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Abstract

The advancement of optical networking technologies has enabled e-science applications that often require transport of large volumes of scientific
data. In support of such data-intensive applications, we develop and evaluate control plane algorithms for scheduling bulk file transfers, where
each transfer has a start time and an end time. We formulate the scheduling problem as a special type of the multi-commodity flow problem.
To cope with the start and end time constraints of the file-transfer jobs, we divide time into uniform time slices. Bandwidth is allocated to
each job on every time slice and is allowed to vary from slice to slice. This enables periodical adjustment of the bandwidth assignment to
the jobs so as to improve a chosen performance objective: throughput of the concurrent transfers. In this paper, we study the effectiveness
of using multiple time slices, the performance criterion being the tradeoff between achievable throughput and the required computation time.
Furthermore, we investigate using multiple paths for each file transfer to improve the throughput. We show that using a small number of paths
per job is generally sufficient to achieve near optimal throughput with a practical execution time, and this is significantly higher than the
throughput of a simple scheme that uses single shortest path for each job.
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1. Introduction

In the past two decades, optical networking technologies
have revolutionized communications. The widespread deploy-
ment of fiber optic infrastructure has led to low cost, high ca-
pacity optical connections. This networking advancement has
enabled e-science applications that often require management
and transport of large volumes of scientific data [37,9,2]. For in-
stance, the Large Hadron Collider (LHC) facility at CERN [16]
is expected to generate petabytes of experimental data every
year, for each experiment. In addition to high-energy nuclear
physics [9,38,17], a few other e-science applications are radio
astronomy [31], geoscience [20], and climate studies [19]. In
order to best support the needs of e-science applications, op-
tical research networks are deployed by a consortium of lead-
ing research universities, governments and private sector tech-
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nology companies. Examples include the Internet2-related [30]
National Lambda Rail [36] and Abilene [1] networks in the
U.S., CA*net4 [15] in Canada, and SURFnet [42] in Nether-
lands. These networks are small in size (less than 103 in the
backbone) as compared to the public Internet. This makes it
possible to have a centralized network controller for managing
the network resources and for providing user service quality
guarantee. With the central controller, there is more flexibility
in designing sophisticated, efficient algorithms for scheduling
user reservation requests, setting up network paths, and allo-
cating bandwidth.

The objective of this paper is to develop and evaluate control
plane algorithms for scheduling large file transfers (also known
as jobs) over optical research networks. We assume that job
requests are made in advance to the central network controller.
Each request specifies a start time, an end time and the total
file (demand) size. Such a request is satisfied as long as the
network begins the transfer after the start time and completes it
before the end time. The network controller has the flexibility in
deciding the manner in which each file is transferred, i.e., how
the bandwidth assignment to each job varies over time on all
its allowed paths. The decision process is known as scheduling.
We call this scheduling problem the concurrent file transfer
problem (CFTP).
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The current research networks generally use routers over
optical transmission technologies instead of optical switches.
Routers can split or aggregate traffic before putting it into the
wavelength channels or the optical Ethernet links. Hence, the
problem in this paper is routing and fine-grained bandwidth as-
signment rather than wavelength assignment, as would be the
case in a wavelength-based circuit-switched optical network. It
is possible to reserve an end-to-end wavelength path in the cur-
rent research networks. But, our formulation of the bandwidth
assignment problem will be unaffected since we can simply re-
move the reserved wavelength from the link capacity. We defer
the wavelength assignment problem in an all optical network
to future research.

We will formulate CFTP as a special type of the multi-
commodity flow problem, known as the maximum concurrent
flow (MCF) problem [41,26]. While MCF is concerned with
allocating bandwidth to persistent concurrent flows, CFTP has
to cope with the start and end time constraints of the jobs. For
this purpose, our formulations for CFTP involve dividing time
into uniform time slices and allocating bandwidth to each job
on every time slice. Such a setup allows an easy representation
of the start and end time constraints, by setting the allocated
bandwidth of a job to zero before the start time and after the
end time. More importantly, in between the start and end times,
the bandwidth allocated for each job is allowed to vary from
time slice to time slice. This enables periodical adjustment of
the bandwidth assignment to the jobs so as to improve some
performance objective.

Motivated by the MCF problem, the chosen objective is the
throughput of the concurrent transfers. For fixed traffic demand,
it is well known that such an objective is equivalent to mini-
mizing the worst-case link congestion, a form of network load
balancing [41]. A balanced traffic load enables the network
to accept more future job requests, and hence, achieve higher
long-term resource utilization. We assume that the optical net-
work contains enough IP routers for traffic grooming, which
is true for current research networks. Such a network allows
fine-grained multiplexing of traffic for better network resource
utilization.

In addition to the problem formulation, other contributions of
this paper are as follows. First, in scheduling file transfers over
multiple time slices, we focus on the tradeoff between achiev-
able throughput and the required computation time. Second,
we investigate using multiple paths for each file transfer to im-
prove the throughput. We will show that using a small number
of paths per job is generally sufficient to achieve near optimal
throughput, and this is shown to be significantly higher than the
throughput of a simple scheme that uses single shortest path.
In addition, the computation time for the formulation with a
small number of paths is considerably shorter than that for the
optimal scheme, which utilizes all possible paths for each job.

The rest of the paper is organized as follows. In Section 2, we
describe the CFTP and introduce the uniform time slice struc-
ture. In Section 3, we formally describe the node-arc and edge-
path formulations of CFTP. The latter includes the k-shortest
paths and k-shortest disjoint paths variants. In Section 4, we
evaluate the algorithm performance for different formulations.

In Section 5, we introduce related work. The conclusions are
drawn in Section 6.

2. The Concurrent File Transfer Problem (CFTP)

2.1. Problem Definition

A network is represented as a directed graph G = (V, E)
where V is the set of nodes and E is the set of edges (or arcs).
Each edge e ∈ E represents a link whose capacity is denoted
by Ce. A path p is understood as a collection of links with no
cycles. Job requests are submitted to the network using a 6-tuple
representation (Ai, si, di, Di, Si, Ei), where Ai is the arrival
time of the request, si and di are source and destination nodes,
respectively, Di is the size of the file, Si and Ei are requested
start service time and end service time, where Ai ≤ Si ≤ Ei.
The meaning of the 6-tuple is: Request i is made at time t =
Ai, asking the network to transfer a file of size Di from source
node si to destination node di over the time interval [Si, Ei].

In our framework, the network resource is managed by a
central network controller. File transfer requests arrive follow-
ing a random process and are submitted to the network con-
troller. The network controller verifies admissibility of the jobs
through a process known as admission control (AC). Admitted
jobs are thereafter scheduled with a guarantee of the start and
end time constraints. The details of how the AC and scheduling
algorithms work together are described in [39]. In this paper,
we focus on the scheduling problem alone at a single schedul-
ing instance and compare different variations of the algorithm.

More specifically, we have the following scheduling prob-
lem. At a scheduling instance t, we have a network G = (V, E)
and the link capacity vector C = (Ce)e∈E . The network may
have some on-going file transfers; it may also have some jobs
that were admitted earlier but yet to be started. The capacity
C is understood as the remaining capacity, obtained by remov-
ing the bandwidth committed to all unfinished jobs admitted
prior to t. The network controller has a collection of new job
requests, denoted by J 1 . The task of the network controller
is to schedule the transfer of the jobs in J so as to optimize a
network efficiency measure. The chosen measure, which will
be further explained later, is the value Z such that, if the de-
mands are all scaled by Z (i.e., from Di to ZDi for every job
i), they can be carried by the network without exceeding any
link capacity. Such a Z is known as the throughput.

The solution to this scheduling problem will be a building
block of the periodic AC and scheduling algorithm in [39].
AC and scheduling are done after every τ time units, where
τ is a positive number. More specifically, at time instances
kτ , k = 1, 2, ..., the network controller collects all the new
requests that arrived on the interval [(k − 1)τ, kτ ], makes the
admission control decision, and schedules the transfer of all
admitted jobs. Both AC and scheduling must take into account
the old jobs, i.e., those jobs that were admitted earlier but remain

1 We no longer need to consider the request arrival times, Ai, for i ∈ J .
We may take Ai = t for i ∈ J .
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unfinished. The value of τ should be small enough so that
new job requests can be checked for admission and scheduled
as early as possible 2 . However, τ should be more than the
computation time required for AC and scheduling.

2.2. The Time Slice Structure

At any scheduling time t, the timeline from t onward is di-
vided into uniform time slices (intervals). The set of time slices
starting from time t is denoted as Gt. The bandwidth assign-
ment to each job is done on every time slice. In other words,
the bandwidth reserved for a job remains constant throughout
the time slice, but it can vary across time slices. At the schedul-
ing time t, let the time slices in Gt be indexed as 1, 2, ... in
increasing order of time. Let the start and end time of slice i be
denoted by STt(i) and ETt(i), respectively, and let its length
be LENt(i). We say a time instance t′ > t falls into slice i if
STt(i) < t′ ≤ ETt(i). The index of the slice that t′ falls in is
denoted by It(t′).

The time slice structure is useful for bulk file transfers,
wherein a request is satisfied as long as the network transfers
the entire file between the start and end time. Such jobs offer
a high degree of flexibility to the network in modulating the
bandwidth assignment across time slices. This is in contrast
to applications that require minimum bandwidth guarantee, for
which the network must maintain the minimum required band-
width from the start to the end time.

2.2.1. Rounding of the Start and End Time
While working with the time slice structure, the start and

end time of the jobs should be adjusted to align on the slice
boundaries. This is required because bandwidth assignment
is done on a slice level. To illustrate, consider a file request
(Ai, si, di, Di, Si, Ei). Let the rounded start and end time be
denoted as Ŝi and Êi, respectively. We round the requested
start time Si to be the maximum of the current time or the end
time of the slice in which Si falls, i.e.,

Ŝi = max{t, ETt(It(Si))}. (1)
For rounding of the requested end time, we follow a stringent

policy wherein the end time is rounded down, subject to the
constraint that Êi > Ŝi. That is, there has to be at least one-slice
separation between the rounded start and end time. Otherwise,
there is no way to schedule the job. More specifically,

Êi =





ETt(It(Ŝi) + 1) if STt(It(Ei)) ≤ Ŝi

Ei else if ETt(It(Ei)) = Ei

STt(It(Ei)) otherwise.
(2)

Fig. 1 shows several rounding examples. In practice, several
variations of this rounding policy can be adopted based on the

2 In this scheme, a request generally needs to wait for no longer than τ time
units for the admission decision. It is also possible to perform admission
control and scheduling in real time by examining if the remaining network
bandwidth is sufficient when the request arrives. But, periodically, all jobs in
the system are re-scheduled to make better use of the network bandwidth.

preference of the network manager. The subsequent problem
formulations and solutions do not depend on the variation that
is chosen.

Jobs

Jobs After Rounding

Fig. 1. Examples of stringent rounding. The unshaded rectangles are time
slices. The shaded rectangles represent jobs. The top ones show the requested
start and end times. The bottom ones show rounded start and end times.

From the definition of uniform slices, the slice set anchored
at t, Gt, contains infinitely many slices. In general, only a finite
subset of Gt is useful to us. Let Mt be the index of last slice in
which the rounded end time of some job falls. That is, Mt =
It(maxi∈J Êi). Let Lt ⊂ Gt be the collection of time slices
{1, 2, ..., Mt}. It is sufficient to consider Lt for scheduling.

3. Formulations

The maximum concurrent file transfer problem is formulated
as a special type of network linear programs (LP), known as the
maximum concurrent flow problem (MCF) [41,26]. We con-
sider both the node-arc form and the edge-path form of the
problem.

