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Abstract—We propose an algorithm for maximizing the life-
time of a wireless sensor network when there is a mobile sink and
the underlying application can tolerate some amount of delay in
delivering the data to the sink. The algorithm is distributed, and
in addition, mostly uses local information. Such an algorithm can
be implemented by parallel and/or distributed execution and the
overhead of message passing is low. It is also possible to embed the
algorithm into a network protocol so that the sensor nodes and
the sink can run it directly as part of the network operation. We
give a proof of the algorithm’s optimality and the boundedness
of the queue sizes, both in the long-run average sense. The proof
is based on analyzing a Lyapunov drift.

Index Terms—Wireless Sensor Network, Lifetime Maximiza-
tion, Distributed Algorithm, Delay-Tolerant Application s, Mobile
Sink

I. INTRODUCTION

A. Motivation

A wireless sensor network (WSN) typically consists of a
sink node and a large number of sensor nodes, each of which
gathers information from its vicinity and delivers collected
data to the sink for further processing in a possibly multi-hop
fashion. The sensor nodes usually operate with batteries and
are often deployed into a harsh environment. Once deployed,it
is hard or even impossible to recharge or replace the batteries
of the sensor nodes. Therefore, extending the network lifetime
by efficient use of energy is a critical requirement for a WSN.

The network lifetime is usually defined as the time until
the first node fails because of energy depletion [1], [2]. Due
to the multi-hop routing from the sensor nodes to the sink, the
sensor nodes close to the sink usually are the most burdened
with relaying data from distant nodes. The traffic imbalance
can cause early energy depletion for the nodes near the sink,
creating an “energy hole” around the sink. The result may be
an early disconnection of the sink from the remaining sensor
nodes, which may still have plenty of energy [3], [4], [5].

Recently, the exploitation of mobility to improve the life-
time of a WSN, especially the mobility of the sink, has
attracted the interest of researchers [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. By making stops at different places in
the network to receive collected data from the sensor nodes,
a mobile sink can better balance the traffic load across the

sensor nodes, and as a result, mitigate the energy-hole problem
and increase the network lifetime. The use of a mobile sink
can also be found naturally in some application scenarios. For
instance, in habitat monitoring, a mobile robot may be used
to collect information from the sensor nodes in the field. If
much of the habitat area is inaccessible by the robot or if
it is desirable to minimize disturbance to the targeted animal
species, the robot will follow predetermined paths and stop
by a set of pre-arranged locations regularly for data collection
(see [15] for more examples).

B. Related Work and Contributions

In [15], the authors propose a framework of improving the
network lifetime by taking advantage of not only sink mobility
but also application delay tolerance. The resulting model is
called Delay Tolerant Mobile Sink Model (DT-MSM). DT-
MSM is suitable to those applications where some amount
of delay in data delivery to the sink is permitted [9]. The
sensor nodes may delay the transmission of the collected data
and wait for the mobile sink to arrive at the location most
favorable for improving the network lifetime. However, finding
an efficient algorithm for DT-MSM is not the focus of [15].

The goal of this paper is to find a distributed algorithm
that solves the lifetime maximization problem associated with
DT-MSM. The decisions to be made include how long the
sink should stay at each potential stop, and how to route the
data to the sink when it stops (including deciding the amount
of data transmitted at various nodes), subject to a maximum
tolerable delay. The paper has two main contributions. First,
our algorithm is both distributed and mostly local. The overall
solution is broken down into smaller decision problems and
each decision can be done locally in a sensor node. For the
most part, only local information at a node itself and at its
neighbors is needed. In general, distributed algorithms are
more useful and preferable for networking problems because
they can be readily built into network protocols and become
network control algorithms. Local algorithms have the addi-
tional benefit of restricting the control traffic to be among
locally interacting nodes. Second, we analyze our algorithm
and show that it converges to the optimal objective value for
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the lifetime maximization problem in the long-run average
sense, and that the long-time average of the virtual queue sizes
are bounded. The proof is based on analyzing a Lyapunov drift.

We briefly survey related work. The authors of [7] study the
lifetime maximization problem in a WSN with a mobile sink.
They propose a distributed subgradient algorithm for solving
the problem. However, their problem is quite different from
ours. Furthermore, our algorithm is motivated by a subgradient
algorithm; but the deviations have substantial consequences.
Unlike their algorithm, standard convergence results for the
subgradient algorithms do not apply to our algorithm and
the analysis about convergence and algorithm performance in
our case relies on a different framework. In addition, their
approach relaxes the energy constraints, whereas we relax the
flow conservation constraints.

The authors of [6] formulate a linear programming problem
for determining how to move the mobile sink and how long
the sink should stay at a stop to gather data, with the same
objective of maximizing the network lifetime. However, how
to route the collected data to the sink is not an interest in their
study. In contrast, traffic routing is an important decisionin
our case.

Regarding the analytical method, the Lyapunov drift tech-
nique is widely used for studying the stability issue of control
and optimization algorithms for a network of queues. A repre-
sentative work is [16], where the authors apply this technique
to the study of a link scheduling algorithm in multi-hop packet
radio networks that proves to be stable and achieve the entire
throughput region. Our method is more closely related to [17],
which is also about a dynamic control algorithm in wireless
networks that attains the optimal performance goal as well as
the desired stability property.

C. Assumptions

It is worth commenting on our assumptions regarding the
sink’s movement. First, the sink’s traveling time between stops
is negligible. This assumption is widely used in the literature
of similar mobile sink problems [6], [10], [11], [12], [13],
[14], [15]. It is appropriate for applications where other times
of interest, e.g., the delay tolerance level, are much longer than
the traveling time. Another reason for making this assumption
is tractability. If the sink’s traveling time cannot be neglected,
the problem becomes very hard to solve. It has a component
equivalent to theTraveling Salesman Problem, which is known
to be an NP-hard problem.

