l−1)
i −w

(l)
i for all i ∈ N .

We have the following sequence of assignments for the
q
(·)
i .

q
(1)
i = q

(0)
i − w

(1)
i = D · di − w

(1)
i

q
(2)
i = q

(1)
i − w

(2)
i

...
. . .

q
(|L|)
i = q

(|L|−1)
i − w

(|L|)
i .

By summing up above assignments for all l ∈ L, we have
q
(|L|)
i = D·di−

∑|L|
l w

(l)
i = D·di−D·di = 0 by (34) and the

construction of w. Hence, (45) is satisfied. Since the con-
figuration and radius of coverage r for problem (30) are
the same as those for problem (40), Nl(i), i ∈ N , l ∈ L are
the same for both problems. Because of this and by (32)
and w

(l)
i = q

(l−1)
i − q

(l)
i , (42) is satisfied. The energy con-

straints (33) and (43) are identical. Hence, given the op-
timal solution ((x̂(l)

ij ), (ŵ(l)
i ), (ẑk), T̂ ) to problem (30), we

just constructed a feasible solution ((x̂(l)
ij ), (q(l)

i ), (ẑk), T̂ )
to problem (40) with the same objective value T̂ . Hence,
T ∗ ≥ T̂ .

In the following theorem, we show that the maximum
lifetime of the system is the same for all values of D.
Here, the maximum lifetime of the system is equal to the
product of D and the corresponding optimal objective
value T ∗(D).

Theorem 3. Define P (D) as the lifetime optimization prob-
lem parameterized by the value D, for some fixed network
configuration. Let T ∗(D) and T ∗(D′) be the optimal objective
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values for the problem P (D) and P (D′), respectively. Then,
T ∗(D) ·D = T ∗(D′) ·D′.

Proof: Consider the queue-based model.3

Let (x∗(D), q∗(D), z∗(D), T ∗(D)) be the opti-
mal solution to the problem P (D), and let
(x∗(D′), q∗(D′), z∗(D′), T ∗(D′)) be the optimal solution
to the problem P (D′).

Let x = ( D
D′ )x∗(D′), q = ( D

D′ )q∗(D′), z = z∗(D′),
T = (D′

D )T ∗(D′). We want to show that (x, q, z, T )
satisfies the constraints (42)-(49). Since it is obvious
that the solution (x, q, z, T ) satisfies the constraints (46),
(47), (45), (48), and (49), we focus here on constraints
(42), (43), and (44) only. Since the optimal solution
(x∗(D′), q∗(D′), z∗(D′), T ∗(D′)) is feasible to the problem
P (D′), it must satisfy constraint (42). Next, let us plug
(D′

D )x, z, and (D′
D )q into constraint (42) in the places for

x∗(D′), z∗(D′), and q∗(D′), respectively. Then, we have

zl

∑

k:i∈Nl(k)

x
(l)
ki + q

(l−1)
i − zl

∑

j∈Nl(i)

x
(l)
ij = q

(l)
i . (52)

If we put (D′
D )x, z, and ( D

D′ )T in the places for x∗(D′),
z∗(D′) and T ∗(D′) on the left hand side of constraint
(43), we have




|L|∑

l=1

zl


 ∑

j∈Nl(i)

Ct
ij · x(l)

ij

(
D′

D

)
+

∑

k:i∈Nl(k)

γ · x(l)
ki

(
D′

D

)




 · T

(
D

D′

)
.

(53)

After canceling D and D′, it is easy to see that the new
solution (x, q, z, T ) satisfies the energy constraint of the
problem P (D).

From the constraint (44) for the problem P (D′) , we
have q

∗(0)
i (D′) = D′di. Since q = ( D

D′ )q∗(D′), q
∗(0)
i (D′) =

(D′
D )q(0)

i = D′di(∀i ∈ N ). Therefore we have

q
(0)
i = Ddi. (54)

From above argument, we have shown that new solution
(x, q, z, T ) is feasible to the problem P (D). Hence, we
have

T ∗(D) ≥ T =
(

D′

D

)
T ∗(D′).