3.1. Node-Arc Form

Let f i
(l,k)(j) be the total amount of data transfer on link

(l, k) ∈ E that is assigned to job i ∈ J on the time slice j ∈ Lt.
We will loosely call it the flow for job i on arc (l, k) on time
slice j. Our objective is to determine the variables, f i

(l,k)(j).
Once determined, they tell how much data will be transferred
for job i on link (l, k) on time slice j, for all jobs, links and
time slices.

Node-Arc(t, J)
max Z (3)

subject to
∑

k:(l,k)∈E

f i
(l,k)(j)−

∑

k:(k,l)∈E

f i
(k,l)(j)

=





yi(j) if l = si

−yi(j) if l = di

0 otherwise

∀i ∈ J,∀l ∈ V, ∀j ∈ Lt (4)
Mt∑

j=1

yi(j) = ZDi ∀i ∈ J (5)

∑

i∈J

f i
(l,k)(j) ≤ C(l,k)(j)LENt(j), ∀(l, k) ∈ E, ∀j ∈ Lt

(6)

f i
(l,k)(j) = 0, j ≤ It(Ŝi) or j > It(Êi),

∀i ∈ J,∀(l, k) ∈ E (7)

f i
(l,k)(j) ≥ 0, ∀i ∈ J,∀j ∈ Lt, ∀(l, k) ∈ E. (8)

3



Condition (4) is the flow conservation equation that is re-
quired to hold on every time slice j ∈ Lt. It says that, for each
job i, if node l is neither the source node for job i nor its des-
tination, then the total flow of job i that enters node l must be
equal to the total flow of job i that leaves node l. Moreover,
on each time slice, the supply of job i from its source must be
equal to the demand at job i’s destination. This common quan-
tity is denoted by yi(j) for job i on time slice j. Condition (5)
says that, for each job, the total supply (or, equivalently, total
demand), when summed over all time slices, must be equal to
Z times the job size, where Z is the variable to be maximized.
Condition (6) says that the capacity constraints must be satis-
fied for all edges on every time slice. Note that the allocated
rate on link (l, k) for job i on slice j is f i

(l,k)(j)/LENt(j),
where LENt(j) is the length of slice j. The rate is assumed to
be constant on the entire slice. Here, C(l,k)(j) is the capacity
of link (l, k) on slice j. In all the experiments in this paper,
each link capacity is assumed to be a constant across the time
slices, i.e., C(l,k)(j) = C(l,k) for all j. But, the formulation
allows the more general time-varying link capacity. (7) is the
start and end time constraint for every job on every link. The
flow must be zero before the rounded start time and after the
rounded end time.

The linear program asks: What is the largest constant scal-
ing factor Ẑ such that, after every job size is scaled by Ẑ,
the link capacity constraints, as well as the start and end time
constraints, are still satisfied for all time slices? Let the op-
timal flow vector for the linear program be denoted by f̂ =
(f̂ i

(l,k)(j))i,l,k,j . If Ẑ ≥ 1, then the flow Ẑf̂ can still be han-
dled by the network without the link capacity constraints being
violated. If, in practice, the flow vector Ẑf̂ is used instead of
f̂ , the file transfer can be completed faster. If Ẑ < 1, it is not
possible to satisfy the deadline of all the jobs. However, if the
file sizes are reduced by a common factor ẐDi for all i, then,
the requests can all be satisfied.

There exists a different perspective to our optimization ob-
jective. Maximizing the throughput of the concurrent flow is
equivalent to finding a concurrent flow that carries all the de-
mands and also minimizes the worst-case link utilization, i.e.,
link congestion. To see this, we make the following substitu-
tion of (vector) variables in (3)-(8): f̃ = f/Z and ỹ = y/Z.
Then, (6) becomes,

∑
i∈J f̃ i

(l,k)(j)

C(l,k)(j)LENt(j)
≤ 1

Z
, ∀(l, k) ∈ E, ∀j ∈ Lt.

The left hand above is the link utilization at link (l, k) on time
slice j. Hence, by maximizing Z, or equivalently minimizing
1/Z, the largest link utilization over all links and across all time
slices is minimized. The result is that the traffic load is balanced
over the whole network and across all time slices. This feature
is desirable if the network also carries other types of traffic
that is sensitive to network load bursts, such as real-time traffic
or traffic requiring minimum bandwidth guarantee. In addition,
by reserving only the minimum bandwidth in each time slice,
more future requests can potentially be accommodated.

The problem formulated here is related to the MCF problem.

The difference is that, in the MCF problem, the time dimension
does not exist. Our problem becomes exactly the MCF problem
if Mt = 1 (i.e., there is only one time slice) and if the con-
straints for the start and end times of the jobs, (7), are removed.
In the MCF problem, the variable Z is called the throughput
of the concurrent flow. The MCF problem has been studied in
a sequence of papers, e.g., [41,26,24,3,4]. Several approxima-
tion algorithms have been proposed, which run faster than the
usual simplex or interior point methods. For our problem, we
can replicate the graph G into a sequence of temporal graphs
representing the network at different time slices and use virtual
source and destination nodes to connect them. We then have
an MCF problem on the new graph and we can apply the fast
approximation algorithms to this MCF instance.
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Fig. 2. A network with 11 nodes and 13 bi-directional links, each of capacity
1GB shared in both directions.

Example-1: Consider the network shown in Fig. 2 with
two file transfer requests, J1 : (0, 1, 9, 8000, 0, 60) and J2 :
(0, 3, 6, 1000, 0, 60). Here, we have used our 6-tuple conven-
tion to represent the requests. Both jobs requests arrive at time
0. The start and end times are both at t = 0 and t = 60,
respectively. The job size is measured in GB and the time in
minutes. When we schedule using a single slice of length 60
minutes, the node-arc formulation gives the following flow
reservation for each job on edges e1 through e13.
J1 : {3600, 0, 0, 0, 0, 0, 3600, 3600, 3600, 3600, 3600, 0, 3600}
J2 : {0, 0, 900, 900, 900, 0, 0, 0, 0, 0, 0, 0, 0}
The throughput Z is 0.9, which is optimal.

The number of variables required to solve the node-arc model
is Θ(|E| × |Lt| × |J |), because, for every job, there is an arc
flow variable associated with every link for every time slice.
The resulting problem is computationally expensive even with
the fast approximation algorithms. In Section 3.2, we will con-
sider the edge-path form of the problem, where every job is
associated with a set of path-flow variables corresponding to a
small number of paths, for every time slice.

3.2. Edge-Path Form

The edge-path formulation uses a set of simple paths for
each i ∈ J and determines the flow on each of these paths
on every time slice. The number of possible simple paths can
actually be higher than the number of arcs and therefore the
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edge-path form has no computational advantage over the node-
arc form. To avoid the computational complexity, we consider
sub-optimal formulations where we allow only a small number
of paths for each job. In such a setting, the edge-path form is
an appropriate formulation.

Let Pt(si, di) be the set of allowed paths for job i (from the
source node si to the destination di). Let f i

p(j) be the total
amount of data transfer on path p ∈ Pt(si, di) that is assigned
to job i ∈ J on the time slice j ∈ Lt. We will loosely call it
the flow for job i on path p on time slice j.

Edge-Path(t, J)
max Z (9)

subject to
Mt∑

j=1

∑

p∈Pt(si,di)

f i
p(j) = ZDi, ∀i ∈ J (10)

∑

i∈J

∑

p∈Pt(si,di)
p:e∈p

f i
p(j) ≤ Ce(j)LENt(j), ∀e ∈ E, ∀j ∈ Lt

(11)

f i
p(j) = 0, j ≤ It(Ŝi) or j > It(Êi), (12)

∀i ∈ J,∀p ∈ Pt(si, di) (13)

f i
p(j) ≥ 0, ∀i ∈ J,∀j ∈ Lt, ∀p ∈ Pt(si, di). (14)

Condition (10) says that, for every job, the sum of all the
flows assigned on all time slices for all allowed paths must
be equal to Z times the job size, where Z is the variable to
be maximized. (11) says that the capacity constraints must be
satisfied for all edges on every time slice. Note that the allocated
rate on path p for job i on slice j is f i

p(j)/LENt(j), where
LENt(j) is the length of slice j. Ce(j) is the capacity of link
e on slice j. (13) is the start and end time constraint for every
job on every allowed path. The flow must be zero before the
rounded start time and after the rounded end time.

The edge-path formulation allows an explicitly defined col-
lection of paths for each file-transfer job and flow reservations
are done only on these paths. The number of variables required
to solve the edge-path model is Θ(k × |Lt| × |J |), where k is
the maximum number of paths allowed for each job. We will
examine two possible collections of paths, k-shortest paths and
k-shortest disjoint paths.

3.2.1. k-shortest paths
We use the algorithm in [46] to generate k-shortest paths.

This algorithm is not the fastest one, but is easy to implement.
Also, in Section 3.2.2, we will use it as a building block in our
algorithm for finding k-shortest disjoint paths. The key steps
of the k-shortest-path algorithm are:

(i) Compute the shortest path using Dijkstra’s algorithm.
This path is called the ith shortest path for i = 1. Set
B = ∅.

(ii) Generate all possible deviations to the ith shortest path
and add them to B. Pick the shortest path from B as the
(i + 1)th shortest path.

(iii) Repeat step 2) until k paths are generated or there are no
more paths possible (i.e., B = ∅.).

Given a sequence of paths p1, p2, ..., pk from node s to d,
the deviation to pk at its jth node is defined as a new path, p,
which is the shortest path under the following constraint. First,
p overlaps with pk up to the jth node, but the (j + 1)th node
of p cannot be the (j + 1)th node of pk. In addition, if p also
overlaps with pl up to the jth node, for any l = 1, 2, ..., k− 1,
then the (j +1)th node of p cannot be the (j +1)th node of pl.
Example-2: Let us apply the edge-path formulation with k-
shortest paths to the file transfer requests in Example-1 for the
network shown in Fig. 2. The case of k = 1 corresponds to
using the single shortest path for each job. Let pi

j denote the
jth shortest path for job i. The shortest paths are:

p1
1 : 1− 11− 10− 9 p2

1 : 3− 2− 7− 6

Flow reservation for each job is given by:

f1
p1
1
(1) = 3600 f2

p2
1
(1) = 450

The throughput is 0.45, which is only half the optimal value
obtained from the node-arc formulation.

For the case k = 2, i.e., with two shortest paths per job, we
have,

p1
1 : 1− 11− 10− 9 p2

1 : 3− 2− 7− 6

p1
2 : 1− 2− 10− 9 p2

2 : 3− 4− 5− 6

f1
p1
1
(1) = 3600 f2

p2
1
(1) = 450

f1
p1
2
(1) = 0 f2

p2
2
(1) = 0

The total flow for J1 is f1
p1
1
(1)+f1

p1
2
(1) = 3600. The total flow

for J2 is f2
p2
1
(1) + f2

p2
2
(1) = 450. The throughput is 0.45.

From k = 1 to 2, we do not find any throughput improve-
ment. This is because for J1, the second path shares an edge
with the first, and hence, the total flow reaching the destination
node is limited to 3600. By increasing the number of paths per
job from 2 to 4, we get the following results.

p1
1 : 1− 11− 10− 9 p2

1 : 3− 2− 7− 6

p1
2 : 1− 2− 10− 9 p2

2 : 3− 4− 5− 6

p1
3 : 1− 2− 7− 8− 9 p2

3 : 3− 2− 10− 9− 8− 7− 6

p1
4 : 1− 11− 10− 2− 7− 8− 9

p2
4 : 3− 2− 1− 11− 10− 9− 8− 7− 6

f1
p1
1
(1) = 3600 f2

p2
1
(1) = 0

f1
p1
2
(1) = 0 f2

p2
2
(1) = 900

f1
p1
3
(1) = 3600 f2

p2
3
(1) = 0

f1
p1
4
(1) = 0 f2

p2
4
(1) = 0

The total flow for J1 is 7200; the total flow for J2 is 900. The
throughput is 0.9. This is equal to the optimal value achieved
by the node-arc formulation.

3.2.2. k-shortest disjoint paths
One interesting aspect that we noticed in Example-2 is that,

while the k-shortest path algorithm minimizes the number of
links used, the k-shortest paths for each job have a tendency
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to overlap on some links. As a result, addition of new paths do
not necessarily improve the throughput. This motivates us to
consider the k-shortest disjoint paths.

In this paper, we use the term, k-shortest disjoint paths, as a
short hand for a better term, k-successive shortest edge-disjoint
paths between a node pair, which has been used quite widely
in the networking literature, especially for network failure re-
covery (e.g., [18]). The latter term is defined algorithmically
by repeating the following steps: find the shortest path, remove
the edges on the shortest path from the network, and then find
the next shortest path on the remaining network. The algorithm
may take additional rules to break ties when multiple shortest
paths exist in each step. In our case, it is quite common that
the above algorithm stops before k paths can be found, due to
the small network size or small node degree. Additional steps
are needed to eventually find k paths, which will be outlined
subsequently. In this case, the resulting k paths are not nec-
essarily disjoint from each other. There is another use of the
term, k-shortest edge-disjoint paths, in the literature, which are
the k edge-disjoint paths whose aggregate length is no greater
than any other set of k edge-disjoint paths [43]. But, this de-
finition still does not deal with the cases when there aren’t k
disjoint paths. In principle, the real optimization question is to
find k or less paths for every node pair so that the worst-case
link congestion is minimized. However, even simpler-looking
problems than this are extremely hard [32]. We believe that
many researchers will continue to investigate this kind of path
selection problems.

The algorithm for finding the k-shortest disjoint paths from
node s to d is as follows. Given the directed graph G, in the
first step of the algorithm, we find the shortest path from node
s to d, and then we remove all the edges on the path from
the graph G. In the next step, we find the shortest path in the
remaining graph, and then remove those edges on the selected
path to create a new remaining graph. The algorithm continues
until we find k paths or until it is not possible to find more
paths, whichever comes first. When the number of disjoint paths
selected is less than k, we resort to the following heuristics to
select additional paths so that the total number of selected paths
is k. Let S be the list of selected disjoint paths.

(i) Set S to be an empty list. Set B = ∅.
(ii) Find all the disjoint paths between the source s and des-

tination d and append them to S in the order they are
found. Let p be the first path in the list S.

(iii) Generate the deviations for p and add them to B.
(iv) Select the path in B that has the least number of over-

lapped edges with the paths in S, and append it to S.
(v) Set p to be the next path in the list S.

(vi) Repeat from step 3) until S contains k paths or there are
no more paths possible (i.e., B = ∅).

In the above steps, the set B contains short paths, generated
from the deviations of some already selected disjoint paths.
The newly selected path from B has the least overlap with
the already selected ones. It should be noted that while this
approach reduces the overlap between the k paths of each job,
it does not guarantee the same for paths across jobs. This is
because, the average path length of k-shortest disjoint paths

tends to be greater than that of the k-shortest paths, potentially
causing the shortest disjoint paths of one job to heavily overlap
with those of other jobs. This can have a negative effect on the
overall throughput.
Example-3: Let us apply the k-shortest disjoint paths to
Example-1. For k = 2, we have,

p1
1 : 1− 11− 10− 9 p2

1 : 3− 2− 7− 6
p1
2 : 1− 2− 7− 8− 9 p2

2 : 3− 4− 5− 6

f1
p1
1
(1) = 3600 f2

p2
1
(1) = 450

f1
p1
2
(1) = 3600 f2

p2
2
(1) = 450

The total flow for J1 is f1
p1
1
(1)+f1

p1
2
(1) = 7200. The total flow

for J2 is f2
p2
1
(1)+f2

p2
2
(1) = 900. The throughput is 0.9. Hence,

the optimal throughput is achieved with k = 2.

4. Evaluation

This section shows the performance results of the edge-path
formulation using the single and multi-path schemes. We com-
pare its throughput with the optimal solution obtained from
node-arc formulation. The scalability of the formulations are
evaluated based on their required computation time.

The experiments were conducted on random networks and
Abilene, an Internet2 high-performance backbone network
(Fig.3). The random networks have between 100 and 1000
nodes with a varying node degree of 5 to 10. The network
generator takes the number of nodes and the average node
degree as arguments, from which it computes the total number
of links in the network. Then, it repeatedly picks a node pair
uniformly at random from those unconnected node pairs, and
connects them with a pair of links in both directions. This
process is repeated until all links are assigned. The speed
of each link in a pair is drawn uniformly from 0.1 Gbps to
10 Gbps. Our instance of the Abilene network consists of a
backbone with 11 nodes, in which each node is connected to
a randomly generated stub network of average size 10. The
backbone links are each 10GB. The speed of each link in a
stub network is drawn uniformly at random from 0.1 Gbps to
10 Gbps. The entire network has 121 nodes and 490 links.

We use the commercial CPLEX package for solving linear
programs on Intel-based workstations 3 . In order to simulate the
file size distribution of Internet traffic, we resort to the widely
accepted heavy-tailed Pareto distribution, with the distribution
function F (x) = 1 − (x/b)−α, where x ≥ b and α > 1. As
α value gets closer to 1, the distribution becomes more heavy-
tailed and there is a higher probability of generating large file
sizes. All the experiments described in this section were done
using Pareto parameter α = 1.8 and an average job size of
50GB. The plots use the following acronyms: S (Shortest path),
SD (Shortest Disjoint path) and NA (Node-Arc).

3 Since fast approximation algorithms are not the focus of this paper, we
use the standard LP solver for the evaluations.
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While configuring the simulation environment, we can ignore
the connection setup (path setup for the edge-path form) time
for the following reasons. First, the small network size allows
us to pre-compute the allowed paths for every possible request.
Second, in the actual operation, the scheduling algorithm runs
every few minutes or every tens of minutes. There is plenty of
time to re-configure the control parameters for the paths in the
small research network.

A

B

Fig. 3. The Abilene network with 11 backbone nodes. A and B are stub
networks.

4.1. Single Slice Scheduling (SSS)

When |Lt| = 1 in the node-arc and edge-path formulations,
we call the situation single slice scheduling (SSS). In this ex-
periment, we keep the time-slice structure simple in order to
examine how other factors affect the performance of different
formulations. All jobs start at the 0th minute and end at 60th

minute. Scheduling is done at time 0 with a (single) time slice
size equal to 60 minutes.

4.1.1. Performance Comparison of the Formulations
Fig. 4 shows the throughput improvement on the Abilene

network with increasing number of paths for the shortest (S)
and shortest disjoint (SD) schemes, respectively. The optimal
throughput obtained from the node-arc (NA) form is shown as
a horizontal line. Similar plots are shown in Fig. 5 for a random
network with 100 nodes 4 .

4.1.1.1. Single v.s. Multiple Paths Moving from a single path
to multiple paths per job, we observe a drastic throughput in-
crease. A small number of paths per job is sufficient to real-
ize such throughput improvement. On the Abilene network, the
throughput is increased by up to 10 times with 4 to 8 paths per
job. Simply by switching from a single path to two paths per
job, we observe 60% throughput gain. On the random network,
the throughput is increased by 10 to 30 times with 4 or more
paths. In most of our examples, the S and SD schemes reach
the optimal throughput with k = 8 or less.

4 The node-arc case is not shown in Fig. 5 (d) and in several subsequent
figures because the problem size becomes too large to be solved on our
workstations with 2 to 4 GB of memory, mainly due to the large memory
requirement.

In summary, the optimal throughput obtained from our multi-
path scheme is significantly higher than that of a simple scheme,
which uses single shortest path for every job. Throughput im-
provement by an order of magnitude can be expected with only
a small number of paths. The performance gains saturate at
around 8 paths in most of our simulation - the exact number in
general depends on the topology and actual traffic.

4.1.1.2. Shortest (S) v.s. Shortest Disjoint (SD) Paths For
random networks, SD tends to perform better than S. In most
of our examples, the throughput of SD is several times higher
than that of S for k = 2 to 8. For the Abilene network, the
opposite trend can often be observed. This behavior can be
explained as follows. As we have mentioned in Section 3.2, the
paths for different jobs have a higher chance to overlap in the
SD case, potentially causing throughput degradation. In a well-
connected random network, disjoint or nearly disjoint paths are
more abundant and also tend to be short. The throughput benefit
from the disjoint paths exceeds the throughput degradation from
the longer average path length. On the other hand, in the Abilene
network, the backbone network has few disjoint paths between
each pair of nodes. Insisting on having (nearly) disjoint paths
leads to longer average path length due to the lack of choices.
Hence, the throughput penalty from longer path length is more
pronounced in a small network such as Abilene. Therefore, it
is often more beneficial to use the shortest paths instead.

In summary, we expect SD to be preferable in large, well-
connected networks. In a small network with few disjoint paths,
the performance of S and SD are generally comparable, with S
sometimes being better. Finally, the difference between S and
SD disappears quickly as the number of paths per job increase.
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Fig. 4. Z for different formulations on Abilene network using SSS. (a) 121
jobs; (b) 605 jobs; (c) 1210 jobs; (d) 6050 jobs.

4.1.2. Comparison of Algorithm Execution Time
Recall that our motivation to move from the node-arc formu-

lation to the edge-path formulation is that the latter allows us
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Fig. 5. Z for different formulations on a random network with 100 nodes
using SSS. (a) 100 jobs; (b) 500 jobs; (c) 1000 jobs; (d) 5000 jobs.

to restrict the number of permitted paths for each job, result-
ing in lower algorithm execution time. Fig. 6 and Fig. 7 show
the execution time for the Abilene network and for a random
network with 100 nodes, respectively 5 . The horizontal axis is
the number of selected paths for the shortest (S) and shortest
disjoint (SD) cases. The execution time for the node-arc (NA)
form is shown as a flat line.

We observe that the execution time for S or SD increases
roughly linearly, when the number of permitted paths per job
is small (up to 16 paths in the figures). With several hundred
jobs or more, even the longest execution time (at 16 paths)
is much shorter than that for the node-arc case, by an order
of magnitude. We expect this difference in execution time to
increase with more jobs and larger networks.

In Fig. 6 (c) and (d), we see that the scheduling time for
the node-arc formulation approaches or exceeds the actual 60-
minute transfer time of the files. On the other hand, the edge-
path formulation with a small number of allowed paths, is much
more scalable with traffic intensity. Fast approximation algo-
rithms in [41,26,24,3,4], if used, should improve the execution
time for all formulations. But, the significant difference be-
tween the node-arc case and the shortest or shortest disjoint
cases should still remain.

4.1.3. Algorithm Scalability with Network Size
Fig. 8 shows the variation of the algorithm execution time

with network size. In our simulations, we schedule 100 jobs
using SSS for a period of 60 minutes. The edge-path algorithms
(S and SD) with 8 paths have an execution time under 10
seconds for networks with less than 800 nodes. On the other
hand, the execution time for the node-arc algorithm is nearly 15
minutes for a network size of 500 nodes. We conclude that the

5 Unless mentioned otherwise, the execution time for the edge-path formu-
lations does not include the path computation time for finding the shortest
paths. This is because the shortest paths are computed only once, and the
computation can be carried out off-line.
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Fig. 6. Execution time for different formulations on the Abilene network
using SSS. (a) 121 jobs; (b) 605 jobs; (c) 1210 jobs; (d) 6050 jobs.
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Fig. 7. Execution time for different formulations on a random network with
100 nodes using SSS. (a) 100 jobs; (b) 500 jobs; (c) 1000 jobs; (d) 5000 jobs.

node-arc formulation is unsuitable for real-time scheduling of
file transfers on networks of more than several hundred nodes.
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Fig. 8. Random network with k = 8. Execution time for different network
sizes.

4.1.4. Average Results over Random Network Instances
When the experiments are conducted on random networks,

unless mentioned otherwise, each plot typically presents the
results obtained from a single network instance rather than an
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average result over many network instances. To demonstrate
that the single-instance results are not anomalies but represen-
tative, we repeated the experiments in Section 4.1 for a 100-
node random network and plotted the data points averaged over
50 network instances. Due to space limitation, we present only
the results for 1000 jobs in Fig. 9. This should be compared
with Fig. 5 (c), which is for a single network instance. Besides
the fact that the curves in Fig. 9 are smoother, the two figures
show similar characteristics. All the observations that we have
made about Fig. 5 (c) remain essentially true for Fig. 9. We
should point out that, in order to run the experiment on many
network instances in a reasonable amount of time, the networks
for Fig. 9 were generated with fewer links than that for Fig.
5 (c). This accounts for the difference in the throughput val-
ues between the two cases. Finally, the corresponding average
execution time is shown in Fig. 10 on semilog scale.
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Fig. 9. Average Z for different formulations on a random network with 100
nodes and 1000 jobs using SSS. The result is the average over 50 instances
of the random network.
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Fig. 10. Average execution time for different formulations on a random
network with 100 nodes and 1000 jobs using SSS. The result is the average
over 50 instances of the random network.

We further confirmed the validity of our data and results by
computing the confidence interval of the mean values plotted
in Fig. 9. For instance, the mean and standard deviation of
the throughput for node-arc formulation is 0.1489 and 0.0807,
respectively. The 95% confidence interval for the mean is
±0.0188 around the mean. This is a good indicator of the
accuracy of our results.

In addition, we also computed the average of the throughput
ratio of S and SD schemes to the node-arc formulation. In
Fig. 11, both S and SD schemes achieve nearly 80% of the
optimal throughput by switching from single path to 2 paths.
The throughput reaches 99% with 8 paths. For k ≤ 4, SD
performs better than S. The plot is consistent with our earlier
results shown in Fig. 9.
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Fig. 11. Average throughput ratio for different formulations on a random
network with 100 nodes and 1000 jobs using SSS. The result is the average
over 50 instances of the random network.

4.2. Multiple Slice Scheduling (MSS)

When |Lt| > 1 in the node-arc and edge-path formulations,
we call the situation multiple slice scheduling (MSS). In this
experiment, 121 jobs are scheduled for a period of 1 day using
multiple slices of identical size. The interval between the start
times of the jobs are independently and identically distributed
exponential random variables with a mean of 1 minute. The
requested end time of each job is set to be equal to its start
time plus the desired transfer time, which is equal to the file
size divided by the desired bandwidth, chosen to be 0.1 Gbps.
We have tried four time-slice sizes: 60, 30, 15 and 10 minutes.

4.2.1. Performance Comparison of Different Formulations
Fig. 12 shows the throughput improvement for the Abilene

network with increasing number of paths for the S and SD
schemes, respectively. The throughput of the node-arc formu-
lation is shown as a flat line.

For each fixed slice size, the general behavior of the through-
put follows the same pattern as the SSS case discussed in Sec-
tion 4.1.1. In particular, the throughput improvement is signifi-
cant as the number of paths per job decreases. In Fig. 12, we ob-
serve more than 50% throughput increase with 4 or fewer paths
and nearly 30% to 50% increase with 8 or more paths. When
comparing across different slice sizes, we see that smaller slice
sizes have a throughput advantage, because they lead to more
accurate quantization of time. Having more time slices in a fixed
scheduling interval offers more opportunities to adjust the flow
assignment to the jobs. In Fig. 12, the throughput values at 16
paths per job is 9 for 10-min slice size and 6 for 60-min slice
size. This shows the benefit of having a fine-grained slice size,
since in this experimental setup, 16 paths are sufficient for S
and SD schemes to reach the optimal throughput. We observed
more significant throughput improvement from using smaller
time slices in other settings. For instance, with 603 jobs, the
throughput obtained from 10-min slice size is nearly twice the
throughput from 60-min slice size.

Fig. 13 shows similar results for a 100-node random net-
work with 100 jobs. The maximum throughput at 16 paths is
nearly the same for all cases. However, for situations with a
small number of paths per job, smaller time slice sizes have a
throughput advantage. More throughput improvement has been
observed under other experimental settings. For instance, with
500 jobs and 16 paths, a 24% improvement is observed when
using 10-minute slices instead of 60-minute slices.
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Fig. 12. Z for different formulations on the Abilene network with 121 jobs
using MSS. (a) Time slice = 60 min; (b) Time slice = 30 min; (c) Time slice
= 15 min; (d) Time slice = 10 min.
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Fig. 13. Z for different algorithms on a 100-node random network with 100
jobs using MSS. (a) Time slice = 60 min; (b) Time slice = 30 min; (c) Time
slice = 15 min; (d) Time slice = 10 min.

4.2.2. Comparison of Algorithm Execution Time
Fig. 14 and Fig. 15 show the execution time for the Abilene

network with 121 jobs and for a 100-node random network
with 100 jobs, respectively. For each fixed time slice size, we
continue to observe the linear or faster increase of the execution
time as the number of paths increase in the S and SD schemes.
Again, the execution time for the node-arc form is much greater
than that for the S and SD cases; in most cases, too large
to be observed from our experiments. Finally, the throughput
advantage of using smaller slice sizes is achieved at the expense
of significant longer execution time.

4.2.3. Optimal Time Slice
The tradeoff of the three scheduling algorithms lies in two

metrics, throughput and execution time. Fig. 16 helps to identify
a suitable time slice size for which the throughput is high and
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Fig. 14. Execution time for different formulations on the Abilene network
with 121 jobs using MSS. (a) Time slice = 60 min; (b) Time slice = 30
min; (c) Time slice = 15 min; (d) Time slice = 10 min.
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Fig. 15. Execution time for different formulations on a 100-node random
network with 100 jobs using MSS. (a) Time slice = 60 min; (b) Time slice
= 30 min; (c) Time slice = 15 min; (d) Time slice = 10 min.

the execution time is acceptable. We observe that the throughput
begins to saturate when the time slice size is 15 minutes and
the execution time is under half a minute. Note the sharp rise
of the execution time as the slice size decreases. It is therefore
essential to choose an appropriate slice size.

5. Related Work

Similar to this paper, the authors of [6] also advocate peri-
odic re-optimization to determine new routes and bandwidth in
optical networks. They also use a multi-commodity flow for-
mulation. However, they do not assume users making advance
reservations with requested start and end times. As a result, the
scheduling problem is for a single time instance, rather than
over multiple time slices. Furthermore, it does not consider the

10



 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 8.5
 9

 9.5

 10  20  30  40  50  60

Z

Time slice

S
SD

(a)

 1

 10

 100

 10  20  30  40  50  60
E

xe
cu

tio
n 

tim
e 

(s
)

Time slice

S
SD

(b)

Fig. 16. The Abilene network with 121 jobs and k = 8. (a) Z for different
time slices; (b) Execution time for different time slice sizes.

edge-path formulation with limited number of paths per job.
Several earlier studies [40,8,12,10,14,45,44] consider ad-

vance bandwidth reservation with start and end times at an
individual link for traffic that requires minimum bandwidth
guarantee (MBG). The concern is typically about designing
efficient data structures for keeping track of and querying
bandwidth usage at the link on different time intervals. New
jobs are admitted one at a time without changing the bandwidth
assignment of the existing jobs in the system. The admission
of a new job is based on the availability of the requested band-
width between its start time and end time. [27,44,13,10,22] and
[14] all go beyond single-link advance reservation and tackle
the more general path-finding problem for the MBG traffic
class, but typically only for the new requests, one at a time.
The routes and bandwidth of the existing jobs are unchanged.
[11] discusses architectural and signaling-protocol issues about
advance reservation of network resources. [34] considers a
network with known routing in which each admitted job de-
rives a profit. It gives approximation algorithms for admitting
a subset of the jobs so as to maximize the total profit.

[27,13] touch upon advance reservation for bulk transfer. [13]
proposes a malleable reservation scheme. The scheme checks
every possible interval between the requested start time and
end time for the job and tries to find a path that can accom-
modate the entire job on that interval. It favors intervals with
earlier deadlines. [27] studies the computation complexity of
a related path-finding problem and suggests an approximation
algorithm. [35] starts with an advance reservation problem for
bulk transfer. Then, the problem is converted into a bandwidth
allocation problem at a single time instance to maximize the
job acceptance rate. This is shown to be an NP-hard combina-
torial problem. Heuristic algorithms are then proposed. Many
papers study advance reservation, re-routing, or re-optimization
of lightpaths, at the granularity of a wavelength, in WDM op-
tical networks [47,5,7]. They are complementary to our study.

In the control plane, [29] and [28] present architectures for
advance reservation of intra and interdomain lightpaths. The
DRAGON project [33] develops control plane protocols for
multi-domain traffic engineering and resource allocation on
GMPLS-capable [21] optical networks. GARA [25], the reser-
vation and allocation architecture for the grid computing toolkit,
Globus, supports advance reservation of network and comput-
ing resources. [23] adapts GARA to support advance reserva-
tion of lightpaths, MPLS paths and DiffServ paths.

6. Conclusion

This study aims at contributing to the management and re-
source allocation of research networks for data-intensive e-
science collaborations. The need for large file transfers is among
the main challenges posed by such applications. The opportu-
nities lie in the fact that research networks are generally much
smaller in size than the public Internet, and hence, can afford
a centralized resource management platform. In this paper, we
formulate two linear programs, the node-arc form and edge-
path form, for scheduling bulk file transfers with start and end
time constraints. Our objective is to maximize the throughput,
subject to the link capacity constraints. The throughput is a
common scaling factor for all demand (file) sizes. This per-
formance objective is equivalent to finding a transfer schedule
that carries all the demands and also minimizes the worst-case
link congestion across all links and time. It has the effect of
balancing the traffic load over the whole network and across
time. This feature enables the network to accept more future
file transfer requests and in turn achieve higher long-term re-
source utilization.

An important contribution of this paper is towards the appli-
cation of the edge-path formulation to obtaining close to op-
timal throughput with a reasonable time complexity. We have
shown that the node-arc formulation, while giving the optimal
throughput, is computationally very expensive. The edge-path
formulation can lead to drastic reduction of the computation
time by using a small number of pre-defined paths for each
file-transfer job. We discussed two path selection schemes, the
shortest paths (S) and the shortest disjoint paths (SD). Both
schemes are capable of achieving near optimal throughput with
a small number of paths, e.g. 8 or less, for each file-transfer
request. Both S and SD perform well in a small network with
few disjoint paths, e.g. the Abilene backbone, while SD per-
forms better than S in larger, well connected networks. In the
evaluation process, we also showed that having multiple paths
per job yields much higher throughput than having one shortest
path per job.

To handle the start and end time requirement of advance
reservation, we divide time into uniform time slices in our for-
mulations. The paper showed that using finer slices leads to
significant throughput increase at the expense of longer execu-
tion time. It is therefore important to choose the right slice size
that best balances such a tradeoff.

Throughout the paper, we have assumed that all jobs are
admissible. In a real environment, admission control should
be built into the scheduling system and performed before the
scheduling phase. Our current research work [39] focuses on
developing a joint admission control/scheduling framework that
uses the formulations and algorithms described in this paper as
its core components.
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