Second, we restrict the possible locations where the sink can
stop to a given finite set. If the sink can stop at an arbitrary
location, the problem becomes fundamentally different. The
authors of [14] study the problem of how to determine the
locations, which is NP-hard, and present an approximation
algorithm. That problem is essentially orthogonal to ours.
Furthermore, although more lifetime can be extracted if the
locations of the stops are part of the decision variables, wecan
approach that performance level by letting the given finite set
of potential stops be large. Our assumption is also appropriate
when the nature of the sensor field or the special feature of the
mobile sink require the locations of the stops to be constrained.

The rest of the paper is organized as follows. Section II
describes the system model of DT-MSM and the problem
formulation. The proposed distributed algorithm for the prob-
lem is given in Section III. In Section IV, we show that the
algorithm converges to the optimal value of the problem and
the queue sizes are bounded by applying the Lyapunov drift
technique. In Section V, we present the experimental results
that verify the convergence of our algorithm to the optimal
value and the boundedness of the queues in the system. The
conclusion is given in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The wireless sensor network is modeled as a directed graph,
denoted byG0 = (N ,A), whereN = {1, . . . , N} is the set of
vertices representing the sensor nodes andA is the set of edges
representing the wireless links. Each sensor nodei generates
data at a constant ratedi and has an initial energy endowment
Ei. Let d(i, j) be the Euclidean distance between nodesi and
j.

Let N(i) denote the set of (downstream) neighbor nodes
of node i, i.e., N(i) = {j|(i, j) ∈ A}. Let c : A → R

+ be
a given cost function on the edge set. The costc(i, j) is the
required energy to send a unit of data from nodei to j and it
is usually a function of the distance betweeni and j. Let L
be the set of the sink locations indexed from 1 throughL.

As stated earlier, we assume that the traveling time between
the sink locations is negligible. With this assumption, the
order of visits to the sink locations does not matter for the
optimization problem in this paper. The same conclusion has
been found true for related problems in several other papers
[6], [7], [12], [14]. Thus, for simplicity of explanation, we
assume that the order of visits is given as1 → 2 → · · · → L.

DT-MSM was introduced in [15]. It is suitable for an
application that can tolerate a certain amount of delay. In
DT-MSM, each node can postpone the transmission of data
until the sink is at the location most favorable for extending
the system lifetime. However, there is usually a maximum
delay that the application can tolerate. This maximum delay
tolerance is denoted byD. The sink must complete one of its
tours from node 1 toL and back to 1 inD time units and
then repeats the same tour in the next round.

Since each tour takesD time units, the problem of max-
imizing the system lifetime is to maximize the number of
tours, which is denoted asT . The actual lifetime isT · D.
The decision variables are how much time the sink stays at
each locationl ∈ L within each tour, denoted bytl, and what
the rate of data transmission from nodei to j should be while
the sink is atl, denoted bya(l)ij , for each node pairi andj. In
an optimal solution, the mobile sink does not necessarily visit
all the sink locations. In that case, we still let the sink visit
such a node; but the time of stay is 0.

In our problem formulation,tl and a
(l)
ij always show up

together in the formtla
(l)
ij . We can definex(l)

ij = tla
(l)
ij to

replacetla
(l)
ij . Clearly, x(l)

ij can be interpreted as the traffic
volume on the link(i, j) when the sink is atl. We will take
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the view of traffic volume in the following discussion1.
In DT-MSM, a sensor node can temporarily delay data trans-

mission and store the data in its local buffer; this is in contrast
to the non-delay-tolerant case, where each sensor node must
not buffer data. The network can deliberately take advantage
of delay tolerance and data buffering as follows. When the
sink is at locationl, it collects data from a set of sensorsRl,
whereRl ⊆ N , through multi-hop communication. The set
Rl is called thecoverageof sink locationl. The nodes from
outsideRl do not attempt to transmit or relay data when the
sink is at locationl. We assumeRl is given for eachl and
∪l∈LRl = N . In a degenerate case, eachRl may be the same
asN .2

Thus, for each locationl, there is a graphGl = (N ∪
{l},Al), whereAl = {(i, j) ∈ A|i ∈ Rl, j ∈ Rl ∪ {l}}.
Recall that when the sink is at locationl, the nodes outside
the coverageRl do not participate in the data transfer process,
and hence, their incoming or outgoing links are not usable for
data transfer. The graphGl contains only those links that are
usable when the sink is at locationl, plus those links from a
sensor node in the coverageRl to location l. When the sink
is at locationl, the (downstream) neighbor set of nodei is
denoted byNl(i) = {j|(i, j) ∈ Al}.

We create an expanded graph from the graphsGl, l ∈ L, and
make the expanded graph into a flow network. As it becomes
clear shortly, the lifetime maximization problem will be a
network flow problem on the expanded graph. In Fig. 1, we
show an example of the expanded graph. Some details about
its construction are as follows.

1) Start each column withGl, for all l ∈ L.
2) Relabel nodei in Gl as i(l).
3) Add a vertexs, which represents the sink.
4) For eachl, replace the edge(i(l), l) with (i(l), s) and

remove nodel from Gl.
5) For eachi(l), l = 1, . . . , L−1, add an edge(i(l), i(l+1)).
6) Set the supply at nodei(1) to beDdi and the demand

at nodes to beD
∑

i∈N di.
The cost of each vertical edge (of the form(i(l), j(l))) is

assigned as follows:

e
(l)
ij =











c(i, j), if i, j ∈ Rl, j 6= s

c(i, l), if i ∈ Rl, j = s

∞, otherwise.

(1)

The cost of each horizontal edge (of the form of(i(l), i(l+1)))
is set to be0, because the head and tail of such an edge are the
same physical node and real communication does not occur.

1Oncex(l)
ij for the link (i, j) is solved, we can assign an arbitrary positive

value totl, as along as
∑|L|

l=1 tl ≤ D, and assigna(l)ij = x
(l)
ij /tl. The root

reason why we can do this is that there is no upper bound on the link rate
a
(l)
ij . If such an upper bound were in our formulations, the situation would

be very different and the problem would become very hard.
2Each Rl will be chosen by the network operator for added flexibility.

Depending on the operator’s preference, eachRl may be as large as the
entire set of the nodes, or alternatively, it may contain only a small number
of nodes around locationl. There are practical reasons why the operator may
prefer the latter arrangement. When the nodes inRl are close to locationl,
any coordination and control can be done faster and with lessoverhead. For
instance, the announcement that the sink is at locationl only needs to be
made to the nodes inRl.
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Fig. 1. Expanded graph of DT-MSM

With the introduction of nodes in the expanded graph, the
definition of Al is modified in a natural way for eachl ∈ L.
The edges of the form(i, l) in the originalAl are replaced
with (i, s). Nl(i) is still defined asNl(i) = {j|(i, j) ∈ Al}
but under the newAl.

We make the following connectivity assumption: For any
sensor nodei ∈ N , there is a path fromi(1) to s in the
expanded graph. This ensures that there is a way to deliver
data from nodei to the sink.

Let x(l)
ij and y

(l)
i be the traffic volume on edge(i(l), j(l))

and (i(l), i(l+1)), respectively. The flow conservation law at
the sensor nodes is as follows.































































∑

j:i∈N1(j)

x
(1)
ji −

∑

j∈N1(i)

x
(1)
ij − y

(1)
i = −D · di,

if l = 1, ∀i ∈ N
∑

j:i∈Nl(j)

x
(l)
ji −

∑

j∈Nl(i)

x
(l)
ij + y

(l−1)
i − y

(l)
i = 0,

if l ∈ {2, . . . , L− 1}, ∀i ∈ N
∑

j:i∈NL(j)

x
(L)
ji −

∑

j∈NL(i)

x
(L)
ij + y

(L−1)
i = 0,

if l = L, ∀i ∈ N .
(2)

These flow conservation equations ensure that at each node,
the total traffic going into a node must be equal to the total
traffic coming out of the node. The first equation in (2)
corresponds to the nodes in the first column in Fig. 1, which
are the source nodes. The second equation is for any node in
the columns2 to L − 1. The third equation is for the nodes
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in the last column.

The interpretation is the following. At the beginning of a
cycle of lengthD time units, nodei has accumulatedDdi
amount of data, which was generated in the previous cycle.
This amount of data must be delivered to the sink by the end
of the current cycle.x(l)

ij is the amount of data sent on edge

(i, j) when the sink is at locationl; y
(l)
i is the amount of

buffered data (i.e., queue size) at nodei just after the sink
leaves locationl. Thus, y(l−1)

i − y
(l)
i is the change in the

buffered data at nodei while the sink is at locationl.

In addition, at the sink (nodes), all arrival traffic must be
drained. Thus, we have

L
∑

l=1

∑

j:s∈Nl(j)

x
(l)
js −

N
∑

i=1

Ddi = 0. (3)

The problem we address in this paper is to maximize the
number of rounds (or cycles),T , made by the mobile sink
while maintaining the flow conservation (2) and (3), subject
to the energy constraints at the sensor nodes. More precisely,
the problem can be written as follows.

max T (4)

s.t. (2), (3) (5)




L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij



T ≤ Ei, ∀i ∈ N (6)

x
(l)
ij ≥ 0, ∀l ∈ L, ∀i ∈ Rl, ∀j ∈ Nl(i) (7)

y
(l)
i ≥ 0, ∀i ∈ N , ∀l ∈ L (8)

T ≥ 0. (9)

Constraints (6) ensure that the total energy expenditure ata
node duringT rounds should be less than or equal to the
node’s initial energy endowment. The above problem can be
easily transformed into a linear programming problem, which
will be shown next.

III. D ECOMPOSITION BY THELAGRANGE METHOD

In this section, we illustrate a distributed algorithm to
solve the problem defined in Section II. The following is
the equivalent linear problem, which is obtained from the
maximization problem of (4) - (9) by replacing1/T with z.
The decision variables are the vectorsx andy and the scalar
z; z is also the optimization objective. For convenience, we
also defineM =

∑N

i=1 Ddi, y
(0)
i = Ddi andy(L)

i = 0 for all
i ∈ N .

min z (10)

s.t.
L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij ≤ zEi, ∀i ∈ N (11)































∑

j:i∈Nl(j)

x
(l)
ji −

∑

j∈Nl(i)

x
(l)
ij + y

(l−1)
i − y

(l)
i = 0,

∀l ∈ L, ∀i ∈ N
L
∑

l=1

∑

j:s∈Nl(j)

x
(l)
js −M = 0

(12)

y
(0)
i = Ddi, y

(L)
i = 0, ∀i ∈ N (13)

x
(l)
ij ≥ 0, ∀l ∈ L, ∀i ∈ Rl, ∀j ∈ Nl(i) (14)

y
(l)
i ≥ 0, ∀i ∈ N , ∀l ∈ {2, 3, . . . , L− 1} (15)

z ≥ 0. (16)

Note thatM is an upper bound of any traffic volume or
any buffered data. We will use the termsflow and volume
interchangeably. The new formulation has the interpretation
that it minimizes the maximum energy consumption among
all nodes in a single round, normalized with respect toEi,
while satisfying flow conservation.

Now, we turn to deriving an algorithm by Lagrangian relax-
ation. Letπ(l)

i andπs be the Lagrange multipliers associated
with the constraints in (12). The Lagrangian function of (10)
is

L(z, x, y, π) = z + πs(

L
∑

l=1

∑

j:s∈Nl(j)

x
(l)
js −M)+

L
∑

l=1

N
∑

i=1

π
(l)
i (

∑

j:i∈Nl(j)

x
(l)
ji −

∑

j∈Nl(i)

x
(l)
ij + y

(l−1)
i − y

(l)
i ),

(17)

whereπ = (π
(l)
i , πs) over i ∈ N , l ∈ L.

After grouping the terms based on the primal variablesx
andy, we get

L(z, x, y, π) = z +
L
∑

l=1

∑

(i,j)∈Al

(π
(l)
j − π

(l)
i )x

(l)
ij +

N
∑

i=1

L−1
∑

l=1

(π
(l+1)
i − π

(l)
i )y

(l)
i −D

N
∑

i=1

(πs − π
(1)
i )di.

(18)

For convenience, we defineπ(l)
s , πs for l = 1, . . . , L,

and these appear in the second term of equation (18). The
Lagrangian dual functionθ(π) is now given by

θ(π) = minL(z, x, y, π) (19)

s.t.
L
∑

l=1

∑

j∈Nl(i)

x
(l)
ij e

(l)
ij − zEi ≤ 0, ∀i ∈ N (20)

x
(l)
ij ≥ 0, ∀l ∈ L, ∀i ∈ N , ∀j ∈ Nl(i) (21)

0 ≤ y
(l)
i ≤ M, 1 ≤ l ≤ L− 1, ∀i ∈ N (22)

z ≥ 0. (23)
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We can decompose the problem (19) - (23) into the following
two subproblems.

S1 : min

N
∑

i=1

L−1
∑

l=1

(π
(l+1)
i − π

(l)
i )y

(l)
i

s.t. 0 ≤ y
(l)
i ≤ M, ∀i ∈ N , 1 ≤ l ≤ L− 1. (24)

S2 : min







z +
L
∑

l=1

∑

(i,j)∈Al

(π
(l)
j − π

(l)
i )x

(l)
ij







s.t. 0 ≤ x
(l)
ij ≤ M, ∀i ∈ N , ∀l ∈ L, ∀j ∈ Nl(i)

L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij − zEi ≤ 0, ∀i ∈ N

z ≥ 0. (25)

Note that we have added the upper boundM to the flow
variablesx andy.

A. Algorithms for Subproblems

The solution for subproblemS1 is shown in Algorithm 1.
If (π

(l+1)
i − π

(l)
i ) is negative, then we assign the largest value

(= M ) to the variabley(l)i . Otherwise,y(l)i should be 0.

Algorithm 1 Solution forS1

if (π
(l+1)
i − π

(l)
i ) ≥ 0 then

y
(l)
i ⇐ 0

else
y
(l)
i ⇐ M

end if

Algorithm 1 can be implemented in a distributed and local
manner. The value ofy(l)i can be decided locally in the sensor
nodei. Also, nodei only needs to have the knowledge ofπj

from its neighbor node setNl(i) for all l ∈ L.
Now, we turn to the subproblemS2. For ease of exposi-

tion, we change the originalS2 to a maximization problem.
Suppose, for the moment,z is fixed at z̄ and definef(z̄) as
follows:

f(z̄) =max







−z̄ +

N
∑

i=1

L
∑

l=1

∑

j:j∈Nl(i)

(π
(l)
i − π

(l)
j )x

(l)
ij







s.t. 0 ≤ x
(l)
ij ≤ M, ∀i ∈ N , ∀l ∈ L, ∀j ∈ Nl(i)

L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij ≤ z̄Ei, ∀i ∈ N .

Let

fi(z̄) =max
L
∑

l=1

∑

j:j∈Nl(i)

(π
(l)
i − π

(l)
j )x

(l)
ij

s.t. 0 ≤ x
(l)
ij ≤ M, ∀l ∈ L, ∀j ∈ Nl(i)

L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij ≤ z̄Ei.

Then,f(z̄) = −z̄ +
∑N

i=1 fi(z̄).
Hence, the maximization problem for findingf(z̄) can be

further decomposed into smaller maximization problems in
which each nodei finds fi(z̄). The problem to findfi(z̄) at
each nodei corresponds to thefractional knapsack problem,
which is solvable in polynomial time [18].

Suppose there areN knapsacks and knapsacki has a weight
capacity of z̄Ei. For knapsacki, we wish to pack items,
denoted by(i, l, j) for j ∈ Nl(i) and l ∈ L. We assume
that each item can be infinitely divisible. Suppose there is a
reward(π(l)

i −π
(l)
j ) when we pack a unit of item(i, l, j). Also,

considere(l)ij as the weight of one unit of item(i, l, j). Recall
that the maximum available amount of an item isM . The profit
of an item(i, l, j) is defined as the reward per unit weight of
that item,(π(l)

i − π
(l)
j )/e

(l)
ij . The fractional knapsack problem

is to select the items to pack subject to the capacity constraint
of the knapsack such that the total reward is maximized.

The solution is listed in Algorithm 2, which greedily packs
the most profitable item among the remaining ones until that
item is exhausted or the knapsack capacity is reached. This
operation stops if all profitable (that is, with a positive profit)
items are packed or the knapsack is full.

Algorithm 2 can be implemented in a distributed and local
manner. A nodei only requires the knowledge ofπ(l)

j of each
neighborj ∈ Nl(i), for all l.

Algorithm 2 Fractional Knapsack (̄z) for Finding fi(z̄)

sort (i, l, j) in the decreasing order of(π(l)
i − π

(l)
j )/e

(l)
ij

U ⇐ z̄Ei

for each of(i, l, j) in the sorted listdo
if (π

(l)
i − π

(l)
j < 0) then

break
else if (U −Me

(l)
ij ) < 0 then

x
(l)
ij ⇐ U/e

(l)
ij

break
else
x
(l)
ij ⇐ M

U ⇐ U −Me
(l)
ij

end if
end for

The tricky part in solving subproblemS2 is how to choose
the right value forz, so that the overall objective function,
f(z), is maximized. Note that eachfi(z) is a concave,
nondecreasing, and piecewise linear function ofz, and hence,
f(z) is a concave and piecewise linear function ofz. We will
search for an optimal solution by increasingz and we only
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need to care about those points that mark the beginning or
end of a linear segment. Letz∗ be the first optimal solution
encountered in the search. To the left ofz∗, the function
f(z) must be increasing (except the trivial case wheref(z)
is identically 0, which can be discovered separately); to the
right, the function is non-increasing. This is also a sufficient
condition for optimality.

Consider the right derivatives of these piecewise linear
functions. Note that the (right) derivative of the functionf(z)
can be written asf ′(z) =

∑

i∈N f ′
i(z) − 1. The optimality

condition is
{

∑

i∈N f ′
i(z) > 1, z < z∗

∑

i∈N f ′
i(z) ≤ 1, z > z∗.

(26)

Also note thatf ′(z) may change only when at least one of
the f ′

i(z) changes. From Algorithm 2, we see thatf ′
i(z) is

determined by the last item packed from the ordered list, asz
is increased toz + ∆z for some small positive∆z. Suppose
this item is(i, j, l). Then,f ′

i(z) = (π
(l)
i − π

(l)
j )Ei/e

(l)
ij . Fur-

thermore, afterf ′
i(z) takes a new value, it may change again

only whenz is incremented byMe
(l′)
ij′ /Ei, where(i, j′, l′) is

the next item on the ordered list.
Hence, the procedure for searchingz∗ is to keep track

of the sequence of points wheref ′(z) may change, which
requires keeping track of the sequence of points where
f ′
i(z) may change, for eachi. Consider a fixedi. Suppose
(π

(l)
i −π

(l)
j )/e

(l)
ij is sorted in decreasing order and suppose any

item (i, l, j) with (π
(l)
i − π

(l)
j ) ≤ 0 is discarded. Starting with

z0 = 0, we can generate a sequencezk = zk−1 +Me
(l)
ij /Ei

iteratively, where(i, j, l) used in the update to getzk is the
kth item in the list. Then,f ′

i(z) can change only at each of
the pointszk.

Algorithm 3 describes an implementation of the above idea
for finding an optimalz∗. For eachi, the arrayPi[ ] records
the sequence ofzk andf ′

i(zk). Algorithm 3 eventually solves
the subproblemS2 by calling Algorithm 2 using the optimal
z∗.

Algorithm 3 Solution forS2

for eachi ∈ N do
sort (i, l, j) in decreasing order of(π(l)

i − π
(l)
j )/e

(l)
ij

discard any item(i, l, j) if (π
(l)
i − π

(l)
j ) ≤ 0

k ⇐ 0; zk ⇐ 0
for each of(i, l, j) in the sorted listdo
zk ⇐ zk +Me

(l)
ij /Ei

Pi[k] ⇐ (zk, (π
(l)
i − π

(l)
j )Ei/e

(l)
ij )

k ⇐ k + 1
end for

end for
find z∗ which satisfies (26) by searching(Pi)i∈N

each nodei applies Algorithm 2 withz∗

The description of Algorithm 3 is ambiguous on how to
make the algorithm distributed and (partially) local. There are
different possibilities. In one version, each nodei executes

what is inside the outer for-loop in parallel, and for that, it re-
quires only local information. After the one-dimensional array
Pi[ ] is computed, nodei can broadcast this array to all other
nodes. After a node collects the complete two-dimensional
array, it can computez∗ by itself. Another possibility is that
each nodei sends the arrayPi[ ] to the sink; the sink computes
z∗ and sends it back to every node, which goes on to execute
Algorithm 2.

B. Main Algorithm

We now combine various algorithms into our main algo-
rithm. We assume that the system operates in a time-slotted
way. The Lagrangian dual problem of (10) is

Dual: max θ(π). (27)

Consider the subgradient projection method to solve problem
(27).3 The update ofπ at each iteration is given by the
following equations.

π
(l)
i (k + 1) = [π

(l)
i (k)− δ(

∑

j∈Nl(i)

x
(l)
ij (k) + y

(l)
i (k)−

∑

j:i∈Nl(j)

x
(l)
ji (k)− y

(l−1)
i (k))]+, ∀i ∈ N , ∀l ∈ L (28)

πs(k + 1) = [πs(k)− δ(M −
L
∑

l=1

∑

(j,s)∈Al

x
(l)
js (k))]

+, (29)

where[b]+ = max{0, b} andδ is a sufficiently small positive
number.4

Our main algorithm is motivated by the subgradient al-
gorithm, but not exactly identical. The standard convergence
results of the subgradient algorithm do not apply. In Section
IV, we will use a different analytical framework to prove the
optimality of the algorithm.

Let δq
(l)
i (k) = π

(l)
i (k). For technical reasons, the upper

bound of the flow variables is modified fromM to M(ǫ) ,
M + NLǫ, where ǫ is a small positive value. We have the
following algorithm.

Main Algorithm

y(k) ∈ argmin{
N
∑

i=1

L−1
∑

l=1

(q
(l+1)
i (k)− q

(l)
i (k))y

(l)
i } (30)

s.t. y
(l)
i ∈ [0,M(ǫ)], i ∈ N , 1 ≤ l ≤ L− 1.

3We briefly describe the subgradient algorithm [19]. Consider a convex
optimization problem:minx∈X f(x), subject togj(x) ≤ 0, j = 1, . . . , r,
where f : R

n → R, gj : R
n → R, for j = 1, . . . , r, are convex

functions, andX ⊆ R
n is a convex and closed set. Let the Lagrangian

function beL(x, µ) = (f(x)+µ′g(x)), whereµ′ is the transpose ofµ. The
dual problem to the above minimization problem ismaxµ≥0 q(µ), where
q(µ) is the dual function defined byq(µ) = minx∈X L(x, µ). Let x(k)
and µ(k) be the primal and dual variables after thek-th iteration of the
algorithm, and letα(k) ≥ 0 be the step size in thek-th iteration. Then,
the subgradient projection algorithm is:x(k) ∈ argminx∈X L(x, µ(k));
µ(k + 1) = [µ(k) + α(k)g(x(k))]+. It can be shown thatg(x(k)) is
a subgradient of the dual functionq(µ) at the pointµ(k). Hence, at each
iteration, the dual variables move in the direction of a subgradient (followed
by projection toRr

+).
4Although there is no non-negativity requirement onπ in the optimization

problem (27), the subgradient algorithm tries to find a non-negative optimal
π, which exists.
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(z(k), x(k)) ∈ argmin{
z

δ
+

L
∑

l=1

∑

(i,j)∈Al

(q
(l)
j (k)− q

(l)
i (k))x

(l)
ij } (31)

s.t. x
(l)
ij ∈ [0,M(ǫ)], i ∈ N , l ∈ L, j ∈ Nl(i)

L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij ≤ zEi, i ∈ N

z ≥ 0

q
(l)
i (k + 1) = [q

(l)
i (k)− (

∑

j∈Nl(i)

x
(l)
ij (k) + y

(l)
i (k)−

∑

j:i∈Nl(j)

x
(l)
ji (k)− y

(l−1)
i (k))]+, ∀i ∈ N , ∀l ∈ L (32)

qs(k + 1) = 0. (33)

Note that (30) and (31) are solved by Algorithms 1 and 3,
respectively, with suitable modification of the notation. We can
considerq(l)i as a virtual queue at nodei(l) in Fig. 1, and (32)
can be understood as the queue dynamic. That is, the queue
length of the node at time slotk+1 is equal to the queue length
at time slotk plus the new arrivals (

∑

j:i∈Nl(j)
x
(l)
ji + y

(l−1)
i )

minus the total service (
∑

j∈Nl(i)
x
(l)
ij +y

(l)
i ). Sinceqs(k+1) =

0, all flow reaching the sink should be drained out.

IV. CONVERGENCEANALYSIS

In this section, we show that our algorithm converges to the
optimal solution and the virtual queues are bounded, both in
the long-run average sense. The analytical technique is in part
borrowed from [17] and [20].

We first define anǫ-perturbed problem to the original
problem in (10) - (16), which will be used later.5 Here, ǫ
is the same small positive constant in the definition ofM(ǫ).

min z (34)

s.t.
L
∑

l=1

∑

j∈Nl(i)

e
(l)
ij x

(l)
ij ≤ zEi, ∀i ∈ N (35)































∑

j:i∈Nl(j)

x
(l)
ji −

∑

j∈Nl(i)

x
(l)
ij + y

(l−1)
i − y

(l)
i = −ǫ,

∀l ∈ L, ∀i ∈ N
L
∑

l=1

∑

j:s∈Nl(j)

x
(l)
js = M +NLǫ

(36)

y
(0)
i = Ddi, y

(L)
i = 0, ∀i ∈ N . (37)

The usual non-negativity constraints of the variables are still
required. In the above problem, we inject extra supply in the

5For ease of presentation, we assumeRl = N for all l ∈ L from now on.
If this is not the case, we need to modify theǫ-perturbed problem as follows.
From the expanded graph, we remove any node that does not havea path to
the sinks. Then, we injectǫ amount of extra supply to each of the remaining
nodes, excepts. Suppose the total number of remaining nodes, excludings,
is K. We change the right hand side of the second equation in (36) from
M +NLǫ to M +Kǫ.

amountǫ at each nodei(l), i ∈ N , l ∈ L. The demand at the
destination nodes is now M + NLǫ, so that there exists a
feasible flow.
Remark: A crucial fact is that any feasible flow to the
perturbed problem still satisfiesy(l)i ∈ [0,M(ǫ)], i ∈ N , 1 ≤

l ≤ L − 1; x
(l)
ij ∈ [0,M(ǫ)], i ∈ N , l ∈ L, j ∈ Nl(i);

∑L

l=1

∑

j∈Nl(i)
e
(l)
ij x

(l)
ij ≤ zEi, i ∈ N ; and z ≥ 0. Hence,

the vectory is feasible to the optimization problem in (30),
and (z, x) is feasible to the problem in (31).

In the following lemma, we discuss some useful properties
of the optimal objective value function of theǫ-perturbed prob-
lem. For simplicity of discussion, we consider the standard
linear programming problem:

(P ) min cTx

s.t.Ax = d

x ≥ 0.

In the problem (P (ǫ)) below, the right hand side of the
equality constraint in(P ) is perturbed byǫ along the direction
∆d.

(P (ǫ)) min cTx

s.t.Ax = d+ ǫ∆d

x ≥ 0. (38)

Suppose problem(P ) is feasible and problem(P (ǫ)) is
feasible forǫ ∈ [0, ǫo], whereǫo is a positive constant. Let
f∗ andf∗(ǫ) be the optimal objective values for problem(P )
and (P (ǫ)), respectively, whereǫ ∈ [0, ǫo].

Lemma 1. f∗(ǫ) is continuous, convex, and piecewise linear
on [0, ǫo].

Proof: Let (D) be the dual linear problem of(P ).

(D) max dTπ

s.t.ATπ ≤ c,

where π is the dual variable associated with the equality
constraint of(P ). Similarly, the dual problem for(P (ǫ)) is:

(D(ǫ)) max (d+ ǫ∆d)Tπ

s.t.ATπ ≤ c.

Note that the set of feasible solutions for(D(ǫ)) is the same
as that for(D). Let D denote this set, which does not depend
on ǫ. By strong duality [21], we know thatf∗(ǫ) = max{(d+
ǫ∆d)Tπ|π ∈ D} for ǫ ∈ [0, ǫo]. For anyǫ ∈ [0, ǫo], the optimal
objective value can be obtained at one of the extreme points
of D. Let Ω be the set of extreme points ofD, which is a
finite set. Hence,f∗(ǫ) = max{(d + ǫ∆d)Tπ|π ∈ Ω}. For
eachπ ∈ Ω, (d+ ǫ∆d)Tπ is a linear function ofǫ. Therefore,
f∗(ǫ) = max{(d+ ǫ∆d)Tπ|π ∈ D} is a continuous, convex,
and piecewise linear function ofǫ on [0, ǫo] [22].

Let ǫo be the largestǫ for which the perturbed problem (34)
- (37) is feasible.

Therorem 2. Let ẑ(ǫ) be the optimal value for the problem
in (34) - (37), whereǫ ∈ [0, ǫo], and z∗ be the optimal value
for the unperturbed problem. Then,ẑ(ǫ) → z∗ as ǫ → 0.
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Proof: This is a direct consequence of Lemma 1.
Next, we want to prove our algorithm converges to the

optimal objective value in the time average sense. Let us
define a Lyapunov function of the queues byV (q) =
∑

i∈N

∑

l∈L(q
(l)
i )2. Let ∆(k) , V (q(k + 1)) − V (q(k)),

which is known as the Lyapunov drift.

Lemma 3. There exists a positive constantB such that for
any ǫ ∈ [0, ǫo] and anyδ > 0, the following condition holds
for any time slotk and for anyq(k),

∆(k) +
2

δ
z(k) ≤

B +
2

δ
ẑ(ǫ)− 2ǫ

∑

l∈L

∑

i∈N

q
(l)
i ,

(39)

where ẑ(ǫ) is part of an optimal solution of theǫ-perturbed
problem.

Proof: By squaring (32) and arranging it, we get

(q
(l)
i (k + 1))2 − (q

(l)
i (k))2 ≤ g2(i, l, k)− 2q

(l)
i (k)g(i, l, k),

(40)

where

g(i, l, k) ,
∑

j∈Nl(i)

x
(l)
ij (k)−

∑

j:i∈Nl(j)

x
(l)
ji (k) + y

(l)
i (k)− y

(l−1)
i (k).

Note that g(i, l, k) ≤ NM because
∑

j∈Nl(i)
x
(l)
ij (k) ≤

(N − 1)M andy(l)i (k) ≤ M for all i, l, andk.

Summing the inequality in (40) over alll and i, we have

L
∑

l=1

N
∑

i=1

[

(

q
(l)
i (k + 1)

)2

−
(

q
(l)
i (k)

)2
]

≤
∑

l,i

g2(i, l, k)− 2
∑

l,i

q
(l)
i (k)g(i, l, k)

≤LN3M2 + 2
∑

l,i

q
(l)
i (k)



−
∑

j∈Nl(i)

x
(l)
ij (k)+

∑

j:i∈Nl(j)

x
(l)
ji (k)− y

(l)
i (k) + y

(l−1)
i (k)





=B − 2
L
∑

l=1

∑

(j,s)∈Al

q
(l)
j (k)x

(l)
js (k)

+ 2

L
∑

l=1

∑

(i,j)∈Al;j 6=s

(

q
(l)
j (k)− q

(l)
i (k)

)

x
(l)
ij (k)

+ 2

N
∑

i=1

L−1
∑

l=1

(

q
(l+1)
i (k)− q

(l)
i (k)

)

y
(l)
i (k)

+ 2

N
∑

i=1

q
(1)
i (k)y

(0)
i (k), (41)

whereB , LN3M2. (41) is obtained by regrouping the terms
based on variablesx and y. Note that the third term on the

right hand of (41) excludes the links to the sink. Adding
2qs(k)(

∑

l

∑

(j,s)∈Al x
(l)
js (k)) = 0 to (41) and also using the

fact y(0)i (k) = Ddi, we have

∆(k) ≤B + 2

N
∑

i=1

q
(1)
i (k)Ddi

+ 2
∑

l

∑

(i,j)∈Al

(

q
(l)
j (k)− q

(l)
i (k)

)

x
(l)
ij (k)

+ 2

N
∑

i=1

L−1
∑

l=1

(

q
(l+1)
i (k)− q

(l)
i (k)

)

y
(l)
i (k).

(42)

Note that the second term now includes the links to the sink.
Adding (2/δ)z(k) to both sides of inequality (42), we get

∆(k) +
2

δ
z(k) ≤ B + 2

N
∑

i=1

q
(1)
i (k)Ddi

+2







z(k)

δ
+
∑

l

∑

(i,j)∈Al

(q
(l)
j (k)− q

(l)
i (k))x

(l)
ij (k)







+ 2
N
∑

i=1

L−1
∑

l=1

(

q
(l+1)
i (k)− q

(l)
i (k)

)

y
(l)
i (k)

≤ B + 2

N
∑

i=1

q
(1)
i (k)Ddi

+2







ẑ(ǫ)

δ
+
∑

l

∑

(i,j)∈Al

(q
(l)
j (k)− q

(l)
i (k))x̂

(l)
ij (ǫ)







+ 2

N
∑

i=1

L−1
∑

l=1

(

q
(l+1)
i (k)− q

(l)
i (k)

)

ŷ
(l)
i (ǫ), (43)

In (43), (ẑ(ǫ), x̂(ǫ), ŷ(ǫ)) is an optimal solution of theǫ-
perturbed problem defined in (34) - (37). Based on the earlier
remark,ŷ(ǫ) is feasible to the optimization problem in (30),
and (ẑ(ǫ), x̂(ǫ)) is feasible to (31). But,y(k) is a minimum
to the optimization problem in (30), and(z(k), x(k)) is a
minimum to (31). Hence, inequality (43) follows.

After regrouping the terms in (43) and using (37), we have

∆(k) +
2

δ
z(k) ≤ B +

2

δ
ẑ(ǫ)+

2
∑

l∈L
i∈N

q
(l)
i (k)(

∑

j

x̂
(l)
ji (ǫ)−

∑

j

x̂
(l)
ij (ǫ)− ŷ

(l)
i (ǫ) + ŷ

(l−1)
i (ǫ))

= B +
2

δ
ẑ(ǫ)− 2ǫ

∑

l∈L

∑

i∈N

q
(l)
i (k). (44)

In (44), the flow conservation constraint (36) is used.
Define Q(k) =

∑L

l=1

∑

i∈N q
(l)
i (k), which is the sum of

the virtual queue sizes at time slotk.

Therorem 4. There exists a positive constantB such that for
any ǫ ∈ (0, ǫo] and anyδ > 0, the following holds.

lim sup
T→∞

1

T

T−1
∑

k=0

z(k) ≤
δB

2
+ ẑ(ǫ), (45)
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lim sup
T→∞

1

T

T−1
∑

k=0

Q(k) ≤
B

2ǫ
+

1

δǫ
ẑ(ǫ). (46)

Proof: Summing the inequality in (39) fork =
0, 1, · · · , T − 1, we have

V (q(T ))− V (q(0)) +
2

δ

T−1
∑

k=0

z(k) ≤ BT +
2

δ
T ẑ(ǫ)

−2ǫ

T−1
∑

k=0

Q(k)

(47)

After arranging the terms, we get

1

T

T−1
∑

k=0

z(k) ≤
δB

2
+ ẑ(ǫ)

−
δǫ

T

T−1
∑

k=0

Q(k)−
δV (q(T ))

2T
+

δV (q(0))

2T

≤
δB

2
+ ẑ(ǫ) +

δV (q(0))

2T
. (48)

After taking the limit inT , we get (45).
Next, from (47), we have

2ǫ

T−1
∑

k=0

Q(k)

≤ BT +
2T

δ
ẑ(ǫ) + V (q(0)) − V (q(T ))−

2

δ

T−1
∑

k=0

z(k)

≤ BT +
2T

δ
ẑ(ǫ) + V (q(0)). (49)

The above inequality is the same as

1

T

T−1
∑

k=0

Q(k) ≤
B

2ǫ
+

1

δǫ
ẑ(ǫ) +

V (q(0))

2T ǫ
. (50)

After taking the limit inT , we get (46).
Let (x∗, y∗, z∗) be an optimal solution to the original

problem in (10) - (16). Note thatz∗ is also the optimal
objective value.

Therorem 5. There exists a positive constantB such that for
any positiveδ, the following holds.

lim sup
T→∞

1

T

T−1
∑

k=0

z(k) ≤
δB

2
+ z∗, (51)

lim sup
T→∞

1

T

T−1
∑

k=0

Q(k) ≤
B

2ǫo
+

1

δǫo
ẑ(ǫo) (52)

Proof: In (45), letǫ → 0. Since by Theorem 2,̂z(ǫ) → z∗

as ǫ → 0, we get (51).
By Theorem 5, we can takeδ small enough so that the

long-time average ofz(k) is arbitrarily close to the optimum
z∗. But, this is at the expense of an increase in the provable
queue bound.
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Fig. 2. Convergence to the optimal value,z∗

V. EXPERIMENTAL RESULTS

In this section, we present the results of the simula-
tion/numerical experiments to verify the validity of our algo-
rithm. First, we show that our algorithm achieves the optimal
objective value for the problem in (10) - (16). Then, we show
how the Lyapunov drift and the queue size evolve.

For the experiments, we randomly place 50 sensor nodes
in a circular region with a radius 25m. We also generate 6
sink locations in the same region for the mobile sink to visit.
The cost of transmitting one bit of data between two nodes
depends on the distance between them as in the first order
radio model [23]:

c(i, j) = βd(i, j)2, (53)

whereβ = 100 pJ/bit/m2 [23]. The data generation rate of
each node is randomly selected from[0, 500] bps and each
node has 500J of initial energy.

Transmission can only occur within a limited range, which
is assumed to be 7.5m. For the algorithm, we useδ = 10−8

andǫ = 10−8.
Fig. 2 shows the convergence result of our algorithm to

the primal optimal value. As a reference, the optimal solution
of the primal problem (10) - (16) is obtained by the CPLEX
linear programming solver. The curve labeled asz̄(k) is the
time average value ofz(k) at iterationk. Fig. 2 verifies the
first part of our main theorem, Theorem 5.

We also measure the Lyapunov drift,∆(k) = V (q(k+1))−
V (q(k)), at every iteration. As expected by Lemma 3, we can
observe that the drift is bounded from above.

Fig. 4 shows the time averaged value of the total queue size,
∑

l

∑

i

q
(l)
i . By the second part of Theorem 5, this value is

bounded from above, which is verified here.

VI. CONCLUSION

In this paper, we propose an algorithm for maximizing the
WSN lifetime when there is a mobile sink and the underlying
application can tolerate some degree of delay in deliveringthe
data to the sink. Although known linear or convex optimization



10

-2.0*1011

-1.0*1011

 0.0*100

 1.0*1011

 2.0*1011

 3.0*1011

 4.0*1011

 5.0*1011

 1.4*107  1.5*107  1.5*107  1.6*107  1.6*107

∆(
q(

k)
)

iteration (k)

∆(q(k))

Fig. 3. Lyapunov drift of the algorithm over time
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Fig. 4. Time average of total virtual queue size over time

algorithms may be able to solve the lifetime optimization
problem using a centralized solver, our goal is to develop a
distributed, and preferably, local algorithm. Such an algorithm
can be implemented by parallel and/or distributed execution
and the overhead of message passing is low. It is also possible
to embed the algorithm into a network protocol so that the
sensor nodes and the sink can run it directly as part of the
network operation.

Whether it is possible to find such an algorithm for an
arbitrary problem depends on the specific structure of the
problem. The breakthrough in our work is to recognize our
problem as a network flow problem on an expanded graph.
Then, we modify a standard subgradient algorithm for the net-
work flow problem and make it into a distributed algorithm. In
addition, the resulting algorithm mostly uses local information
for execution and control.

The resulting algorithm is not a conventional optimization
algorithm because its optimality is in the long-run average
sense. The results and the analytical techniques from the
standard optimization theory do not apply. We give a proof of
the algorithm’s optimality and the boundedness of the queue
sizes based on analyzing a Lyapunov drift.

Finally, we discuss several possible future research direc-
tions. First, our algorithm currently uses virtual queue sizes
and other virtual quantities, such as virtual traffic volumes, for
control. To make it more like an adaptive network algorithm,
it is desirable to incorporate real queue sizes and real traffic
volumes into the algorithm. This will allow the nodes to
send real traffic while the algorithm is being executed. One
next step of research is to make such a modification and
analyze the stability and optimality of the modified system.
Second, it may be possible to derive simpler, sub-optimal
or heuristic algorithms based on the insights gained from
studying the optimal algorithm in this paper. These heuristics
can be evaluated and compared with the optimal one under
more comprehensive evaluation criteria, including various
engineering costs. Third, the problem formulation can be
incrementally enriched to reflect additional constraints or cost
considerations. Examples include models in which the sink
traveling time is non-negligible or the sink locations become
additional decision variables. These new problems are usually
much more difficult to solve optimally. Deriving heuristic
algorithms in a principled way, as advocated above, may be a
good strategy to meet the challenge.
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