Thus, it must be that T ∗(D)D ≥ T ∗(D′)D′.
Using a similar argument, we can also conclude that

T ∗(D)D ≤ T ∗(D′)D′. Hence, T ∗(D)D must equal to
T ∗(D′)D′.

4 EXPERIMENTAL RESULTS

In this section, we will present the results from numer-
ical experiments. In particular we have compared the
network lifetimes of the following models.

3. Note that the proof can be adapted to the sub-flow-based model.

TABLE 1
Experimental Parameters and Their Values

# of sensor nodes {100, 200}
# of possible sink locations {5, 6, 7, 8, 9, 10, 15, 20, 30, 40}
path loss exponent (e) {2.0, 3.0}
transmission range {5, 6, 7, 8, 9, 10, 15, 20, 30, 40, 50} m
α 50 nJ/bit
β 0.0013 pJ/bit/{m2, m3}
Initial Energy (Ei) 500 J
Data generation rate (di) 500 bps
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Fig. 2. Comparison of lifetimes of MSM and DT-MSM
under the various radii of coverage

• Static Sink Model (SSM): The stationary sink is
located at the origin. We take the performance of
this model as the reference for comparison.

• Mobile Sink Model (MSM): The sink can move to
several locations to collect data. When the sink
is at each location, all sensors participate in the
communication, sending and relaying traffic to the
sink.

• Delay-Tolerant Mobile Sink Model (DT-MSM):
When the mobile sink is at a stop, a subset of the
sensor nodes can participate in the communication.
We use the queue-based variant of this model to
evaluate the performance.

We have experimented with different parameters ex-
tensively, such as the number of nodes, the number of
possible sink locations and the parameters for the energy
consumption model. Only a small subset of the results
are reported here for brevity. In Table 1, we provide
the system parameters and their values for the reported
experiments in this paper.4 We adopt the data for the
last four parameters from [21]. In all experiments, we
use GLPK for solving the linear programming problem.

First, we would like to mention the impact of the
radius of coverage of the sink on the performance of
the DT-MSM. For this experiment, the positions for
100 nodes and 20 mobile-sink locations are randomly
generated (|N | = 100, |L| = 20) in a circular area with
radius 25 meters. We use a simple algorithm to find the
minimum radius of coverage (denoted by r0): At each
sink location, we increase the radius of coverage from 0

4. The choice of unit for β depends on the path loss exponent (e)
used in the simulation.
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Fig. 3. Lifetime against the number of sink locations;
maximum coverage; e = 2.0

simultaneously until the union of all coverages contains
all sensor nodes. At that point, we have reached the
minimum radius of coverage required to cover all nodes.
After that, we increase the radius of coverage in 0.1 incre-
ments. The result of the experiment is plotted in Figure 2.
Note that, in the figure, the lifetime is normalized with
respect to the optimal lifetime of the MSM. As shown
in the figure, the lifetime of the DT-MSM increases as
the radius of coverage increases, which is consistent
with Theorem 1. The increase is the sharpest when the
radius just exceeds the minimum radius required to
cover all nodes. After that, further increase of the radius
has a negligible effect. Recall that, when the mobile
sink reaches one of the stops, say l, only those sensor
nodes in the coverage of l (i.e., Rl) can communicate.
It is generally desirable for Rl to have as few nodes
as possible, since this reduces the communication and
coordination complexity. The aforementioned behavior
of lifetime increase is desirable.

Next, we compare the lifetimes of models under vari-
ous numbers of the sink locations. The number of nodes
is set to 100 or 200, and the path loss exponent e is 2.0.
The coverage is set large enough to always cover the
entire sensor field. We ran the experiment 100 times for
each configuration. The lifetimes of the MSM and DT-
MSM are again normalized with respect to the optimal
lifetime of the SSM. As shown in Figure 3, the lifetime
of the MSM is about 100% ∼ 200% greater than that of
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Fig. 4. Lifetime against the number of sink locations;
minimum coverage; e = 3.0

the SSM. However, the DT-MSM is 200% ∼ 1000% better
than the SSM. Moreover, the curves all look linear; the
performance gap can grow even larger with more sink
locations.

