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Abstract—We propose a new randomized link scheduling
algorithm for wireless networks, called I-CSMA, which is based
on a modified version of the Ising model in physics. The main
result is that I-CSMA is shown to be throughput-optimal. I-
CSMA is a generalization of earlier Glauber-dynamics-based,
throughput-optimal algorithms such as Q-CSMA in that each
earlier algorithm involves a truncated Markov chain of the
Markov chain in I-CSMA. The main result implies that there
is no need to truncate the Markov chain in the classical way
by prohibiting transitions into the subset of the excluded states,
which in this case are the link configurations with interference.
The Markov chain can freely move over the entire space of
link configurations. Other methods of “truncation” for produc-
ing a valid schedule work equally well in terms of achieving
throughput-optimality. Therefore, the main result justifies the
removal of a major restriction in earlier related algorithms, and
allows the exploration and exploitation of that new freedom. Our
simulation experiments show that I-CSMA leads to smaller queue
sizes, and therefore, gives better delay performance. The I-CSMA
algorithm is still decentralized and easily implementable. We also
propose a heuristic I-CSMA algorithm, which is even simpler and
yet has comparable performance to I-CSMA.

Index Terms—link scheduling, wireless networks, carrier-sense
multiple access (CSMA), Markov chain, Ising model, Glauber
dynamics

I. INTRODUCTION

Efficient utilization of the network resources is vitally im-
portant in wireless networks, as the capacity of such networks
is often severely limited. Despite the capacity limitation,
network users often demand high-bandwidth and low-delay
network services for applications such as realtime video
streaming. Link transmission scheduling is one of the key
mechanisms for improvement in both network resource utiliza-
tion and user perceived performance. An ideal link scheduling
algorithm should achieve high throughput, low delay, and it
should do so at low complexity. The well-known max-weight
scheduling algorithm [1] is throughput-optimal, in that it can
stabilize the network queues for all arrival rate vectors in
the interior of the capacity region. However, this algorithm
involves solving an NP-hard combinatorial problem on each
time slot. Thus, it is not practical for large wireless networks.
Another group of algorithms uses schedules of lower complex-
ity and achieves a fraction of the capacity region. This group
includes various maximal schedules, and in particular, the
longest-queue-first (LQF) schedule [2] [3] [4] [5]. Experiments
have shown that LQF has good delay performance; but this is
achieved at the expense of throughput reduction. LQF involves
sorting all the link queues on each time slot, which requires

global (i.e., network-wide) information and control and can be
time-consuming to do.

Another family of scheduling algorithms has attracted much
attention recently: randomized algorithms in which the link
activation probabilities are dependent on the queue sizes [6]
[7] [8] [9] [10] [11]. A representative one is the Q-CSMA
algorithm [9]. These algorithms can be implemented similarly
to the Carrier Sense Multiply Access (CSMA) scheme used
in practical systems such as WIFI 802.11x. The implementa-
tion is decentralized and requires only local information and
control. Interestingly, despite having simple operations, some
of these algorithms are proven to be throughput-optimal. They
are closely related to the proposed algorithm in this paper in
that, behind the scene, they each have a Glauber dynamics,
which is a special type of Markov chain.

This paper presents a new CSMA-like randomized algo-
rithm, called I-CSMA, based on a physics model called the
Ising model, which is a special type of Glauber dynam-
ics. I-CSMA is substantially different from earlier Glauber-
dynamics-based algorithms. While the Markov chain in each
earlier algorithm is in the space of valid (i.e., interference-free)
schedules, there is no such restriction for the Markov-chain in
I-CSMA. In other words, the state space for I-CSMA is the
set of all link configurations, where a configuration specifies
whether each link is activated or not. When interference exists,
a configuration is not a valid schedule. For actual transmission,
there is a second step for conflict resolution, which converts a
configuration into a valid schedule by turning off some of the
interfering links. The main result of the paper is that I-CSMA
is throughput-optimal, regardless which interfering links are
turned off in the conflict resolution step.

Thus, I-CSMA is a generalization of earlier Glauber-
dynamics-based, throughput-optimal algorithms such as Q-
CSMA in that each earlier algorithm involves a truncated
Markov chain of the Markov chain in I-CSMA. The main
result of the paper says, there is no need to truncate the
Markov chain in the classical way by prohibiting transitions
into the subset of the excluded states, which in this case are
the configurations with interference. The Markov chain can
freely move over the entire state space of link configurations.
Other methods of “truncation” for producing a valid schedule
work equally well in terms of achieving throughput-optimality.
Therefore, the main result of the paper justifies the removal
of a major restriction in earlier related algorithms, and allows
the exploration and exploitation of that new freedom.

One of the main benefits of I-CSMA that we have dis-
covered is that it results in significantly smaller queue sizes
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and less delay than the closest related algorithm, Q-CSMA.
Such improvement has been reliably demonstrated by our
extensive simulation experiments on different networks under
different traffic models. The improvement is generally over
the entire range of traffic intensity; it is especially consistent
in the regime of low to moderately high traffic intensity.
I-CSMA works especially well, with respect to the queue-
size/delay performance, under weight functions that increase
very slowly with the queue size, e.g., log log function of
the queue size. Although it is difficult to give a precise
analysis, the queue-size/delay improvement may have to do
with the aforementioned main feature that distinguishes I-
CSMA from earlier algorithms. When some neighbors of link
v are activated, in earlier algorithms, link v has to passively
wait for the activated neighbors to relinquish the channel,
which may take a while. In I-CSMA, link v can directly
compete for the channel against the activated neighbors. This
feature reduces the chance that activated links monopolize the
transmission opportunities for an excessive amount of time and
it leads to less variability in the service processes of all the
queues. As classical results on single-server queues suggest,
less variability usually means a smaller queue size and less
delay (see also [11] for a more rigorous argument on a related
scenario).

I-CSMA has low computational complexity and is decen-
tralized. Although it is slightly more complex than Q-CSMA,
I-CSMA is still easily implementable, requiring only carrier
sensing and local communications by the network devices1.
We also propose a heuristic I-CSMA algorithm, which is yet
easier to implement than I-CSMA. Simulation experiments
have shown that the heuristic algorithm performs as well as
I-CSMA. Finally, I-CSMA is not based on the standard Ising
model, but on a generalized Ising model that we created.
The generalized Ising model may have other independent
applications and theoretical implications.

With respect to improving the queue-size/delay perfor-
mance, we briefly review several existing studies. A related
queue-based randomized algorithm is proposed in [10]. The
authors show that, on a part of the capacity region, the queue
dynamics is a fast-mixing Markov chain and the total queue
size is bounded by a polynomial in the network size, provided
the degrees of the interference graphs are bounded by a
constant. It is unclear whether the algorithm is throughput-
optimal. The authors of [12] consider the same class of
interference graphs with a bounded degree and show that,
on a part of the capacity region, the expected queue sizes
under Q-CSMA-like algorithms are uniformly bounded by
a constant independent of the network size. The authors of
[13] introduce virtual channels and propose an CSMA-like
randomized algorithm that ends up using different schedules
on the different virtual channels. The objective is to avoid
starvation of some links caused by active links hogging the
transmission opportunity for too long. The algorithm leads to
small head-of-line (HOL) delay at the wireless links. However,
the model in [13] is about a closed-loop utility optimization
problem with flow control and the delay is eventually pushed
back to the sources. The result of low HOL delay doesn’t

1On that point, other CSMA-like algorithms also need to listen to the
transmissions from neighboring links and gather information.

appear to apply to an open-loop stability problem. In addition,
the HOL delay is not the same as the delay experienced by a
typical packet, which is what is considered in this paper. [14]
[15] [16] contain interesting results about delay performance
of CSMA-like algorithms but on more specialized networks.

A hybrid version of Q-CSMA is introduced together with
Q-CSMA in [9] with the goal of reducing delay. In the hybrid
version, when their queue weights are below a threshold,
the links compete for activation in a way that emulates
the greedy maximal schedule (i.e., LQF); when their queue
weights exceed the threshold, the links switch to using the Q-
CSMA algorithm. The same idea of switching between two
algorithms can be applied to I-CSMA although we haven’t
pursued that opportunity yet. The authors of [11] generalize
Q-CSMA in another direction. Specifically, the activation
probability is parametrized by a constant β differently from
the usual approach, where β ∈ [0, 1]. Doing so yields a
family of Q-CSMA-like algorithms, which are all throughput-
optimal. Through an approximate analysis, they show that each
expected queue size decreases as β increases. That direction of
generalization is orthogonal to the direction taken in this paper.
We believe that the two can be combined into an even more
general version. Some recent research challenges the existence
of simple scheduling algorithms that can achieve throughput-
optimality and small queue sizes simultaneously [17] [18].
Those results are about transient queue sizes. In principle,
if the traffic is truly stationary, then it is possible to have
a simple scheduling algorithm that results in small stationary
queue sizes. For instance, we can measure the average arrival
rates and find another rate vector µ in the capacity region that
strictly dominates the arrival rate vector. By Carathéodory’s
theorem, we can express µ as a convex combination of K
schedules, where K is equal to the dimension of the rate
vector plus 1. The coefficients of the convex combination
can be computed. After that initial stage of computation, the
scheduling algorithm is to randomly select and apply one of
the K schedules on each time slot with the coefficients as the
probabilities for selection.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and notations, and review the
standard Ising model and Glauber dynamics. In Section III, we
present a modified Ising model and our I-CSMA algorithm.
In Section IV, we prove the I-CSMA algorithm is throughput-
optimal. In Section V, we discuss additional issues of I-CSMA
such as control overhead and parameter tuning. In Section
VI, we introduce a heuristic I-CSMA algorithm, which is a
simplification of the I-CSMA algorithm. In Section VII, we
present simulation results for both I-CSMA and Q-CSMA and
compare their performance. Conclusions and a discussion of
future work are given in Section VIII.

II. PRELIMINARIES

A. System Model and Notations

We consider a single-channel wireless network character-
ized by an undirected interference graph, G = (V,E), where
the vertex set V represents the wireless links and the edge
set E indicates the interference relations between the links.
Link u and v are connected by an edge (u, v) ∈ E if and
only if their transmissions interfere each other. Interfering links
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Fig. 1. Ising model and spin values

cannot successfully transmit simultaneously. Without loss of
generality, we assume the graph G has at least two nodes and
is connected.

We assume the links all have identical capacity and all pack-
ets have the same size. We then can consider a discrete-time
system where the time slot size is equal to the transmission
time of one packet. Thus, each link’s capacity is one packet
per time slot. At the beginning of each time slot, scheduling
decisions are made whether each of the links will be activated
for transmission on that time slot.

A schedule is represented by a vector x ∈ {−1, 1}|V |. If
a link l is included in the schedule, the lth entry xl is set to
1. We also say link l is ON or activated. Otherwise, xl =
−1 and link l is said to be OFF. A schedule always means
a feasible schedule; that is, no two links that can interfere
with each other are both ON in a schedule. Thus, a schedule
corresponds to an independent set of the graph G. The set of all
schedules is denoted byM. An arbitrary vector in {−1, 1}|V |
is called a configuration, which may or may not be feasible
for the purpose of transmission. The set of all configurations
is denoted by Ω. A scheduling algorithm is a way to choose
a schedule on each time slot.

We consider one-hop traffic, i.e., after transmitted by a link,
a packet leaves the network. Packets arrive at the transmitters
of the links according to a discrete-time finite-state Markov
chain. The arrivals for different links are independent of each
other. The system state on time slot t can be described by the
queue sizes, the ON-OFF status of the links, and the number
of arrivals at time t. The schedules considered in this paper
depend only on the queue sizes and the ON-OFF status of the
links. Hence, the system state is also a discrete-time Markov
chain. System stability means that the Markov chain is positive
recurrent.

The stability region is defined as the set of all arrival rate
vectors for which there exists a scheduling algorithm that
stabilizes the network queues. A scheduling algorithm is said
to be throughput-optimal if it can stabilize the queues under
any arrival rate vector in the stability region. The capacity
region, denoted by Λ, is the closure of the stability region [1].

B. Ising Model and Glauber Dynamics

The I-CSMA algorithm is inspired by a model in physics,
called the Ising model. We will briefly review the Ising model.

1) Ising Model: The Ising model [19] [20] is a mathe-
matical model of ferromagnetism. It uses spin variables with
two possible values, +1 or −1, to represent magnetic dipole
moments. The spin variables are described as the vertices of
a graph, usually, a lattice, and neighboring spin variables can
interact with each other. Given such a graph, a configuration

σ is a vector that specifies all the spin values and σ(v) is the
spin value at vertex v (see Fig. 1 for an example).

In this model, the energy of a configuration σ is given
by H(σ) = −

∑
v∼w σ(v)σ(w), where v ∼ w means v

and w are neighbors in the graph. As one can see, the
energy increases with the number of neighboring pairs whose
spin values disagree. The Gibbs distribution corresponding to
energy function H is a probability distribution, denoted by µ,
on the configuration space, Ω. Under parameter β > 0, it is
given by µ(σ) = 1

Z(β)e
−βH(σ), where Z(β) is the normalizing

constant, i.e., Z(β) =
∑
σ∈Ω e

−βH(σ).
The Glauber dynamics corresponding to the Ising model

is a discrete-time Markov chain with Ω as the state space,
whose stationary distribution is the Gibbs distribution. Given
the current configuration (i.e., state) σ, the Markov chain
makes a transition to a new configuration σ′ according to the
following rule: First, pick a vertex v uniformly at random from
the graph; and then, choose the spin value for v to be either
+1 or −1 randomly according to the probabilities q(+1;σ, v)
or q(−1;σ, v) , 1− q(+1;σ, v), respectively, where

q(+1;σ, v) =
eβS(σ,v)

eβS(σ,v) + e−βS(σ,v)
. (1)

Here, S(σ, v) =
∑
w:w∼v σ(w). Note that the new configu-

ration σ′ may differ from the current configuration σ only at
vertex v.

2) Parallel Glauber Dynamics: The aforementioned
Glauber dynamics for the Ising model does single-site update,
i.e., only one vertex is selected to update its spin value in
each iteration (time slot). One can speed up the Markov
chain transition and shorten the time to reach the steady
state by performing parallel update. For wireless scheduling
algorithms based on Glabuer dynamics, how fast the Markov
chain reaches the steady state, often measured by the mixing
time, has a significant impact on the delay performance of
the network system [21] [10].

In the parallel Glauber dynamics, on each time slot t, an
independent set of vertices of the graph is chosen randomly,
where no two vertices in the set are neighbors in the graph.
The set is called an updating set and denoted as ξ. Then, every
vertex in v ∈ ξ will update its spin value according to the
probabilities q(+1;σ, v) or q(−1;σ, v), independently from
other vertices in ξ. Here, we assume σ is the configuration at
time t. Under minor technical conditions, the parallel Glauber
dynamics is irreducible, aperiodic and hence positive recurrent.
It is reversible and, from that, it is easy to show the stationary
distribution (which is also the limiting distribution) is the
Gibbs distribution.

III. MODIFIED ISING MODEL AND I-CSMA ALGORITHM

A. Modified Ising Model

The Gibbs distribution for the Ising model puts more
probability masses on lower-energy configurations, in which
the neighboring spins tend to agree in value. For the wireless
link scheduling problem, each link can be in either an ON or
OFF state2. We typically desire as many ON links as possible

2A link in the ON state may or may not be transmitting a packet. A link
in the OFF state cannot transmit a packet.
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without interference. In another word, we prefer more ON-
OFF neighboring link pairs. In a transmission schedule, which
by definition is feasible, any pair of neighboring links (with
respect to the interference graph) cannot be both in the ON
state. In a maximal schedule, a link must be in the ON state
if its neighbors are all OFF.

We will later propose the randomized I-CSMA scheduling
algorithm. Similar to the existing scheduling algorithms of this
family, we wish to have the (stationtary) probability mass to
be concentrated on the max-weight schedules, where each link
weight is some increasing function of the link’s queue size. As
in the earlier algorithms, the concentration happens when the
queue sizes are sufficiently large. However, for smaller queue
sizes, the algorithms in the family can have differences. Since
we prefer maximal schedules, we wish the probability mass
to be also concentrated on the maximal schedules under all
queue-size regimes. For that objective, we will consider the
following modification to the Ising model.

The underlying graph is the interference graph G = (V,E)
in which each vertex is a wireless link. A configuration of
the system is a |V |-dimensional vector that describes the ON-
OFF status of all the links. The configuration space is Ω ,
{−1, 1}|V |. Note that the space of schedules M is a subset
of Ω, since not all the configurations are free of interference.
Given a vector σ ∈ Ω, σ(v) = 1 indicates link v is ON and
σ(v) = −1 indicates link v is OFF.

Given σ ∈ Ω, we associate a spin value with each link v
and denote it by sσ(v).3 For each link v, sσ(v) takes a value
from the set {Av,−1}, where Av > 0. If link v is ON in σ,
we set sσ(v) = Av; if v is OFF, we set sσ(v) = −1. Note
that, in the standard Ising model, Av = +1 for all v. Hence,
our modification is a generalization. In the eventual scheduling
algorithm, each Av is an increasing function of link v’s queue
size. For now, let us consider it fixed.

We define the energy of configuration σ ∈ Ω under the
vector A = (Av)v∈V as

H(σ,A) = −
∑

(v,w)∈E

sσ(v)sσ(w). (2)

Remark 1: When there is no ambiguity, we use the simpli-
fied notation H(σ) instead.

Note that a neighboring pair, v and w, contributes the
following to the total energy: (i) −AvAw if they are both ON;
(ii) Av if v is ON and w is OFF; (iii) Aw if w is ON and v is
OFF; and (iv) −1 when both are OFF. When Av or Aw is large,
an ON-ON pair (v, w), which corresponds to two interfering
links, contributes a negative value with a large magnitude to
the total energy. Hence, a high-energy configuration tends to
have few such ON-ON pairs, but many ON-OFF pairs. In a
different situation where Av is close to 1 for all v, OFF-OFF
pairs are also discouraged in a high-energy configuration. For
instance, in a highest-energy configuration, a link cannot be
OFF when its neighbors are all OFF.

Glauber Dynamics: The proposed randomized scheduling
algorithm, which will be described in Sections III-B and
III-C, has an embedded Glauber dynamics on the space of

3In this modified Ising model, there is a distinction between the configura-
tion vector σ and the spin-value vector sσ . In the standard Ising model, the
configuration vector σ is also the spin-value vector.

all configurations Ω with a stationary distribution that puts
more probability masses on higher-energy configurations4.
In particular, the Glauber dynamics will have the following
stationary probability distribution, µ,

µ(σ) =
1

Z(β)
eβH(σ), σ ∈ Ω, (3)

where β is a positive parameter and the normalizing constant
Z(β) is given by Z(β) =

∑
σ∈Ω e

βH(σ).
When the Glauber dynamics is in configuration (i.e., state)

σ ∈ Ω, the next configuration can differ from σ only at the
vertices in the selected updating set (see Section II-B2). For
ease of presentation, let us consider the Glauber dynamics
with singleton updating sets. Let θ+

σ,v be a configuration, i.e.,
θ+
σ,v ∈ Ω, such that θ+

σ,v(v) = 1 and θ+
σ,v(w) = σ(w) for

any w 6= v. Let θ−σ,v ∈ Ω be such that θ−σ,v(v) = −1 and
θ−σ,v(w) = σ(w) for any w 6= v.

For determining the next configuration, first, a link is chosen
uniformly at random; second, given link v is chosen, it will be
turned ON with probability q(1;σ, v) and OFF with probability
q(−1;σ, v) , 1− q(1;σ, v), where

q(1;σ, v) =
µ(θ+

σ,v)

µ(θ+
σ,v) + µ(θ−σ,v)

=
e−AvβS(σ,v)

eβS(σ,v) + e−AvβS(σ,v)

(4)

=
1

2
(1− tanh(

Av + 1

2
βS(σ, v))). (5)

In the above, S(σ, v) ,
∑
w:(v,w)∈E sσ(w), which is the sum

of the spin values of link v’s neighbors.
The quantity q(1;σ, v) is called the activation probability

for link v given that the state is configuration σ and that link v
is selected for updating. It only depends on the spin values of
link v’s neighboring links. Such a property of locality makes
the scheduling protocol simple, since only local information
needs to be collected.

B. I-CSMA Algorithm: An Overview
In the proposed I-CSMA scheduling algorithm, the spin

value of an ON link is an increasing function of the link’s
queue size and hence will vary with time. A specific ex-
ample is, for each ON link v at time t, its spin value is
Av(t) = 2(d̄ − 1) + log(Qv(t) + 1), where Qv(t) is link v’s
queue size at time t and d̄ is the maximum vertex degree in
the graph G. The degree of a vertex v, denoted by dv , is the
number of neighbors of v in the graph; and d̄ , maxv∈V dv .
In general, to have throughout-optimality, Av needs to satisfy
certain conditions. These conditions are given in the main
theorem later (see Theorem 2).

The following is a high-level description of the I-CSMA
algorithm.

1) The algorithm has a Glauber dynamics in the background,
which is the parallel version of the Glauber dynamics
described in Section III-A with the modification that the
spin values {Av(t)}v∈V are time-varying.

2) When the state of the Glauber dynamics at time t is not
feasible as a schedule, the algorithm converts the state

4Note that this objective is the opposite to the standard Ising model, which
puts more probability masses on lower-energy configurations.



5
into a valid schedule by turning OFF some links in ON-
ON neighboring pairs.

We next elaborate on the second step above. Let {σ(t)}t≥1

be the sequence of states of the Glauber dynamics, where each
σ(t) ∈ Ω. The algorithm generates a sequence of schedules
{σ′(t)}t≥1, which are feasible by definition, by converting
each σ(t) into σ′(t). The conversion is represented by a map
ψ : σ(t) 7→ σ′(t). The map ψ is not unique; but we require
it to satisfy the following conditions: (i) σ′(t) ∈ M; (ii)
σ′(t)(v) ≤ σ(t)(v) for all v ∈ V ; and (iii) if σ(t)(v) = 1
and σ(t)(w) = −1 for every w that is a neighbor of v in the
graph G, then σ′(t)(v) = 1. Condition (i) says σ′(t) must be a
valid schedule. Condition (ii) says if link v is OFF in σ(t), then
it must be OFF in the schedule σ′(t). Condition (iii) requires
that, in the conversion from σ(t) to σ′(t), a link v that is ON
in σ(t) should not be turned OFF if its neighbors are all OFF
in σ(t); that is, only those links that have ON neighbors are
allowed to be turned OFF.

Remark 2: I-CSMA is in fact a family of algorithms. Each
version of the family corresponds to a particular choice of the
function ψ. For instance, one version may be to order the ON
links by the queue sizes and pick a feasible subset of them in
the decreasing order of the queue sizes. Another version may
be to randomly select one of the links in each ON-ON pair
and turn off the selected link. Different versions may provide
different performance-cost tradeoffs. The alternatives offered
by the family of I-CSMA algorithms are a subject of future
investigation.

Remark 3: Under the above three conditions that ψ must
satisfy, the most aggressive way of getting a valid schedule
σ′(t) from a Glauber dynamics state σ(t) is to turn OFF all
ON-ON neighboring link pairs in σ(t). Here, the degree of
aggressiveness is measured in terms of the number of links
that are turned OFF.

C. I-CSMA Algorithm: Details of One Version

This subsection describes the details of a particular version
of I-CSMA. A time slot is divided into a control slot and a data
slot. For efficiency, the data slot size should be much larger
than the control slot size. The control slot is further divided
into W +W ′ mini-slots where W and W ′ are chosen constant
integers. The first W mini-slots form control phase I and the
goal is to collectively set the vector σ(t). The second W ′

mini-slots form control phase II and the goal is to collectively
set the vector σ′(t). During control phase I, the links that
attempt to change their entry values in σ(t) must correspond
to an independent set (denoted by ξ(t)) of the interference
graph; this is accomplished by using the INTENT messages.
The independent set ξ(t) is the updating set mentioned in
Section II-B2. During control phase II, only the ON links will
compete for the channel and RESERVE messages are used
for the competition. Each RESERVE message also contains
the current queue size information of the link.

On each time slot t, each link v with a non-empty queue
runs the following steps.

I-CSMA Scheduling Algorithm (at Link v)
Initialization:

1. At the beginning of the time slot, link v calculates S(σ(t−
1), v) based on the neighboring links’ ON-OFF status (in
σ(t−1)) and queue sizes that it learned during the previous
time slot. Link v calculates the probability q(1;σ(t−1), v)
based on the expressions in (4).

Control Phase I - W Mini-Slots: Set σ(t)(v)
2. Link v selects a random back-off time T1 uniformly in
{0, 1, . . . ,W −1} and sets a timer of T1 control mini-slots.

3. If link v hears an INTENT message from any of its
neighboring links before the T1 timer expires, it sets
σ(t)(v) = σ(t− 1)(v) and it will not transmit an INTENT
message (v will not be included in ξ(t)).

4. Otherwise, when the T1 timer expires, link v broadcasts
an INTENT message at the beginning of the (T1 + 1)-th
mini-slot.

a) If link v’s INTENT message has a collision5, link v sets
σ(t)(v) = σ(t− 1)(v) (v is not included in ξ(t)).

b) Otherwise, link v sets σ(t)(v) = 1 (chooses ON) with
probability q(1;σ, v), or it sets σ(t)(v) = −1 (chooses
OFF) with probability q(−1;σ, v).

Control Phase II - W ′ Mini-Slots: Set σ′(t)(v)
5. Link v sets σ′(t)(v) = 0. If v has σ(t)(v) = 1, it executes

the following:
a) Link v selects a random back-off time T2 uniformly in
{0, 1, . . . ,W ′ − 1} and sets a timer of T2 mini-slots.

b) When the T2 timer expires, v broadcasts a RESERVE
message containing its current queue size.

c) If link v has not heard any RESERVE messages from its
neighboring links before the timer expiration and if its
own RESERVE message does not have a collision, link
v sets σ′(t)(v) = 1.

Data Slot:
6. If σ′(t)(v) = 1, link v transmits a packet.

Remark 4: In control phase I, the updating set ξ(t) cho-
sen by the algorithm is an independent set. A link v can
be included in the updating set ξ(t) if and only if it can
successfully broadcast an INTENT message. This happens
when link v does not hear any INTENT message on the
first T1 control mini-slots and no other neighboring links are
transmitting INTENT messages on the (T1 + 1)-th control
mini-slot. Furthermore, a successful INTENT message from
link v prevents all its neighbors from broadcasting more
control messages in the subsequent control mini-slots during
phase I. Therefore, when link v manages to be in ξ(t), none of
its neighbors can be in ξ(t). Also note that when the window
size satisfies W ≥ 2, for any link v, the probability of it being
included in the updating set ξ(t) is positive.

Remark 5: Control phase II is for conflict resolution. At the
end of the phase, a valid schedule σ′(t) is produced based on
the state of the Glauber Dynamics σ(t). The objective is to
allow at most one link to transmit in each link’s neighborhood,
even if multiple links in that neighborhood may be ON

5The receiver of a link transmits an acknowledgement in response to a
INTENT or RESERVE message from the sender of the link. A collision is
detected by the absent of an acknowledgement.
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according to σ(t). The algorithm implicitly adopts a particular
function ψ : σ(t) 7→ σ′(t) mentioned in Section III-B, which
is a random function.

Remark 6: It is important to note that ON-ON neighboring
pairs are usually few by the design of the algorithm. Further-
more, the use of multiple (i.e., W ′) mini-slots and randomizing
timers reduces the chance of collisions of RESERVE mes-
sages from ON-ON neighbors. Therefore, collisions among
RESERVE messages will be rare. If a collision still occurs
on a mini-slot, all links that sent the colliding messages will
keep σ′(t)(v) at 0. In the event that some required control
information, such as the current queue length, is not updated
due to collisions, old information from an earlier time slot
can be used without affecting the proper functioning of the
algorithm; the impact on efficiency will also be negligible.

Remark 7: The information used to compute S(σ(t− 1), v)
in step 1 is obtained from the broadcast of the RESERVE
messages in the previous time slot (see step 5). Note that, in
control phase II, an ON link will always transmit a RESERVE
message, even if it hears other RESERVE messages before
its timer expiration. A RESERVE message contains the link’s
queue size, which may be needed by the neighbors. A link
hears the RESERVE messages with queue size information
from the ON neighbors during that time slot, but hears
nothing from the OFF links. This does not pose a problem for
computing S(σ(t−1), v), since the computation only requires
the queue sizes of the ON neighbors and the number of OFF
neighbors.

D. Relationship with Q-CSMA

Q-CSMA works as follows. Suppose link v is selected for
consideration of activation. When link v’s neighbors are all
OFF, the activation probability for link v is equal to eWv/(1+
eWv ), where the weight Wv is a slowly increasing function of
link v’s queue size Qv , e.g. Wv = log(αQv + 1) or Wv =
log log(αQv + e). When any of link v’s neighbors are ON,
link v will not be turned ON.

The Markov chain in I-CSMA is in the space of all
configurations Ω. In contrast, the Markov chain in Q-CSMA
is in the space of valid schedules M, where M is a strict
subset of Ω for any connected graph with more than one
node. Although the function ψ above maps a configuration
σ(t) ∈ Ω to a valid schedule σ′(t) ∈ M and it is σ′(t) that
is in actual use in I-CSMA, the background Markov chain
{σ(t)}t≥0 continues to march on in the space of Ω. Thus,
over time, the schedules used by I-CSMA and Q-CSMA will
be very different in terms of both the sample paths and the
probability distributions.

When the weight function (of the queue size) is chosen
appropriately, the Markov chain in Q-CSMA can be viewed as
a truncated Markov chain of the chain {σ(t)}t≥0 in I-CSMA.
In other words, whenever a potential transition (in Q-CSMA)
leads to a state outsideM, the transition is prohibited and the
chain stays at the current state. Q-CSMA is a single algorithm
in the sense that there is only one version of the embedded
Markov chain (under a fixed set of weight functions). I-CSMA
is a family of algorithms in the sense that the embedded
Markov chain is different for different ψ functions.

When some neighbors of a link v are ON6, I-CSMA and Q-
CSMA are very different. In Q-CSMA, link v has no chance
to be activated. In I-CSMA, link v can directly compete for
the channel against the ON neighbors. There is a non-zero
probability that link v will be activated and that probability
depends on the product of link v’s queue size and the sum of
the queue sizes of its ON neighbors. The probability is non-
negligible only if all the above queue sizes are small, or when
the spin value Av is a very slowly increasing function of the
queue size, e.g., Av = 2(d̄− 1) + log log(Qv + e). Otherwise,
the probability is close to 0, which means link v is unlikely to
be turned ON. Thus, we expect that I-CSMA and Q-CSMA
work quite differently when (i) the queue sizes are not too
large; (ii) the number of neighbors is large for many links; or
(iii) the spin value is a very slowly increasing function of the
queue size. This helps to explain the performance differences
between the two algorithms observed in the simulation results.

When link v’s neighbors are all OFF, I-CSMA and Q-
CSMA share similarities in the activation probability. For I-
CSMA, based on (4), the activation probability for link v can
be written as q(1;σ, v) = exp(βdv(Av+1))

1+exp(βdv(Av+1)) , where dv is the
number of neighbors of v in the graph G. Hence, if we set the
weight function Wv in Q-CSMA to be Wv = βdv(Av+1), Q-
CSMA and I-CSMA will have identical activation probability
for link v. In the particular case where Av = 2(d̄ − 1) +
log(Qv + 1) in I-CSMA, an equivalent weight function in
Q-CSMA would be Wv = βdv log(Qv + 1) + βdv(2d̄ − 1).
This weight function should be compared with log(αQv),
which was used in the simulation experiments for Q-CSMA
in [9]. We see that, in I-CSMA, there is scaling with a node-
dependent factor βdv . The constant is generally also different.

IV. THROUGHPUT OPTIMALITY

We will establish that the I-CSMA algorithm is throughput-
optimal under the time-scale separation assumption, i.e., the
Glauber dynamics is in the steady state on every time slot.
The same assumption was made in [9] for the Q-CSMA algo-
rithm. The work in [7] [22] shows how to prove throughput-
optimality without the time-scale separation assumption for Q-
CSMA-like randomized algorithms. For our algorithm, adapta-
tion of the method in [7] [22] has several technical difficulties.
The work to overcome those difficulties is on-going, and the
early results look very promising. The proofs without the time-
scale separation assumption require the weight function (or Av
in the case of I-CSMA) to be a very slowly growing function of
the queue size, e.g., log log of the queue size. But, in practice,
the log function usually works well enough, resulting in queue
stability for up to moderately high traffic intensity.

A. Outline of the Proof
In this subsection, we outline the proof that I-CSMA is

throughput-optimal. The missing details are provided in the
next subsection.

We first need some definitions. Given the interference graph
G = (V,E), recall dv is the degree of vertex v in G, i.e.,
the number of neighbors of v, and d̄ is the maximum vertex

6As long as link v has at least one ON neighbor, the value of S(σ, v) is
nonnegative. This is so since S(σ, v) ≥ 2(d̄− 1)− (dv − 1) ≥ d̄− 1.
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degree, i.e., d̄ = maxv∈V dv . Let A be the vector (Av)v∈V .
Let Wv(A) denote the weight of vertex v (or equivalently,
of link v) under A, defined as Wv(A) , dvAv . For a
configuration σ ∈ Ω, define the weight of σ under A to be the
total weight of all the vertices that are ON in σ, i.e.,

W (σ,A) ,
∑

v∈V :σ(v)=1

Wv(A) =
∑

v∈V :σ(v)=1

dvAv. (6)

If σ ∈ M, i.e., σ is a valid schedule, then W (σ,A) is also
known as the schedule weight of schedule σ.

Let W ∗(A) be the maximum schedule weight under A, i.e.,
W ∗(A) = maxσ∈MW (σ,A). Let H∗(A) be the maximum
energy under A, where the maximization is taken over all
possible configurations, i.e., H∗(A) = maxσ∈ΩH(σ,A).

Remark 8: When there is no ambiguity, we omit the vector
A and use the simplified notations W (σ), Wv , W ∗, H(σ) and
H∗ instead.

To prove throughput-optimality, we will use a theorem from
[23]. Suppose (fv)v∈V is a finite family of functions on R+

satisfying the following conditions: For each v ∈ V ,
(i) fv is non-decreasing;
(ii) limq→∞ fv(q) =∞;
(iii) for any M1 > 0, M2 > 0 and 0 < ε < 1, there exists
Q̄ <∞ such that for all q > Q̄,

(1−ε)fv(q) ≤ fv(q−M1) ≤ fv(q+M2) ≤ (1+ε)fv(q). (7)

The functions fv(q) = log(βvq+1) and fv(q) = log log(βvq+
e) satisfy the above conditions, where βv > 0 is a constant.

Given such a family of functions (fv)v∈V , let Av(t) =
fv(Qv(t))/dv , where Qv(t) is the queue size of link v at
time t. Then, the weight of each link v ∈ V at time t is
Wv(A(t)) = dvAv(t) = fv(Qv(t)). Let A(t) = (Av(t))v∈V .
Let ||Q(t)|| ,

√∑
v∈V Q

2
v(t). The following theorem is

proved in [23].
Therorem 1: Consider a scheduling algorithm. Suppose for

any ε and δ, 0 < ε, δ < 1, there exists a B > 0 such that
in any time slot t, with probability greater than 1 − δ, the
scheduling algorithm chooses a schedule σ(t) ∈M satisfying
the following: Whenever ||Q(t)|| > B,

W (σ(t), A(t)) ≥ (1− ε)W ∗(A(t)). (8)

Then, the scheduling algorithm is throughput-optimal.
The next one is the main theorem of this paper.
Therorem 2: Suppose, for each link v ∈ V , Av(t) has the

form Av(t) = fv(Qv(t)), where Qv(t) is the queue length of
link v at time t and each fv is a function on R+ satisfying
conditions (i), (ii) and (iii) above. Suppose also, for each v,
Av(t) ≥ 2(d̄−1) for all t. Then, every version of the I-CSMA
scheduling algorithm is throughput-optimal.

Note that a version of the I-CSMA algorithm is described
in remark 2. Also note that fv satisfies conditions (i), (ii) and
(iii) if and only fv/dv satisfies those conditions. Hence, there
is no real difference in having Av(t) = fv(Qv(t)) or Av(t) =
fv(Qv(t))/dv in the theorem.

We next show how to prove Theorem 2. Two important
lemmas are needed. The proofs for them can be found in
Section IV-B (see Lemmas 7 and 10, respectively).

Lemma 3: W ∗ − |E| ≤ H∗.

Lemma 4: Suppose Av ≥ 2(d̄ − 1) for all v ∈ V . For a
given σ ∈ Ω, suppose H(σ) ≥ (1 − ε)H∗, where 0 < ε <
1/(1+|E|). Then, W (σ′) ≥ (1−ε(1+|E|))W ∗−2|E|−|E|2.

We now return to the analysis of the I-CSMA algorithm.
When link v is ON at time t (i.e., σv(t) = 1), its spin value
is Av(t), which satisfies the requirement of Theorem 2. The
total weight of any configuration σ ∈ Ω is given by (6) with
A(t) = (Av(t))v∈V replacing A. Now, we only need to check
the conditions of Theorem 1 for I-CSMA.

Under a given vector A and a scalar ε with 0 < ε < 1, let

X (A, ε) = {σ ∈ Ω : H(σ,A) < (1− ε)H∗(A)}. (9)

Lemma 5: For any δ, where 0 < δ < 1, there exists
B(ε, δ) > 0 such that when ||Q|| > B(ε, δ), µ(X (A, ε)) < δ.

Remark 9: For fixed ε and δ, each particular Q satisfying
||Q|| > B(ε, δ) determines A, which in turn determines
X (A, ε), H∗(A), W ∗(A), etc. The distribution µ is a con-
ditional distribution given that A is known.

Proof: For notational simplicity, let us tentatively sup-
press the dependence on A and ε in some of the notations.
We have

µ(X ) =
∑
σ∈X

µ(σ) =
∑
σ∈X

1

Z
eβH(σ)

<
∑
σ∈X

1

Z
eβ(1−ε)H∗ ≤

∑
σ∈X

eβ(1−ε)H∗

eβH∗

=
∑
σ∈X

e−εβH
∗
≤ 2|V |e−εβH

∗
.

The first inequality is due to the definition of X . The second
inequality is due to the fact that Z =

∑
σ∈Ω e

βH(σ) ≥
maxσ∈Ω e

βH(σ) = eβH
∗
. The last inequality is because there

are at most 2|V | items in X .
If 2|V |e−εβH

∗ ≤ δ, then µ(X ) < δ. The condition
2|V |e−εβH

∗ ≤ δ can be written as

H∗ ≥ (log(1/δ) + |V | log 2)/(εβ). (10)

Since, for each v, Av → ∞ as Qv → ∞, we have
lim||Q||→∞W ∗(A) = ∞. Since W ∗(A) − |E| ≤ H∗(A)
according to Lemma 3, we see that lim||Q||→∞H∗(A) =∞.
Hence, there exists B(ε, δ) > 0 such that (10) is satisfied
whenever ||Q|| > B(ε, δ).

Lemma 5 says that when ||Q|| is large enough, the stationary
distribution7 of the Glauber dynamics concentrates on the set
X c = Ω\X , i.e., µ(X c) ≥ 1 − δ. Note that each element
σ ∈ X c has nearly the maximum energy.

Suppose the state of the Glauber dynamics at time t is
σ(t) ∈ Ω, which may or may not be a valid schedule
(i.e., interference-free or feasible). If σ(t) is not feasible, the
proposed scheduling algorithm converts it into a valid schedule
in M by turning OFF some of the links. We first consider
the most aggressive version of such a conversion scheme in
which all the ON links with ON neighbors in σ(t) are turned
OFF. The resulting valid schedule is denoted by σ′(t). More
precisely, let the conversion scheme be characterized by the
map, φ : σ 7→ σ′, defined as follows. Given σ, let us define a
subset F ⊆ V : A vertex v is in F if and only if v is ON and v

7This is the stationary distribution conditional on holding the queue sizes
Q, and hence, A unchanged.
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has at least one ON neighbor in σ. In other words, all ON-ON
neighboring pairs of vertices are in F . Let F c = V \F . Then,
σ′ = φ(σ) is given by

σ′(v) =

{
σ(v) for v ∈ F c,
−1 for v ∈ F .

(11)

Note that σ′ is a valid schedule, i.e., σ′ ∈M.
The key is to show that if σ has near maximum energy, then

σ′ has near maximum weight.
Proof: (of Theorem 2) Consider the ε and δ required by

Theorem 1. For the ε in Lemma 5, we replace it with any
ε1 satisfying 0 < ε1 < ε

2(|E|+1) . Then, Lemma 5 says that
there exists B1, which depends on ε1 and δ, such that when
||Q(t)|| > B1, µ(X (A(t), ε1)) < δ.

Let Y(A(t), ε1) = {φ(σ)|σ ∈ X c(A(t), ε1)}. Then, when
||Q(t)|| > B1, P (σ′(t) ∈ Y(A(t), ε1)) = µ(X c(A(t), ε1)) ≥
1 − δ. We only need to show that W (σ′(t), A(t)) ≥ (1 −
ε)W ∗(A(t)) for σ′(t) ∈ Y(A(t), ε1). For that purpose, we
apply Lemma 4 with ε replaced by ε1.

W (σ′(t), A(t))

≥(1− ε1(1 + |E|))W ∗(A(t))− 2|E| − |E|2

>(1− ε/2)W ∗(A(t))− 2|E| − |E|2

=(1− ε)W ∗(A(t)) + εW ∗(A(t))/2− 2|E| − |E|2

≥(1− ε)W ∗(A(t)), when W ∗(A(t)) ≥ (4|E|+ 2|E|2)/ε.

It is easy to see that there exists some B2 > 0 such that
when ||Q(t)|| > B2, W ∗(A(t)) ≥ (4|E| + 2|E|2)/ε. Finally,
we can choose B = max{B1, B2}. For each Q(t) such that
||Q(t)|| > B, which determines A(t), we have P (σ′(t) ∈
Y(A(t), ε1)) ≥ 1−δ and W (σ′(t), A(t)) > (1− ε)W ∗(A(t)).

Let us now return to any fixed version of the I-CSMA
algorithm characterized by the mapping ψ, as described in
Section III-B. Suppose σ′′(t) is derived from σ(t) by that
version of I-CSMA. That is, ψ : σ(t) 7→ σ′′(t) repre-
sents the conversion from σ(t) to σ′′(t). Let Z(A(t), ε1) =
{ψ(σ)|σ ∈ X c(A(t), ε1)}. Then, P (σ′′(t) ∈ Z(A(t), ε1)) =
µ(X c(A(t), ε1)) ≥ 1− δ.

Next, for every σ′′(t) ∈ Z(A(t), ε1), we can find σ(t) ∈
X c(A(t), ε1) such that σ′′(t) = ψ(σ(t)); with such σ(t),
let σ′(t) = φ(σ(t)). Then, σ′(t) ∈ Y(A(t), ε1). Being both
converted from the same σ(t), the actual schedule σ′′(t)
has at least as much weight as σ′(t), according to the
rules of the two conversion schemes. We have just shown
that W (σ′′(t), A(t)) > (1 − ε)W ∗(A(t)) for all σ′′(t) ∈
Z(A(t), ε1).

Hence, the conditions of Theorem 1 are satisfied by any ver-
sion of I-CSMA. Every version must be throughput-optimal.

B. More Details for the Proof of Throughput-Optimality

Consider a fixed σ ∈ Ω. Let F ⊆ V contain all the vertices
that are ON and each have at least one ON neighbor. In other
words, all ON-ON neighboring pairs are in F . Let F c = V \F .
Thus, {F, F c} is a cut of the graph G, and we can consider
the cut-set C(F, F c), which contains all the edges crossing
the {F, F c} cut. That is, C(F, F c) ⊆ E and an edge (v, w) ∈

C(F, F c) if and only if v ∈ F and w ∈ F c or v ∈ F c and
w ∈ F .

Remark 10: F and F c are dependent on σ.
Fact 1: (i) F = ∅ if and only if σ is a valid schedule, i.e.,

σ ∈M. (ii) For any edge (v, w) ∈ C(F, F c) with v ∈ F (and
hence, w ∈ F c), it must be that σ(v) = 1 and σ(w) = −1.
(iii) Suppose a configuration σ′ is derived from σ by turning
OFF the vertices in F , i.e.,

σ′(v) =

{
σ(v) for v ∈ F c,
−1 for v ∈ F .

(12)

Then, σ′ is a valid schedule, i.e., σ′ ∈M.
Given U ⊆ V , the weight of U under the vector A, denoted

by WU (σ,A), is defined as the total weight of all the vertices
in U that are ON in σ, i.e.,

WU (σ,A) ,
∑

v∈U :σ(v)=1

Avdv. (13)

Also define HU (σ,A) by

HU (σ,A) ,
∑

(v,w)∈E:v,w∈U

sσ(v)sσ(w). (14)

HU (σ,A) can be thought as the total energy of the subgraph
of G induced by the vertices in U . For notational simplicity,
we also use WU (σ) for W (σ,A) and HU (σ) for HU (σ,A)
when there is no confusion.

It is easy to see that the following relations hold.
Lemma 6:

W (σ) = WF c(σ) +WF (σ). (15)

H(σ) = HF c(σ) +HF (σ) +
∑

(v,w)∈C(F,F c)

sσ(v)sσ(w).

(16)

Given σ ∈ Ω, let N−(σ) be the number of OFF-OFF
neighboring pairs, and let N+(σ) be the number of ON-ON
neighboring pairs, which is equal to the number of edges in
the subgraph of G induced by the vertices in F .

We will next establish that H∗ is roughly equal to W ∗ when
they are both large.

Lemma 7: For any σ ∈M,

W (σ)− |E| ≤ H(σ) ≤W (σ) ≤W ∗. (17)

Furthermore,

W ∗ − |E| ≤ H∗. (18)

Proof: Note that, for σ ∈ M, we have F = ∅; hence,
HF (σ) = 0 and

∑
(v,w)∈C(F,F c) sσ(v)sσ(w) = 0. By (16),

H(σ) =HF c(σ) =
∑

(v,w)∈E:
σ(v)=1,σ(w)=−1

Av −
∑

(v,w)∈E:
σ(v)=σ(w)=−1

1

=W (σ)−N−(σ). (19)

Hence, for any σ ∈M,

W (σ)− |E| ≤ H(σ) ≤W (σ) ≤W ∗.
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We then have

max
σ∈M

W (σ)− |E| = W ∗ − |E| ≤ max
σ∈M

H(σ) ≤ H∗.

The next lemma is not directly used in the proof of the main
theorem. It is included for completeness in characterizing the
relationship between W ∗ and H∗.

Lemma 8:

H∗ ≤W ∗ + d̄|E|. (20)

Proof: Suppose σ ∈ Ω achieves the highest energy, i.e.,
H(σ) = H∗. Suppose there exists an edge (v, w) ∈ E such
that σ(v) = σ(w) = 1.8 Consider σ̂ ∈ Ω, which is the same as
σ except that σ̂(w) = −1. In other words, σ̂ is obtained from
σ by turning OFF w. We will consider the change from H(σ)
to H(σ̂). The gain at (v, w) is Av +AvAw. Corresponding to
each of the other ON neighbors of w, there is an additional
gain from turning OFF w. Corresponding to each of w’s OFF
neighbors, there is a loss of Aw + 1. Hence,

H(σ̂)−H(σ) ≥Av +AvAw − (Aw + 1)(dw − 1)

=(Aw + 1)(Av − dw + 1).

Since σ achieves the maximum energy H∗, we have H(σ̂) ≤
H(σ), which implies that Av ≤ dw−1 ≤ d̄−1. By switching
the roles of v and w, we also get Aw ≤ dv−1 ≤ d̄−1. Recall
that a vertex u is in F if and only if u is ON and u has at
least one ON neighbor in σ. Hence, we have established that,
if σ achieves H∗, then Au ≤ d̄− 1 for any u ∈ F .

Let σ′ be derived from σ by turning OFF the ON-ON
neighboring pairs in σ, i.e., by turning OFF all u ∈ F .
Specifically, σ′ is given by (12). By Fact 1 (iii), σ′ is a valid
schedule. By (16), Fact 1 (ii) and that HF (σ) ≤ 0, we have

H(σ) =HF c(σ) +HF (σ) +
∑

(v,w)∈C(F,F c)

sσ(v)sσ(w)

≤HF c(σ) + (d̄− 1)|C(F, F c)|. (21)

Since σ′(v) = σ(v) for v ∈ F c, we have HF c(σ
′) =

HF c(σ). Also HF (σ′) = −N+(σ), where N+(σ) is the
number of ON-ON neighboring pairs in σ. We get

H(σ′) =HF c(σ
′) +HF (σ′) +

∑
(v,w)∈C(F,F c)

sσ′(v)sσ′(w)

=HF c(σ)−N+(σ)− |C(F, F c)|. (22)

By (21) and (22)

H∗ = H(σ) ≤ H(σ′) + d̄|C(F, F c)|+N+(σ).

Since σ′ ∈ M, we have H(σ′) ≤W (σ′) ≤W ∗ according to
Lemma 7. Then, we get

H∗ ≤W ∗ + d̄|C(F, F c)|+N+(σ).

Since |C(F, F c)| + N+(σ) ≤ |E| and d̄ ≥ 1, the conclusion
of the lemma follows.

By combining Lemma 7 and Lemma 8, we get

W ∗ − |E| ≤ H∗ ≤W ∗ + d̄|E|. (23)

8If there is no such an edge, then H∗ is achieved by some σ ∈ M.
H∗ = H(σ) ≤ W (σ) by Lemma 7. Hence, H∗ ≤ W ∗ and the lemma
holds.

The next lemma says, when the energy of a configuration
σ is high, every vertex in F has a small spin value.

Lemma 9: Suppose Av ≥ 2(d̄ − 1) for all v ∈ V . For a
given σ ∈ Ω, suppose H(σ) ≥ (1 − ε)H∗, where 0 < ε < 1.
Then, for any v ∈ F , Av ≤ εH∗ + |E|.

Proof: If F = ∅, there is nothing to show. Subsequently,
we assume F 6= ∅. Suppose we generate a new σ̂ ∈ Ω by
turning OFF all the ON-ON neighboring pairs in σ except a
particular vertex u ∈ F . That is,

σ̂(v) =

{
σ(v) for v ∈ F c or v = u ∈ F ,
−1 for v ∈ F and v 6= u.

(24)

For a vertex v ∈ V and a set U ⊆ V , let dv(U) denote the
number of neighbors of v in the set U .

We will expand H(σ) and H(σ̂) using (16). First,

HF (σ) =−
∑

(v,w)∈E:v,w∈F

AvAw

=− 1

2

∑
v∈F

Av
∑

w∈F :(v,w)∈E

Aw. (25)

Using Fact 1 (ii), we have∑
(v,w)∈C(F,F c)

sσ(v)sσ(w) =
∑
v∈F

Avdv(F
c). (26)

By (16),

H(σ) =HF c(σ)− 1

2

∑
v∈F

Av
∑

w∈F :(v,w)∈E

Aw +
∑
v∈F

Avdv(F
c)

=HF c(σ) +
∑
v∈F

Av
(
dv(F

c)− 1

2

∑
w∈F :(v,w)∈E

Aw
)
.

When Aw ≥ 2(d̄− 1) for all w ∈ V , 1
2

∑
w∈F :(v,w)∈E Aw ≥

(d̄ − 1)dv(F ). Also, dv(F c) + dv(F ) = dv for all v ∈ F . If
v ∈ F , then dv(F ) ≥ 1; that is, v has at least one neighbor
in F . Hence, for v ∈ F ,

dv(F
c)− 1

2

∑
w∈F :(v,w)∈E

Aw ≤ dv − d̄dv(F ) ≤ dv − d̄ ≤ 0.

We arrive at the following result:

H(σ) ≤ HF c(σ). (27)

Next, we consider H(σ̂). First, note that σ has N+(σ) ON-
ON neighboring pairs, each of which is a pair of vertices in
F . But, all such pairs except those of the form (u,w) ∈ E,
where w ∈ F , become OFF-OFF pairs in σ̂. Hence,

HF (σ̂) = Audu(F )− (N+(σ)− du(F )).

Also, ∑
(v,w)∈C(F,F c)

sσ̂(v)sσ̂(w) = Audu(F c)−
∑

v∈F,v 6=u

dv(F
c).
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By (16),

H(σ̂)

=HF c(σ̂) +Audu(F )− (N+(σ)− du(F ))

+Audu(F c)−
∑

v∈F,v 6=u

dv(F
c)

=HF c(σ̂) +Audu − (N+(σ) +
∑

v∈F,v 6=u

dv(F
c)

+ du(F c)− du(F c)− du(F ))

=HF c(σ̂) +Audu − (N+(σ) +
∑
v∈F

dv(F
c)− du). (28)

The last equality uses the fact that du(F ) + du(F c) = du.
By (27) and (28),

H(σ̂) ≥H(σ) +Audu − (N+(σ) +
∑
v∈F

dv(F
c)− du).

But, H(σ̂) ≤ H∗ and H(σ) ≥ (1− ε)H∗. Hence,

εH∗ ≥Audu − (N+(σ) +
∑
v∈F

dv(F
c)− du)

≥Audu − (|E| − du) ≥ Au − |E|.

The second inequality above uses the fact that N+(σ) +∑
v∈F dv(F

c) ≤ |E|. Finally, we get Au ≤ εH∗ + |E|.
Suppose H(σ) ≥ (1 − ε)H∗. Suppose we generate a new

σ′ ∈ M by turning OFF all the ON-ON neighboring pairs
in σ, i.e., σ′ is given by (12). The next lemma addresses the
question whether the weight of σ′ is close to W ∗.

Lemma 10: Suppose Av ≥ 2(d̄ − 1) for all v ∈ V . For a
given σ ