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Abstract—Efficient link scheduling in a wireless network is
challenging. Typical optimal algorithms require solving an NP-
hard sub-problem. To meet the challenge, one stream of research
focuses on finding simpler sub-optimal algorithms that have low
complexity but high efficiency in practice. In this paper, we study
the performance guarantee of one such scheduling algorithm,
the Longest-Queue-First (LQF) algorithm. It is known that the
LQF algorithm achieves the full capacity region, Λ, when the
interference graph satisfies the so-called local pooling condition.
For a general graph G, LQF achieves (i.e., stabilizes) a part of
the capacity region, σ∗(G)Λ, where σ∗(G) is the overall local
pooling factor of the interference graph G and σ∗(G) ≤ 1. It
has been shown later that LQF achieves a larger rate region,
Σ∗(G)Λ, where Σ∗(G) is a diagonal matrix. The contribution of
this paper is to describe three new achievable rate regions, which
are larger than the previously-known regions. In particular, the
new regions include all the extreme points of the capacity region
and are not convex in general. We also discover a counter-
intuitive phenomenon in which increasing the arrival rate may
sometime help to stabilize the network. This phenomenon can be
well explained using the theory developed in the paper.

Index Terms—Wireless Networks Scheduling, Longest Queue
First Policy, Stability, Local Pooling, Interference

I. INTRODUCTION

One of the long-standing challenges for wireless networks
is how to utilize the communication medium efficiently when
links interfere with each other. This paper is primarily con-
cerned with an interference model called the protocol model,
where two wireless links that interfere with each other are
prohibited to transmit data simultaneously [1], [2], [3]. For
the protocol model, a scheduling algorithm strives to select a
set of non-interfering links for transmission in every time slot.

Finding efficient schedules can be very difficult. Tassiulas
and Ephremides [4] showed that if the queue sizes for the
links (which are nodes in the interference graph) are viewed
as weights and a maximum weight independent set (MWIS) of
the interference graph is selected as the schedule in each time
slot, then the queues of the wireless network can be stabilized
for any arrival rate vector inside the capacity region. However,
finding an MWIS is NP-hard in general. Even under the more
restricted k-hop interference model, finding an MWIS is still
NP-hard for k ≥ 2 [5], [3]. For the 1-hop interference model,
the problem of finding an MWIS reduces to maximum weight
matching and the complexity is O(|V |3), where |V | is the
number of wireless links [6]. Hence, scheduling using MWIS
is inapplicable to large networks.

To reduce the complexity, some simple sub-optimal schedul-
ing algorithms have been introduced [7], [8], [9], [10], [11],
[12], [13]. The Longest Queue First (LQF, also known as the
greedy maximal schedule) policy is recognized for its high
performance in practice [6]. The LQF schedule chooses links
in a decreasing order of the queue sizes while conforming
to the interference constraints. Dimakis and Walrand showed
that the LQF algorithm achieves (stabilizes) the entire interior
of the capacity region, Λ, when the interference graph G
satisfies the so-called overall local pooling condition [14].
For general cases, Joo et al. introduced a parameter called
the overall local pooling factor, denoted by σ∗(G), where
0 < σ∗(G) ≤ 1, based on the topology of the interference
graph G; they showed the LQF algorithm achieves a subset of
the capacity region, σ∗(G)Λ [6]. Several other authors studied
how to check the local pooling condition or estimate σ∗(G)
for specific graphs [15], [16], [17].

A single-parameter performance characterization of LQF
suggests a uniform rate reduction on the links. However,
it is possible that the links are subject to heterogeneous
interference relations and some links can perform better than
others. To capture the performance heterogeneity, a multiple-
parameter characterization of the stabilizable region by LQF
was established in [18]. It was shown that LQF can achieve a
larger rate region, Σ∗(G)Λ, where Σ∗(G) is a diagonal matrix.
Each diagonal entry of Σ∗(G) corresponds to a link and it
summarizes the link’s interference constraints.

Even this multiple-parameter characterization of LQF un-
derestimates the stability region. For instance, it excludes some
parts of the capacity region that are obviously stabilizable
by LQF. To progress further toward complete performance
characterization, there is a need to go beyond the current
framework of linear transformations on the capacity region.
The goal of this study is to establish such a “non-linear”
framework and expand our knowledge about the achievable
rate region by LQF. The main contribution is to describe three
new achievable rate regions (Ω, ∆C and ∆R), which are all
larger than the previously-known regions. More precisely, we
show that Σ∗(G)Λ ⊆ Ω and Ωo ⊆ ∆C ⊆ ∆R. Furthermore,
the closures of the new regions include all the extreme points
of the capacity region and are not convex in general. This is
in contrast to previously-known regions of stability, which are
all convex and, in general, exclude some extreme points of
the capacity region because they each are derived by reducing
the capacity region through a linear transformation. We show
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that the new regions of stability (or their closures) are convex
if and only if they are identical to the capacity region itself.
The result implies that, when LQF cannot achieve the full
capacity region, the largest achievable region, which is yet to
be discovered, cannot be convex.

The characterization of the LQF performance has been
substantially improved with these new stability regions. For
instance, we have found that, for an arbitrarily large k > 0,
there are cases where an arrival rate vector λ is outside
all the previously-known stability regions but kλ is in Ω.
In other words, the previously-known stability regions can
underestimate the performance of LQF by an arbitrarily large
factor in certain cases, whereas the new regions can avoid such
poor estimates.

The study has also yielded an interesting, counter-intuitive
finding that increasing the arrival rates may sometime help to
stabilize the network. We have discovered an example where
a rate vector achievable by LQF point-wise dominates another
rate vector not achievable by LQF. It turns out the former
vector is in the stability region ∆C whereas the latter is not.

We next summarize the key ideas of the paper. Our theory is
developed based on considering the fluid limit of an unstable
network. A typical scenario is that the maximum queue size
has an overall trend to grow indefinitely, which requires that, at
some time t, a subset of the current longest queues continues
to grow. From the set of the longest queues at time t, there is
a subset that grows at the fastest rate and remains the longest
in the next infinitesimal time interval. Denote this subset by S.
Under LQF, the queues in S will be served with priority in the
next small time interval, which implies that the average service
rate vector, when restricted to S, comes from the convex hull
of the maximal schedules with respect to S. This convex hull
is denoted by Co(MS). For the queues in S, the arrival rates
must be larger than the service rates. The discussion motivates
the definition of a strictly dominating vector for a queue set S,
which is a vector λ, when restricted to S, strictly dominating
at least one vector in Co(MS). After removing the union of
the strictly dominating vectors, where the union is over all
possible subsets of the queues, we get Ω.

Key to the development about ∆C is a refinement to the
notion of strictly dominating vectors, which is called uniformly
dominating vectors. For the aforementioned queue set S, the
arrival rates not only must be larger than the service rates, but
also larger by the same amount, so that the queues in S grow
at the same rate. The removal of all the uniformly dominating
vectors gives ∆C . Although the closure of ∆C contains Ω,
there is value in studying and reporting the results about both
regions. First, the theory about Ω provides building blocks
for proving some of the results about ∆C . Second, Ω appears
to be well connected to the notion of local pooling in [14],
thus, providing some continuity in the theoretical development,
whereas ∆C does not appear so.

For i.i.d. and mutually independent arrival processes with
a given arrival rate vector, Dimakis and Walrand pointed
out that whether the arrival processes have zero or non-zero
variances may lead to significantly different stability behavior
(the former is the case of deterministic arrivals with constant
rates) [14]. They established a queue separation result for the

case of non-zero variances and developed a rank condition that
leads to queue separation. We generalize the rank condition.
Then, we extend ∆C to a larger stability region ∆R for the
case of non-zero variances. We also show the closures of ∆C

and ∆R are the same.
Finally, we relate the problems of finding stability condi-

tions under LQF to several problems in the fractional graph
theory [19]. The latter provide tools for studying the stability
regions introduced by the paper and for characterizing the set
σ-local pooling factor given in [18].

The rest of the paper is organized as follows. In Section II,
we specify the models and notations. In Sections III and IV,
we introduce the Ω and ∆ (∆C and ∆R) regions, respectively.
In Section V, we introduce the fractional coloring and related
problems that are relevant to the study of the stability regions.
In Section VI, we give some simulation results to confirm
aspects of the theory. The conclusion is given in Section VII.

II. PRELIMINARIES

In our model, a wireless network is represented by an undi-
rected interference (or conflict) graph G = (V,E), where the
node set V represents the set of physical, wireless links in the
network and the edge set E represents the interference relation
among the physical links. Two nodes in G are connected with
an edge whenever the physical links they represent interfere
with each other.1 We assume the node set V is arbitrarily
indexed from 1 to |V |, and hence, V can be written as
V = {1, . . . , |V |}.

Given a subset of nodes S ⊆ V , we denote GS = (S,L)
to be the subgraph of G induced by the nodes in S. In other
words, an edge (u, v) belongs to L if and only if u, v ∈ S
and (u, v) ∈ E.

We assume a time-slotted system. The capacity of each
wireless link is normalized to 1 per time slot. There is a
queue associated with each wireless link at the transmitter. We
assume single-hop traffic. Traffic arrives at the transmitter side
of a link, joining the queue and waiting for transmission; after
transmission, it leaves the network. Throughout, we assume
i.i.d. arrival processes to the queues. It is easy to see that, under
the LQF schedule with either deterministic or typical random
tie-breaking rules, the joint queue process is Markovian. By
stability, we mean the Markov process is positive recurrent2.
To come up with the ∆R region, we further assume the arrival
processes are mutually independent across the queues.

A schedule is denoted by a |V |-dimensional 0-1 vector,
where a value 1 in an entry indicates the corresponding link
is active and 0 otherwise. A schedule is feasible if and only
if the links that are active do not interfere with each other. A
feasible schedule is said to be maximal if no additional links
can be activated without violating the interference constraints.
Therefore, every feasible schedule is an independent set of G
and every maximal schedule is a maximal independent set of
G.

1All the graphs in this paper are interference graphs, unless specified
otherwise.

2Without loss of generality, we assume the Markov Chain is irreducible.
See [4] for general cases.
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For the graph G = (V,E), let MV denote the set of all the
maximal schedules and let Co(MV ) denote the convex hull of
all the maximal schedules. When relevant, we also consider
MV to be the matrix whose columns are all the maximal
schedules, with arbitrary indexing of the schedules. Similarly,
for a node-induced subgraph GS = (S,L), let MS be the set
(or matrix) representing all the maximal schedules of GS and
let Co(MS) be the convex hull of all the maximal schedules
in MS .

The capacity region Λ of a network is defined as the set of
arrival rate vectors that are supportable by time sharing of the
feasible schedules. Equivalently,

Λ = {λ | 0 ≤ λ ≤ µ for some µ ∈ Co(MV )}. (1)

For a non-empty subset of nodes S ⊆ V , the capacity region
is defined analogously by replacing Co(MV ) with Co(MS)
in (1) and is denoted by ΛS . In the above, λ ≤ µ means that
vector λ is component-wise less than or equal to vector µ. The
interior of the capacity region is defined as

Λo ={λ |0 ≤ λ < µ for some µ ∈ Co(MV )}. (2)

The interior of the capacity region can be stabilized by the
MWIS schedule and any rate vector outside the capacity region
cannot be stabilized by any schedule [4].

Given a |V |-dimensional vector λ, the |S|-dimensional
vector [λ]S represents the restriction of λ to the set S ⊆ V .
That is, [λ]S contains only those components of λ which
correspond to the nodes in S.

For a vector µ whose entry index set corresponds to a node
set, let µl or µ(l) denote the component associated with l ∈ V .
Note that, if µ ∈ R|V |+ , then the notation indicates the lth
component of µ. However, if µ ∈ R|S|+ for some non-empty
S ⊆ V , then for l ∈ S, µl or µ(l) is not necessarily the lth
component of µ. If µ is any other type of vector, µi denotes
the ith component of µ.

We use e to represent the vector (1, 1, . . . , 1)′. The dimen-
sion of the vector e depends on the context.

The capacity region for the whole graph and the capacity
region for the subset S ⊆ V has the following relationship.

Lemma 1: An arrival rate vector λ ∈ Λ if and only if for
all non-empty S ⊆ V , [λ]S ∈ ΛS . Likewise, λ ∈ Λo if and
only if for all non-empty S ⊆ V , [λ]S ∈ ΛoS .

Proof: Suppose λ ∈ Λ. Then, λ ≤ µ for some µ ∈
Co(MV ). It is easy to see that, for any non-empty subset
S ⊆ V , there must exist a vector ν ∈ Co(MS) such that
[µ]S ≤ ν. Then, [λ]S ≤ ν. Hence, [λ]S ∈ ΛS . The other
direction is true by taking S = V . The last statement of the
lemma can be proved similarly.

Throughout, in the statements about rate regions that involve
topological concepts such as open/close sets and the interior
of a set, the space is assumed to be the set of non-negative real
vectors, R|V |+ . Also, in the set-complement operation for any
rate region, the whole set is understood to be the non-negative
real vectors. For a set Y ⊆ R|V |+ , we let Y o and Y c denote
the interior and complement of Y , respectively.

In the LQF schedule, the links with longer queues are
activated at a higher priority than those with shorter queues,

subject to the interference constraints. The following may be
considered as a reference implementation of this schedule.
First, one of the links with the longest queue is selected to
be in the schedule; ties are broken with either an arbitrary
deterministic rule or randomly. All links that interfere with the
selected link are removed from further consideration. Then, the
same selection process repeats over the remaining links yet to
be considered until no links remain to be considered.
Remark: The following is the key mathematical property
about LQF that is used throughout. Suppose, at time t, a non-
empty set S ⊆ V dominates V − S in the sense that, for any
i ∈ S and any j ∈ V − S, the queue size of i is greater than
that of j. Then, the schedule used at t must be maximal when
restricted to S (i.e., with respect to GS).

III. STABILITY REGION Ω UNDER LQF
In this section, we introduce a notion of strictly dominating

vectors and construct a region denoted by Ω based on this
notion. The Ω region is larger than σ∗(G)Λ and Σ∗(G)Λ,
which have previously been shown to be stabilizable by
the LQF policy [6], [18]. Unlike those previously-discovered
regions of stability, the Ω region includes all the extreme points
of Λ and is not convex in general.

A. Review of Set, Link and Overall σ-local Pooling
Set σ-local pooling has been studied in [18]. It has many

interesting properties and is related to (overall) σ-local pooling
defined in [6].

Definition 1: Given a non-empty set of nodes S ⊆ V , the
set σ-local pooling factor for S, denoted by σ∗S , is given by

σ∗S = sup{σ | σµ ≯ ν, for all µ, ν ∈ Co(MS) } (3)
= inf{σ | σµ > ν, for some µ, ν ∈ Co(MS) }. (4)

It has been shown that the set σ-local pooling factor is equal
to the optimal value of the following problem [18].

σ∗S = min
σ,µ,ν

σ, subject to σµ ≥ ν, µ, ν ∈ Co(MS). (5)

The link σ-local pooling factor is defined as follows.
Definition 2: The local pooling factor of a link l ∈ V ,

denoted by σ∗l , is given by

σ∗l = sup{σ|σµ ≯ ν for all S ⊆ V such that l ∈ S, and all
µ, ν ∈ Co(MS)} (6)

= inf{σ|σµ > ν for some S ⊆ V such that l ∈ S, and some
µ, ν ∈ Co(MS)}. (7)

Comparing the definitions of σ∗S and σ∗l , we have

σ∗l = min
{S⊆V | l∈S}

σ∗S . (8)

The overall σ-local pooling factor of the graph G = (V,E) is

σ∗(G) = min
l∈V

σ∗l .

Let the diagonal matrix Σ∗(G) be defined by Σ∗(G) = diag
(σ∗l )l∈V . It has been shown that σ∗(G)Λ and Σ∗(G)Λ are
both regions of stability under LQF [6] [18], with the latter
containing the former.
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B. Strictly Dominating Vectors and Ω Region

We first discuss some intuition that leads to the construction
of the Ω region. When the network is unstable, a typical situa-
tion is that the size of the longest queues has an overall trend of
increase, if one ignores the short-time fluctuations. This would
not have occurred if, for any subset S ⊆ V , the arrival rate is
strictly less than the service rate at each node in S. Imagine
S is the set of nodes with the longest queues for an extended
period of time. Then, over that period of time, the schedule on
each time slot must be maximal when restricted to S and, by
time sharing of such maximal schedules, the (average) service
rate vector must be in Co(MS). The discussion motivates us
to define the notion of strictly dominating vectors for a subset
of the nodes.

Definition 3: Given a non-empty node set S ⊆ V , a vector
λ ∈ R|V |+ is a strictly dominating vector of S if [λ]S > ν for
some ν ∈ Co(MS). The region composed with all the strictly
dominating vectors of S is called the strictly dominating region
of S and is denoted by ΠS . That is,

ΠS = {λ ∈ R|V |+ | [λ]S > ν, for some ν ∈ Co(MS)}.

For convenience, if S = ∅, we assume ΠS = ∅.
We are often interested in the complement of ΠS :

Πc
S ={λ ∈ R|V |+ | [λ]S ≯ ν, for all ν ∈ Co(MS)}

={λ ∈ R|V |+ | for every ν ∈ Co(MS), there exists l ∈ S
such that λ(l) ≤ ν(l)}.

Definition 4: The Ω region is defined by

Ω =
⋂
S⊆V

Πc
S .

Remark. A vector λ is outside Ω if and only if λ ∈ ΠS

for some non-empty node set S. Also, when restricted to the
components corresponding to the nodes in S, ΠS is an open
set (it is a union of open sets). Hence, Ω is a closed set. It
can also be helpful to think Ω = (

⋃
S⊆V ΠS)c.

Lemma 2: Suppose an arrival rate vector λ satisfies λ ∈ Ωo.
Then, for any non-empty subset S ⊆ V and any ν ∈ Co(MS),
there exists l ∈ S such that λ(l) + εo < ν(l), where εo > 0 is
a constant independent of S, ν and l.

Proof: Since λ ∈ Ωo, we have λ+ ε̂e ∈ Ω for some small
enough ε̂ > 0. Suppose the conclusion of the lemma is not
true. That is, suppose for any ε > 0, there exists a non-empty
subset S ⊆ V and ν ∈ Co(MS) such that λ(l) + ε ≥ ν(l)
for all l ∈ S. We can choose ε satisfying 0 < ε < ε̂. Then,
[λ+ ε̂e]S > [λ+εe]S ≥ ν. Hence, λ+ ε̂e ∈ ΠS , which implies
λ+ ε̂e 6∈ Ω by Definition 4, leading to a contradiction.

C. Performance Guarantee of LQF in Ω Region

Therorem 3: If an arrival rate vector λ satisfies λ ∈ Ωo,
then, the network is stable under the LQF policy.

The full proof requires replicating most of the arguments
in [14]. In the following, we only highlight the part of the
argument that needs modification.

Sketch of Proof: Consider the fluid limit of the queue
processes, denoted by {ql(t)}t≥0 for all l ∈ V (see [14] [20]).
For a fixed (and regular) time instance t, let S be the set of
those longest queues whose time derivatives at t, q̇l(t), are
the largest under a given LQF policy instance. The queues in
S will remain the longest with identical length in the next
infinitesimally small time interval.

The service rate vector, when restricted to S, must belong
to the set Co(MS). Roughly, this is because S contains all the
queues that are the longest and remain the longest in the near
future, and hence, as remarked earlier, every LQF schedule
being used must be a maximal schedule when restricted to S.

Now imagine ν is the service rate vector for the nodes in
S at time t. Since λ ∈ Ωo, by Lemma 2, there exists a link
l ∈ S such that λ(l) + εo < ν(l) for some constant εo > 0.
Then, ν(l)− λ(l) > εo. Hence, at any time instance, each of
the longest queues decreases at a positive rate no less than εo.
This is sufficient to conclude that the original queueing process
is a positive recurrent Markov process (see [20]), which means
the queues are stable.

Next, we show Ω contains the previously-known regions of
stability for LQF.

Lemma 4: The following holds: Σ∗(G)Λ ⊆ Ω.
Proof: Consider any vector λ ∈ Σ∗(G)Λ. Let S ⊆ V

be an arbitrary non-empty node set. Let n ∈ arg maxk∈S σ
∗
k.

Since λ ⊆ Σ∗(G)Λ, by Lemma 1 and (8), [λ]S ∈ σ∗nΛS ⊆
σ∗SΛS . Then, there exists a vector µ ∈ ΛS such that [λ]S ≤
σ∗Sµ. According to Definition 1, σ∗Sµ 6> ν for any ν ∈
Co(MS). Hence, [λ]S 6> ν for any ν ∈ Co(MS), implying
λ ∈ Πc

S . Since S is chosen arbitrarily, λ ∈
⋂
S⊆V Πc

S = Ω by
Definition 4.

D. Shape of Ω Region
The previously-known regions of stability under LQF, such

as Σ∗(G)Λ, are derived by reducing the capacity region
through a linear transformation. Since the capacity region Λ is
convex, each of these derived stability regions is also convex.
In contrast, we will show that the shape of the Ω region is not
convex in general. Furthermore, when the previously-known
regions are not identical to Λ, they exclude many, if not most,
of the extreme points of Λ. We will show that Ω contains all
the extreme points of Λ.

Lemma 5: The set of all the independent sets of the inter-
ference graph G, i.e., the set of all the feasible schedules, has
a bijection to the set of all the extreme points of Λ.
Note that we consider the empty schedule where no link is
activated a trivial independent set. Lemma 5 establishes a
connection between the graph topology and the geometry of
Λ in a vector space.

Proof: Suppose ν is an independent set of G, represented
by a 0-1 vector. Clearly, ν ∈ Λ. Let us write ν = aν1 + (1−
a)ν2 for some 0 ≤ a ≤ 1, and ν1, ν2 ∈ Λ. Note that µ ≤ e
for every µ ∈ Co(MV ). Thus, 0 ≤ ν1 ≤ e and 0 ≤ ν2 ≤ e.
For any index i, if νi = 0, we must have ν1i = 0 and ν2i = 0.
Similarly, if νi = 1, we have ν1i = ν2i = 1. Therefore, ν =
ν1 = ν2 and ν is an extreme point of Λ.

Conversely, take any extreme point ν of Λ. Then, ν ≤ µ
for some µ ∈ Co(MV ). For an index i, if νi > 0, we claim
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that νi = µi. Otherwise, we let t = µi−νi > 0. Then, we can
create ν̄ and ν̃ such that ν̄j = ν̃j = νj for j 6= i. We can find
an ε > 0 such that ν̄i , νi − εt ≥ 0, and we let ν̃i = µi > 0.
Since 0 ≤ ν̄ ≤ ν̃ ≤ µ, we have ν̄, ν̃ ∈ Λ. It is easy to see
ν = 1

1+ε ν̄ + ε
1+ε ν̃, which implies ν is not an extreme point.

Hence, either νi = 0 or νi = µi, for all i.
We now show that νi = 0 or νi = µi = 1 for all i. Write µ

as µ =
∑k
j=1 ajµ

j , where each µj ∈ MV , each aj > 0, and∑k
j=1 aj = 1. Let νji = 0 if νi = 0; νji = µji otherwise, for

all 0 ≤ j ≤ k. Because µj ∈MV , we have νji = 0 or νji = 1.
It is easy to check that ν =

∑k
j=1 ajν

j . Since νj ≤ µj , we
have νj ∈ Λ for each j. Since ν is an extreme point of Λ,
ν1 = ν2 = · · · = νk. Thus, νi = 1 or νi = 0 for all i.

It is easy to see that any 0-1 vector in Co(MV ) must be
a feasible schedule, i.e., an independent set of G. Since µ ∈
Co(MV ), the set of nodes, S, for which µi = 1 forms an
independent set. Let S′ be the set of nodes for which νi = 1.
We have S′ ⊆ S. Therefore, ν corresponds to an independent
set.

Lemma 6: Suppose λ is a vector corresponding to an inde-
pendent set of the interference graph G. Then, λ ∈ Ω.

Proof: [λ]S is an independent set of the node-induced
subgraph GS for any non-empty S ⊆ V . Then, [λ]S 6> ν for
any ν ∈ Co(MS), which implies λ 6∈ ΠS . Since S is arbitrary,
we must have λ ∈ Ω.

Corollary 7: All the extreme points of the capacity region
Λ belong to Ω.

Proof: This is a result of Lemma 5 and Lemma 6.

1 2
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Fig. 1. The six-cycle graph, C6.

As an example, let G be the six cycle graph in Fig. 1.
The arrival rate vector λ = (1, 0, 1, 0, 1, 0)′ corresponds to an
independent set, and hence, λ ∈ Ω. However, we know that
Σ∗(G) = diag(2/3, 2/3, 2/3, 2/3, 2/3, 2/3) (see [18]). As a
result, λ 6∈ Σ∗(G)Λ. The example shows that Ω can be strictly
larger than Σ∗(G)Λ. In the example, Ω − Σ∗(G)Λ contains
not only the extreme points. For instance, one can check that,
for λ = (7/10, 1/10, 7/10, 1/10, 7/10, 1/10)′, λ ∈ Ω but λ 6∈
Σ∗(G)Λ.

The next example shows that, the previously-discovered
stability regions σ∗(G)Λ and Σ∗(G)Λ can underestimate the
performance of LQF by an arbitrarily large factor in certain
directions and in certain cases, whereas Ω can avoid such poor
estimates.

Lemma 8: For any k > 0, there exists an interference graph
G = (V,E) and an arrival rate vector λ such that λ /∈ Σ∗(G)Λ,
but kλ ∈ Ω.

Proof: Consider the bipartite graph in Fig. 2 with N
pairs of nodes, where N = 4 in this particular case. It

is almost a complete bipartite graph except that every cor-
responding pair of nodes (such as nodes 1 and 2) does
not have an edge between them. It is easy to check that
Σ∗(G) = diag(2/N, 2/N, ..., 2/N). Therefore, the rate vector
λ = (2/N + ε, 0, 0, ..., 0)′, where ε > 0, is not in Σ∗(G)Λ.
For any k > 0, we can find a large enough N and a
small enough ε such that k(2/N + ε) ≤ 1. Then, we have
kλ = (k(2/N + ε), 0, 0, ..., 0)′ in Ω.
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Fig. 2. A bipartite graph.

Fig. 3. The Ω region and other relevant regions. The largest convex polytope
is Λ. The entire shaded region is Ω, which is not a convex set.

Though we cannot draw various regions in a high-
dimensional vector space, it may still be helpful to make a
highly simplified illustration with Fig. 3. The whole capacity
region Λ is convex. The region Σ∗(G)Λ is derived by scaling
down the capacity region Λ using the diagonal matrix Σ∗(G).
This sort of scaling usually cuts off many or most extreme
points of Λ. The newly defined stability region Ω is a superset
of Σ∗(G)Λ and Ω contains all the extreme points of Λ. The
figure makes the point that Ω is not convex in general. We
next show Ω is convex if and only if it is equal to Λ.

Lemma 9: The following statements are equivalent.
1. Ω is a convex.
2. G is an overall local pooling graph.
3. Ω = Λ.

Proof: First, we prove that statement 1 implies statement
2. Suppose G is not overall local pooling. We claim that there
must exist a non-empty set S ⊆ V and µ, ν ∈ Co(MS)
such that µ > ν. Since G is not overall local pooling, there
exists a non-empty set S ⊆ V such that σ∗S < 1, which
implies that there exist µ, ν ∈ Co(MS) and σ∗Sµ ≥ ν,
according to (5). If ν > 0, we have the required set S, and
µ, ν ∈ Co(MS) with µ > ν. If not, let H = {l ∈ S|ν(l) > 0}.
Because ν ∈ Co(MS) and [ν]S−H = 0, it is easy to show
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[ν]H ∈ Co(MH)3. Because µ ∈ Co(MS) and H ⊆ S,
there must exist µ̃ ∈ Co(MH) such that µ̃ ≥ [µ]H . Then,
σ∗Sµ̃ ≥ σ∗S [µ]H ≥ [ν]H > 0. Thus, µ̃ > [ν]H and
µ̃, [ν]H ∈ Co(MH). By renaming H to be S, µ̃ to be µ and
[ν]H to be ν, we have the required set S and µ, ν ∈ Co(MS)
with µ > ν.

Let λ ∈ R|V |+ be an extended vector from µ such that [λ]S =
µ and [λ]V−S = 0. According to Definition 3 and 4, λ 6∈ Ω.
Since µ ∈ Co(MS), we can write µ =

∑|MS |
i=1 αim

i, where∑
i αi = 1 and αi ≥ 0 for all i, and mi for i = 1, . . . , |MS |

are all the maximal schedules with respect to S. For each i,
let m̃i be a |V |-dimensional vector extended from mi, such
that m̃i(j) = mi(j) when j ∈ S and m̃i(j) = 0 when j 6∈
S. Clearly, each m̃i corresponds to an independent set of G.
Hence, by Lemma 6, m̃i ∈ Ω for all i. Since λ =

∑|MS |
i=1 αim̃

i

and λ 6∈ Ω, we conclude that Ω is not convex.
Next, we show that statement 2 implies statement 3. Since

G is an overall local pooling graph, Σ∗(G) = I (the identity
matrix). By Lemma 4, Λ ⊆ Ω. Hence, Ω = Λ.

Finally, statement 3 implies statement 1 since Λ is convex.

Remark. Suppose, for a given interference graph, the LQF
algorithm does not achieve the full interior of the capacity
region. Lemma 9 implies that Ω is not convex. Furthermore,
since the closure of the full stability region of LQF (which
is unknown) contains Ω, it contains all the extreme points of
the capacity region Λ. Hence, the closure of the full stability
region of LQF cannot be convex either, and it cannot be
characterized by any linear transformation of the capacity
region.

IV. STABILITY REGION ∆ UNDER LQF

In this section, we develop a notion termed as uniformly
dominating vectors. It leads to a stability region ∆C , which is
a superset of Ωo. When the arrival processes are not constant,
i.e., when the variances of the i.i.d. arrival processes are non-
zero, we obtain a stability region ∆R, which contains ∆C .

A. Motivating Examples

Example 1: We will first give an example to show that an
arrival rate vector λ 6∈ Ω can sometime be stabilized by
LQF. Hence, there is a region larger than Ω that captures
the performance of LQF more precisely. The example also
contains hints about how such a region can be defined.

Consider the six cycle graph G in Fig. 1. There are
exactly five maximal schedules: s1 = (1, 0, 1, 0, 1, 0)′, s2 =
(0, 1, 0, 1, 0, 1)′, s3 = (1, 0, 0, 1, 0, 0)′, s4 = (0, 1, 0, 0, 1, 0)′,
s5 = (0, 0, 1, 0, 0, 1)′. Suppose the arrival rate vector is
λ = (5/12+ε, 1/3+ε, 1/3+ε, 1/3+ε, 1/3+ε, 1/3+ε)′, where

3Suppose we write MS = (mi)
|MS |
i=1 , where each mi is a maximal

schedule with respect to S. We can represent ν as ν =
∑|MS |

i=1 αim
i,

where
∑

i αi = 1 and αi ≥ 0 for all i. Since [ν]S−H = 0, we have
[mi]S−H = 0 for each i. It is clear that [mi]H corresponds to an independent
set of GH , the subgraph of G induced by H . Moreover, by the maximality
of mi with respect to S, if mi(j) = 0 for some j ∈ H , it must be that
mi(k) = 1 for some k ∈ H and j and k interfere with each other, i.e.,
(j, k) ∈ E. Therefore, [mi]H must be maximal with respect to H . Hence,
by [ν]H =

∑|MS |
i=1 αi[m

i]H , we get [ν]H ∈ Co(MH).

ε > 0 is some small enough constant. Let e = (1, 1, 1, 1, 1, 1)′,
µ = 1

2e and ν = 1
3e. Then, one can check that µ = 1

2s
1 + 1

2s
2

and ν = 1
3s

3+ 1
3s

4+ 1
3s

5, which implies that µ, ν ∈ Co(MV ).
For 0 < ε < 1/12, ν < λ < µ. Hence, λ ∈ Λo and λ 6∈ Ω by
Definition 3 and 4.

Consider the fluid limit of the queue processes under LQF,
denoted by {ql(t)}t≥0, for all l ∈ V (see [14]). For a fixed
(regular) time instance t, let S be the set of those longest
queues whose time derivatives at t, q̇l(t), are the largest. The
queues in S will remain the longest with identical length in
the next infinitesimally small time interval. Since λ ∈ Λo,
[λ]S ∈ ΛoS by Lemma 1. If S 6= V , it is a fact that the node-
induced subgraph GS satisfies the local pooling condition [18].
An argument similar to that in the proof of Theorem 3 shows
that the queues in S all have a negative drift.

The case of S = V is more subtle. Since only the
maximal schedules of G are used during the aforementioned
infinitesimally small time interval, we can assume that the
service rate vector is γ =

∑5
i=1 αis

i, where
∑5
i=1 αi = 1

and αi ≥ 0 for all i. In the fluid limit, q̇l(t) = λl − γl for
l ∈ V . By assumption, q̇l(t) should be identical for all nodes
l ∈ V . However, one can check that it is impossible to find
such γ for the given λ. Therefore, the case of S = V would
not have occurred, and only the case of S 6= V needs to be
considered. Hence, G is stable under LQF for the given λ,
according to the discussion for the S 6= V case.
Example 2: Let λ1 = 0.7(1/2 − ε, 1/2 − ε, 1/2 − ε, 1/2 −
ε, 1/2 − ε, 1/2 − ε)′ and λ2 = (1/2 − ε, 1/2 − 2ε, 1/2 −
2ε, 1/2− 2ε, 1/2− 2ε, 1/2− 2ε)′ and ε = 10−3. Both λ1 and
λ2 are outside Ω. Interestingly, although λ1 < λ2, λ1 cannot
be stabilized by LQF while λ2 can. This has been verified by
simulation experiments under constant arrivals.

We will next develop a theory that provides a larger stability
region and also can explain the counter-intuitive Example 2.

B. Uniformly Dominating Vector and ∆C Region

Definition 5: Given a non-empty node set S ⊆ V , a vector
λ ∈ R|V |+ is said to be a uniformly dominating vector of S if
[λ]S = ν + de for some ν ∈ Co(MS) and scaler d ≥ 0. The
region composed with all the uniformly dominating vectors
of S is called the uniformly dominating region of S and is
denoted by ΓS . That is,

ΓS ={λ ∈ R|V |+ | [λ]S = ν + de, for some ν ∈ Co(MS) and
some scalar d ≥ 0}.

By convention, if S = ∅, we assume ΓS = ∅.
Definition 6: The ∆C region is defined by

∆C =
⋂
S⊆V

ΓcS .

Remark. Note that a vector λ is outside ∆C if and only if
λ ∈ ΓS for some non-empty node set S.

Lemma 10: For any non-empty S ⊆ V , ΓS is closed.
Hence, ∆C is open.

Proof: Let B = {de|d ≥ 0}, where e is |S| dimensional,
and let C = Co(MS). It is easy to see C is compact and B
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is closed. From Definition 5, ΓS is B + C extended to the
|V |-dimensional space. It can be shown that B+C is closed,
and hence, ΓS is closed. Then, ∆C =

⋂
S⊆V ΓcS is open (with

respect to the metric space R|V |+ ).
Lemma 11: Suppose λ ∈ ∆C and suppose S ⊆ V is a non-

empty node set. If ν− [λ]S = de for some ν ∈ Co(MS), then
d > εo, for some εo > 0 independent of S and ν.

Proof: Suppose ν − [λ]S = de (here, e is of |S|-
dimension) for some ν ∈ Co(MS). Since λ ∈ ∆C and ∆C

is open, λ + εoe ∈ ∆C (here, e is of |V |-dimension) for
some small enough εo > 0 independent of S and ν. Then
ν − [λ + εoe]S = (d − εo)e or [λ + εoe]S = ν + (εo − d)e.
Since λ + εoe ∈ ∆C , λ + εoe 6∈ ΓS . Hence, εo − d < 0 or
d > εo.

The constant εo will serve as a bound for the rate of the
Lyapunov drift in the performance analysis.

C. Performance Guarantee of LQF in ∆C Region

Therorem 12: If an arrival rate vector λ satisfies λ ∈ ∆C ,
then, the network is stable under the LQF policy.

Sketch of Proof: Again, consider the fluid limit of the
queue process and apply a similar argument as in the proof of
Theorem 3. Let S ⊆ V be the set of nodes whose queues are
the longest at time t and will remain the longest for the next
infinitesimally small time interval. Let νS be the service rate
vector for the nodes in S at time t. Under LQF, νS ∈ Co(MS)
and νS − [λ]S = εe for some ε. Since λ ∈ ∆C , by Lemma
11, we have ε > εo for some εo > 0 independent of S and
ν. Hence, at any time instance, each of the longest queues
decreases at a positive rate no less than εo. This is sufficient
to conclude that the original queueing process is a positive
recurrent Markov process, which means the queues are stable.

Lemma 13: Ωo ⊆ ∆C .
Proof: Suppose Ωo 6⊆ ∆C . Then, there exists a vector λ ∈

Ωo and λ 6∈ ∆C . Hence, [λ]S = ν + de for some non-empty
S ⊆ V , ν ∈ Co(MS) and d ≥ 0. Since λ ∈ Ωo, λ + εe ∈ Ω
for some small enough ε > 0. From [λ+ εe]S = ν + (d+ ε)e
and d+ε > d ≥ 0, we have [λ+εe]S > ν. Hence, λ+εe 6∈ Ω,
leading to a contradiction.

Consider Example 2 in Section IV-A. With the linear
programming tools introduced in Section V, one can check
that λ2 ∈ ∆C but λ1 6∈ ∆C . This explains why λ2 can be
stabilized by LQF while λ1 cannot, even though λ2 > λ1.

D. Rank Condition and ∆R Region

For the same average arrival rate vector, whether the i.i.d.
arrival processes have zero or non-zero variances leads to
significantly different stability behavior (in the former case, the
arrival processes are deterministic with constant rates). This
issue has been discussed in [14] where the authors develop a
queue separation result related to a rank condition about the
matrices of the maximal independent sets. We next generalize
the rank condition. Then, we extend ∆C to a larger stability
region ∆R. We will show ∆R can be stabilized under LQF
when the arrival processes all have non-zero variances.

Definition 7: Let S ⊆ V be a non-empty set. We call the
matrix (MS , e) the extended schedule matrix for S (or graph
GS). Let R(MS , e) denote the rank of the extended schedule
matrix, i.e., the number of linearly independent columns in
the matrix (MS , e). We say S (or graph GS) has a high rank
if R(MS , e) = |S|. Otherwise, we say S (or GS) has a low
rank.

Suppose S ⊆ V is the set of nodes with the longest
queues at some time instance. When the arrival has non-zero
variances, the queue separation result suggests (Lemma 1 and
Lemma 3 of [14]): If the rank R(MS) ≤ |S| − 2, then, with
probability 1, the queue sizes of S will not stay identical in
the next infinitesimal time interval. We find that the condition
R(MS) ≤ |S| − 2 can be relaxed to R(MS , e) ≤ |S| − 1, i.e.,
the low rank condition in Definition 7. The queue separation
lemma (Lemma 1 of [14]) uses the assumption R(MS) ≤
|S| − 2 to obtain a vector ν such that ν′e = 0 and ν′MS = 0.
Such a vector ν still exists when the low rank condition in
Definition 7 is satisfied. Then, every subsequent step in the
proof of the queue separation lemma still holds. The low rank
condition is a generalization since R(MS) ≤ |S| − 2 implies
R(MS , e) ≤ |S| − 1.

Roughly speaking, when the variances are non-zero, the
randomness in the arrival processes pressures the queues in S
to move around in an |S|-dimensional space. This means that
the |S| queues cannot be simultaneously the longest queues for
a sustained period of time (in which case, the queue trajectory
moves along a line), unless the service can fully compensate
the pressure from the arrival processes. But, full compensation
is not possible in the low-rank case since the service rate vector
lives in a lower-dimensional space. What will happen is that
some subset of the queues in S with a high rank will dominate
the rest. This is known as queue separation. The implication
is that, in the case of non-zero variances, there is no need
to consider the low-rank subsets of V when evaluating the
performance degradation of LQF. The discussion motivates
the following definition of ∆R.

Definition 8: The ∆R region is defined by

∆R =
⋂

S⊆V,S with high rank

ΓcS .

In words, a vector λ is outside ∆R if and only if λ ∈ ΓS for
some node set S that has a high rank.

By comparing the definitions of ∆C and ∆R, we have the
following lemma.

Lemma 14: ∆C ⊆ ∆R.
In addition to the i.i.d. assumptions, the following assump-

tions on the arrival processes, A1 and A2, are needed for
technical reasons (see [14] for their relevance).
A1: (The large deviation bound on the arrival processes) Let
Al(n) be the cumulative arrivals at queue l (at node l ∈ V )
up to time n, and let λl be the average arrival rate at queue l.
For each ε > 0,

P (|Al(n)

n
− λl| > ε) ≤ β exp(−nγ(ε)) for all n ≥ 1, for

some γ(ε) > 0 and β > 0.
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A2: The arrival processes on different links are mutually
independent.

Therorem 15: Assume the conditions in A1 and A2 hold
and assume the variance of the i.i.d. arrival process to each
node is non-zero but finite. If an arrival rate vector λ satisfies
λ ∈ ∆R, then, the network is stable under the LQF policy.

Sketch of Proof: Again, consider the fluid limit of the
queue process and apply a similar argument as in the proof
of Theorem 3. Let S ⊆ V be the set of nodes whose queues
are the longest at time t and will remain the longest for the
next infinitesimally small time interval. By replicating most of
the arguments in the queue separation lemmas (Lemma 1 and
Lemma 3 in [14]), it can be shown that S must have a high
rank4. Otherwise, the queue sizes of the nodes in S will be
separated and they cannot all remain the longest. Hence, we
can apply the same argument as that in Theorem 12, but only
to the high-rank node sets.

Some graph examples are given in Fig. 4, regarding their
set σ-local pooling factors and ranks. Note that, the shaded
region (Low Rank + oval) includes those subsets S which
either satisfy σ∗S = 1, i.e., set local pooling (SLoP), or have
low rank. Those subsets need not to be considered for the
performance of LQF in cases of non-zero variances.

High RankLow Rank

SLoP

Trees(|V| >2) Cliques

Petersen

4-Cycle

6-Cycle

Möbius–Kantor

Big-Cycle(|V|>=8)

(Hypercube Graph)

5-Cycle

7-Cycle

6-Cycle connected to 8-Cycle

Fig. 4. Graph examples and classification by the set σ-local pooling factor
and rank condition. For graphs GS = (S,L) inside the oval, σ∗S = 1; outside
the oval, σ∗S < 1. The graph labeled ‘6-cycle connected to 8-cycle’ is shown
in Fig. 6.

E. Further Properties of Regions ∆C and ∆R

It has been demonstrated that ∆C ⊆ ∆R. We now continue
to study the properties of the two regions and their relationship.

Therorem 16: The closures of ∆C and ∆R are the same,
i.e. ∆C = ∆R.

Proof: Since ∆C ⊆ ∆R, we have ∆C ⊆ ∆R. We
will next show ∆R ⊆ ∆C . Since ∆R = ∆C

⋃
(∆R −

∆C) and ∆R = ∆C

⋃
(∆R −∆C), we only need to show

(∆R −∆C) ⊆ ∆C .

4The only change is to Lemma 3 in [14]. Instead of saying for any low-
rank set, there must be a subset that satisfies local pooling, we say for any
low-rank set, there must be a subset that is of high rank. This is so because a
set with a single node is of high rank. The modification is needed in the proof
of Lemma 3 in [14]. The statement of Lemma 3 also needs to be modified
accordingly.

Given any vector λ̃ ∈ ∆R −∆C , by comparing Definition
6 and 8, we have

λ̃ ∈
⋂
S⊆V

S with high rank

ΓcS
⋂ ( ⋃

S⊆V
S with low rank

ΓS
)
.

By Lemma 10, ΓS is a closed set and ΓcS is open. Hence,
∆R is open. Therefore, there exists δ > 0 such that γ ∈ ∆R

whenever γ ≥ 0 and the distance between the two vectors
d(λ̃, γ) < δ.

Let 0 < ε < 1

2
√
|V |
δ and λ = λ̃ + εe. Then, the distance

between λ and λ̃ is d(λ, λ̃) = |εe| < 1

2
√
|V |
δ|e| = 1

2δ. Then,

λ ∈ ∆R and λ ≥ εe.
Now, let Q(λ) = {S|S ⊆ V, S with low rank, λ ∈ ΓS}.

We will next construct a sequence of low-rank node sets, Si,
for i = 1, 2, · · · . Since each of them has a low rank, there
exists an |Si|-dimensional vector gi 6= 0 with ||gi|| = 1 such
that (gi)′e = 0 and (gi)′MSi

= 0. We then extend each gi

to a |V |-dimensional vector by setting the values of the new
components to be zero. With a little abuse of notation, we call
this |V |-dimensional vector gi as well.

We now construct the sequence of Si. If Q(λ) 6= ∅, pick any
subset S1 ∈ Q(λ). Let λ1 = λ+ 1/2εg1. Next, if Q(λ1) 6= ∅,
pick any S2 ∈ Q(λ1) and let λ2 = λ1 + 1/22εg2. In step
j, if Q(λj−1) 6= ∅, we will pick any Sj ∈ Q(λj−1) and
let λj = λj−1 + 1/2jεgj . This procedure will go on until
Q(λj) becomes empty for some j. We can check that the ith
component of λj is λj(i) = (λ + 1/2εg1 + 1/22εg2 + · · · +
1/2jεgj)(i) ≥ ε−1/2ε−1/22ε−· · ·−1/2jε ≥ 0. This ensures
that λj is always a non-negative vector for all j.

Now, we will show that there exists an integer K ≥ 0
such that Q(λK) becomes empty for the first time (hence,
the sequence of Sj ends at SK−1, or contains no elements if
K = 0). For convenience, let λ0 = λ.

We will show that Sj 6∈ Q(λk) for k ≥ j, where Sj 6= ∅.
Suppose Sj ∈ Q(λk) for some k ≥ j. Then, λk ∈ ΓSj

,
which implies that [λk]Sj

= d1e + ν1 for some d1 ≥ 0 and
ν1 ∈ Co(MSj

). From the construction procedure, we know
that Sj ∈ Q(λj−1), which implies that [λj−1]Sj = d2e + ν2

for some d2 ≥ 0 and ν2 ∈ Co(MSj ). Since

λk = λj−1 + 1/2jεgj + 1/2j+1εgj+1 + · · ·+ 1/2kεgk,

we have

[λk]Sj = d2e+ ν2 + [1/2jεgj + 1/2j+1εgj+1 + · · ·+ 1/2kεgk]Sj .

Then,

(gj)′[λk]Sj
=(gj)′(d2e+ ν2 + [1/2jεgj + 1/2j+1εgj+1 + · · ·

+ 1/2kεgk]Sj
)

=1/2jε||gj ||2 + 1/2j+1ε(gj)′[gj+1]Sj + · · ·
+ 1/2kε(gj)′[gk]Sj

≥1/2jε− 1/2j+1ε− · · · − 1/2kε > 0.

However, since [λk]Sj
= d1e + ν1, we have (gj)′[λk]Sj

=
(gj)′(d1e+ ν1) = 0, leading to a contradiction. Hence, Sj 6∈
Q(λk) for k ≥ j.
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In summary, each non-empty Sj in the constructed sequence
is in Q(λj−1) but not in Q(λk) for k ≥ j. Hence, each Sj
is distinct. Since there is a finite number of non-empty node
sets S ⊆ V , there exists an integer K ≥ 0 such that Q(λK)
becomes empty for the first time.

Then, λK 6∈ ΓS for any node set S with a low rank. Hence,
λK ∈

⋂
S⊆V,S with low rank ΓcS . The distance between λ and

λK is d(λ, λK) ≤ ε(1/2 + 1/22 + ... + 1/2K) < ε. Then,
the distance between λ̃ and λK is d(λ̃, λK) ≤ d(λ̃, λ) +
d(λ, λK) ≤ ε

√
|V | + ε < δ. Hence, λK ∈ ∆R. It follows

λK ∈
⋂
S⊆V ΓcS = ∆C .

Since ε can be chosen arbitrarily small, λ̃ is a limit point
of ∆C . Thus, λ̃ ∈ ∆C , implying (∆R −∆C) ⊆ ∆C . Hence,
(∆R −∆C) ⊆ ∆C .

The following is an intermediary lemma.
Lemma 17: If a non-empty set S ⊆ V satisfies σ∗S = 1,

then ΓS
⋂

Λo = ∅.
Proof: Suppose there exists a vector λ ∈ ΓS

⋂
Λo. By

Definition 5, [λ]S = ν+de for some d ≥ 0 and ν ∈ Co(MS).
Since λ ∈ Λo, by Lemma 1, [λ]S + εe ≤ µ for some µ ∈
Co(MS) and a small enough ε > 0. Hence, µ ≥ ν+(d+ε)e ≥
ν(1 + d+ ε). Thus, σ∗S < 1 and we arrive at a contradiction.

Lemma 18: If every high-rank node set S ⊆ V satisfies
σ∗S = 1, then, ∆C = ∆R = Λ and ∆R = Λo.

Proof: According to Definition 8, we have ∆R =⋂
S⊆V,S with high rank ΓcS . For any high-rank node set S, since

σ∗S = 1, we have ΓS
⋂

Λo = ∅ by Lemma 17,
which implies ΓcS

⋂
Λo = Λo. Hence, ∆R

⋂
Λo =⋂

S⊆V,S with high rank ΓcS
⋂

Λo = Λo. Combining this with The-
orem 16, we get ∆C = ∆R = Λo = Λ. Also, the fact that
∆R

⋂
Λo = Λo implies Λo ⊆ ∆R. Since ∆R is an open set in

Λ and Λo is the largest open set in Λ, it must be that ∆R = Λo.

Remark. From Lemma 18, we know that when all the subsets
S ⊆ V satisfy either set local pooling (i.e., σ∗S = 1) or the
rank of S is low, then ∆R = Λo. That is, the entire Λo

is achievable by LQF, assuming the arrival processes have
non-zero variances. This is the same statement as Theorem
1 of [14]. Thus, the newly developed theory here is able to
reproduce the main result of [14].

Lemma 19: ∆C = Λ if and only if ∆C is convex. Similarly,
∆R = Λ if and only if ∆R is convex.

Proof: It is obvious that ∆C = Λ implies ∆C is convex.
We will next show the converse. Since ∆C ⊆ Λ and Λ is
a closed set, we have ∆C ⊆ Λ. Because Ωo ⊆ ∆C , we
have Ω ⊆ ∆C . Since Ω contains all the extreme points of
Λ (Corollary 7), ∆C also contains all of them. Since Λ is
the convex combination of all its extreme points and ∆C is
convex, we must have Λ ⊆ ∆C .

The second statement can be proved similarly.

V. GRAPH COLORING AND LQF SCHEDULING

The scheduling problem in this paper is deeply connected
with graph coloring and its related problems. In this section,
we will introduce fractional coloring, and more generally,
aspects of the fractional graph theory (see [19]) that can

provide useful tools for studying the stability regions discussed
in the previous sections. For instance, one can use the linear
programming formulations, which will be introduced, to check
whether an arrival rate vector is in the Ω, ∆C or ∆R region.
A more interesting case was given in [21], which will be
summarized in Section V-A.

A. Fractional Coloring and Capacity Region

The chromatic number of a graph G, denoted by χ(G), is
the minimum number of colors needed to paint the nodes so
that the connected nodes do not share the same color. When
we relax the integrality constraints of the chromatic number
problem and introduce a parameter λ ∈ R|V |+ , we obtain the
following linear programming (LP) problem.

Definition 9: Given a graph G = (V,E) and λ ∈ R|V |+ , the
weighted fractional coloring problem with the weight vector
λ is:

χf (G,λ) , min e′α, subject to MV α ≥ λ, α ≥ 0. (9)

The optimal value of the above problem, χf (G,λ), is called
the weighted fractional chromatic number, which is known to
be related to the capacity region as follows (see [21]):

Λ = {λ ∈ R|V |+ | χf (G,λ) ≤ 1}. (10)

Based on (9), χf (G,λ) can be interpreted as the fastest way
of serving queued data when the queue sizes are proportional
to the weights λ. Based on (10), χf (G,λ) can be interpreted
as the ‘traffic load’ to the network.

The relevance and usefulness of this problem to the study
of wireless scheduling have been amply demonstrated in [21].
The characterization of the capacity region by (10) suggests
that the fractional chromatic number can serve as an oracle for
judging whether an arrival rate vector is in the capacity region
or not. With this observation and with known complexity
results about the fractional coloring problem, the authors of
[21] have derived results about the inherent complexity of the
wireless scheduling problem.

B. Weighted Fractional Matching Number and Ω Region

We next discuss the problem of finding the weighted frac-
tional matching number of a graph [19]. This problem can
help to decide whether a vector is in Ω.

Definition 10: Given a graph G = (V,E) and λ ∈ R|V |+ ,
the weighted fractional matching number problem with the
weight vector λ is:

φf (G,λ) , max e′β, subject to MV β ≤ λ, β ≥ 0. (11)

The above problem is the Lagrangian dual of the weighted
fractional transversal number problem, which is the hyper-
graph dual problem of the weighted fractional coloring prob-
lem [19]. Here, the ith component of β can be interpreted as
the amount of time for which the ith maximal schedule is used.
The weighted fractional matching number, φf (G,λ), can be
interpreted as the slowest way of serving the queued data (in
the amount λ) using only the maximal schedules, subject to
the additional constraint that a schedule should not be selected
if it activates a link associated with an empty queue.



10

Lemma 20: The Ω region satisfies the following:

Ω = {λ ∈ R|V |+ | φf (GS , [λ]S) ≤ 1,∀S ⊆ V, S 6= ∅}.

Proof: Consider any vector λ ∈ Ω and an arbitrary non-
empty node set S ⊆ V . Suppose φf (GS , [λ]S) > 1. Then, by
Definition 10, we have [λ]S ≥ kν for some ν ∈ Co(MS) and
k > 1. Let Z be the largest subset in S such that [ν]Z = 0.
Note that Z 6= S. Then, the vector [ν]S−Z ∈ Co(MS−Z) and
[ν]S−Z > 0. Hence, [λ]S−Z ≥ k[ν]S−Z > [ν]S−Z , which
implies that λ ∈ ΠS−Z . According to Definition 3 and 4,
λ 6∈ Ω.

Conversely, suppose a vector λ satisfies φf (GS , [λ]S) ≤ 1
for every non-empty S ⊆ V . Then, [λ]S 6> ν for any ν ∈
Co(MS). Otherwise, there would exist k > 1 such that [λ]S ≥
kν for some ν ∈ Co(MS), which implies that φf (GS , [λ]S) >
1. Thus, λ ∈ Ω.

C. Hypergraph Duality and Set σ-local Pooling

We next relate the ratio of χf (G,λ) and φf (G,λ) to the set
σ-local pooling factor. First, we have the following lemma.

Lemma 21: For any k ≥ 0, χf (G, kλ) = kχf (G,λ) and
φf (G, kλ) = kφf (G,λ).

Proof: The case of k = 0 is trivial. We only focus on
the case of k > 0. Suppose β∗ is an optimal solution to the
problem in (11) for finding φf (G,λ). Then, kβ∗ is feasible to
the problem for finding φf (G, kλ). Since e′(kβ∗) = ke′β∗,
φf (G, kλ) ≥ kφf (G,λ).

Conversely, suppose β̃ is an optimal solution to the problem
for finding φf (G, kλ). Then, β̃/k is feasible to the problem
for finding φf (G,λ). Since e′(β̃/k) = e′β̃/k, φf (G,λ) ≥
φf (G, kλ)/k. Therefore, φf (G, kλ) = kφf (G,λ), for k > 0.
A similar argument can be used to show χf (G, kλ) =
kχf (G,λ).

Therorem 22: Given a non-empty node set S ⊆ V , the set
σ-local pooling factor of S satisfies the following5:

σ∗S = min
λ≥0

χf (GS , λ)

φf (GS , λ)
. (12)

Proof: Suppose (σ∗S , µ
∗
S , ν
∗
S) is an optimal solution to the

problem in (5). Then, we choose λ = ν∗S . Since σ∗Sµ
∗
S ≥ ν∗S ,

we have

χf (GS , λ) = χf (GS , ν
∗
S)

≤ χf (GS , σ
∗
Sµ
∗
S) = σ∗Sχf (GS , µ

∗
S) ≤ σ∗S .

The last inequality above uses the fact χf (GS , µ
∗
S) ≤ 1, which

follows from (10) (since µ∗S ∈ ΛS).
Because ν∗S ∈ Co(MS), there exists a non-negative vector

β such that MSβ = ν∗S and e′β = 1. Such β is feasible to
(11) for finding φf (GS , λ). Hence, φf (GS , λ) ≥ 1. Therefore,
minλ≥0 χf (GS , λ)/φf (GS , λ) ≤ σ∗S .

Next, suppose λ∗ is an optimal solution for the
problem minλ≥0 χf (GS , λ)/φf (GS , λ). Suppose α∗ and
β∗ are optimal solutions for the problems of finding
χf (GS , λ

∗) and φf (GS , λ
∗), respectively. Then, we have

5We take the convention a/0 = ∞ for any scalar a ≥ 0. Note that, if
any component of λ is equal to zero, then φf (GS , λ) = 0. As a result, the
optimal solution λ∗ to (12) must satisfy λ∗ > 0.

minλ≥0 χf (GS , λ)/φf (GS , λ) =
∑
i α
∗
i /
∑
i β
∗
i . Now, let

µ = MSα
∗/
∑
i α
∗
i and ν = MSβ

∗/
∑
i β
∗
i . Then, µ, ν ∈

Co(MS) and

χf (GS , λ
∗)

φf (GS , λ∗)
µ =

∑
i α
∗
i∑

i β
∗
i

MSα
∗∑

i α
∗
i

=
MSα

∗∑
i β
∗
i

.

By the feasibility of α∗ and β∗ to (9) and (11), respectively,
MSα

∗ ≥ λ∗ ≥MSβ
∗. Hence,

MSα
∗∑

i β
∗
i

≥ λ∗∑
i β
∗
i

≥ MSβ
∗∑

i β
∗
i

= ν.

Thus, χf (GS , λ
∗)/φf (GS , λ

∗) is feasible to the problem in
(5). Therefore, minλ≥0 χf (GS , λ)/φf (GS , λ) ≥ σ∗S .

The theorem above shows that the set σ-local pooling factor
is the same as the minimum of the hypergraph duality ratios
over all different weights.

D. Weighted Fractional Domination Number and ∆C Region

Definition 11: Given a graph G = (V,E) and λ ∈ R|V |+ ,
the weighted fractional domination number problem with the
weight vector λ is:

τf (G,λ) , max d, subject to de+ ν = λ, ν ∈ Co(MV ).

For convenience, let τf (G,λ) = −∞ when the problem is
infeasible.

By Definition 5, 6 and 11, we have the following lemma.
Lemma 23: The following relations hold:

ΓS = {λ ∈ R|V |+ | τf (GS , [λ]S) ≥ 0, for S ⊆ V, S 6= ∅},
∆C = {λ ∈ R|V |+ | τf (GS , [λ]S) < 0,∀S ⊆ V, S 6= ∅}.

VI. EXPERIMENTAL EXAMPLES

In this section, we show some simulation results. The main
purpose is to confirm some of the less intuitive theoretical
results. We first show the performance of LQF on the six-
cycle graph, denoted by C6, for arrival rate vectors in different
sections of the capacity region. For C6, LQF can achieve the
entire interior of the capacity region for arrivals satisfying
assumptions A1 and A2 and having non-zero variances. On
the other hand, for constant arrivals, experiments have shown
that some rate vectors in the interior of the capacity region are
not achievable by LQF.

In the experiments with constant arrivals, we use a load
parameter to scale the arrival rate vectors. Each experiment
runs for 106 iterations with initial queue sizes of 103. The
following arrival rate vectors are used for the results in Fig.
5:

λ1 = (
1

2
− ε, 1

2
− ε, 1

2
− ε, 1

2
− ε, 1

2
− ε, 1

2
− ε)′

λ2 = (
1

2
− ε, 1

2
− 2ε,

1

2
− 3ε,

1

2
− ε, 1

2
− 2ε,

1

2
− 3ε)′

λ3 = (
1

2
− ε, 1

2
− 2ε,

1

2
− 2ε,

1

2
− 2ε,

1

2
− 2ε,

1

2
− 2ε)′,

where ε = 10−3. Note that 0.7λ1 < 0.95λ2 < λ3. However,
judging by the queue sizes in Fig. 5, the arrival rate vectors
0.7λ1 and 0.95λ2 seem to be not stabilizable, whereas λ3

seems to be stabilizable. The theory of this paper allows
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Fig. 5. Constant arrivals in C6

this counter-intuitive phenomenon. Readers can verify that
0.7λ1, 0.95λ2 /∈ ∆C while λ3 ∈ ∆C .

In Section IV, we generalize the definitions of high or low-
rank graphs. In Fig. 6, we provide an interference graph that is
not set local pooling (σ∗S < 1) and is of high rank according to
the original definition in [14]. However, in the new definition,
the graph is of low rank. We ran simulations with initial queue
sizes of 103 using the Bernoulli arrivals with an identical
arrival rate of 0.499. Fig. 7 shows the evolution of the average
queue size for nodes 1-8 and 9-13 over 106 iterations. The
queues for nodes 1-8 appear to be unstable and the queues for
nodes 9-13 appear to be stable. Our refinement of the rank
condition rules out the possibility that the queues of all nodes
are simultaneously the longest and remain longest, whereas
the previous rank condition does not rule that out.

Fig. 6. An interference graph with C6 connected to C8. For this graph, the
ranks are R(MV ) = R(MV , e) = 12.

VII. CONCLUSION

In this paper, we investigate the performance guarantee of
the LQF scheduling policy in wireless networks. The objective
is to discover new stability regions of LQF that are larger than
those previously known, and to improve our knowledge about
the largest possible stability region of LQF. We show that it
is necessary to go beyond the existing framework of linear
reduction of the capacity region, and move to a non-linear
framework.
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Fig. 7. Average queue sizes for nodes 1-8 on C8 (labelled as V[1,8]) and
for the nodes 9-13 on C6 (V[9,12]).

We introduce the concepts of strictly dominating vectors and
uniformly dominating vectors; the former leads to the new
stability region of LQF, Ω, and the latter leads the stability
regions ∆C and ∆R. We show that Ω contains Σ∗(G)Λ,
which is the stability region given in [18]. We also show
Ωo ⊆ ∆C ⊆ ∆R. Hence, the new stability regions all capture
the performance of LQF better. Contrary to the previously-
known regions of stability, the closures of these new stability
regions contain all the extreme points of the capacity region
Λ, but they are not convex in general. The only case where
they are convex is when they are equal to the capacity region
itself, which occurs only for selected interference graphs. The
general lack of convexity is not a defect of the theory. We
show that, when LQF cannot achieve the full capacity region,
the largest achievable region cannot be convex.

The study reveals a counter-intuitive situation where in-
creasing the arrival rates helps LQF to stabilize the network.
It turns out, in this case, the original rate vector is outside
∆C , and after the rate increase, the new rate vector is inside
∆C . We also generalize the rank condition studied in [14],
and with this generalization, refine the stability results for
non-deterministic arrivals. We can show that if a set of
nodes satisfies the new low-rank condition, the queue sizes
of these nodes will be separated. Based on this result, we can
enlarge ∆C to ∆R, which is achievable by LQF under non-
deterministic arrivals. Interestingly, we show that the closures
of ∆C and ∆R are the same. Finally, we introduce several
linear programming problems encountered in the fractional
graph theory, which can provide tools for studying the newly
developed stability regions. We show that a ratio between
the weighted fractional coloring number and the weighted
fractional matching number is related to the set σ-local pooling
factor introduced in [18].
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