Interestingly, the lifetime of the MSM increases very
slowly with the number of sink locations. As explained
in [9], in the optimal solution, only a few locations from
the set of sink locations are chosen as the true stops
for the sink. However, in DT-MSM, the rate of lifetime
increase is substantial as |L| increases. This is because
each node can have better and better sink location as
|L| increases, and it is not forced to participate in the
communication when the current coverage is not the
most favorable for energy saving, even if the node may
belong to that coverage. This is not possible in the MSM
because no matter where the sink stops, every node must
participate in the communication.

We wish to make the following remarks. First, our for-
mulations and reported experiments all use the optimal
routing with respect to maximizing the system lifetime.
The routing strategy is important for increasing the
system lifetime. For instance, based on our experiences,
when the shortest path routing is used in the static sink
model (results not shown), the lifetime performance is
quite inferior to the case of optimal routing. Second, in
our model, the locations of the sink stop candidates are
randomly chosen. We expect more performance gain if
these candidate locations are carefully selected.
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Fig. 5. Lifetimes versus transmission range, d̄: |N | =
200, |L| = 20, e = 2.0

We conduct similar experiments with the same config-
uration but minimum coverage. The result is shown in
Figure 4. Although the slope of lifetime increase of the
DT-MSM is lowered when compared to the maximum
coverage case, the increase pattern is similar. Although a
larger set of sink locations increases the network lifetime,
it can be undesirable if the sink-traveling time cannot be
ignored. The longer traveling time may exceed the delay
tolerance level D. Therefore, there is a tradeoff between
the gain from more sink locations and the delay or other
system costs.

In Figure 5, we show the lifetimes of the three models
under various values for the transmission range. The
transmission range determines whether a link exists
between a pair of nodes. Whether an existing link is
useful or not depends on the radius of coverage: A node
cannot use a link to another node if the two nodes are
not in the common coverage area.

Both the MSM and the DT-MSM exhibit a sharp life-
time increase when the transmission range is small but
increasing. However, as the transmission range becomes
large, the lifetime increase comes to a stop for all three
models. This is because the energy cost increases with
the transmission distance, and hence, in an optimal
solution, a node does not pick far-away nodes as the
next-hop neighbors even if the transmission range al-
lows it. The observed fluctuation in the curves is due
to statistical fluctuation in the samples of the random

network topologies.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a new framework for im-
proving the network lifetime by exploiting sink mobil-
ity and delay tolerance. It is expected to be useful in
applications that can tolerate a certain amount of delay
in data delivery. We presented the mathematical formu-
lations for optimizing the network lifetime under the
proposed framework. We identified several properties
that our models possess. To validate the framework’s
ability for improving network lifetime, we conducted
extensive experiments and found that the framework is
superior to the models published previously, including
the static sink model and the mobile sink model without
delay tolerance. The lifetime gain of the proposed model
is significant when compared to the previous models.
Furthermore, as the number of sink locations increases,
the optimal network lifetime increases substantially. The
results of the paper can both be applied to practical situ-
ations and be used as benchmarks for studying energy-
efficient network designs.

We can point out three interesting future work di-
rections. The paper has not touched upon the issue of
finding efficient algorithms to solve the optimization
problems, but has relied on standard, centralized algo-
rithms. The first direction is to find simpler, preferably
distributed, algorithms, which are clearly more generally
applicable. The goal is likely to be attainable since the
problems formulated in this paper are extension of the
network-flow problems and many efficient algorithms
are known for such problems. The second direction is
to relax some of the simplifying assumptions of the
formulations. For instance, we can bring the non-zero
traveling time by the sink and/or the finite link trans-
mission rate into the formulations. Either one seems to
make the problems very difficult, but more relevant at
the same time. The third direction is to consider where
to choose for sink stops so that the network lifetime can
be optimized.
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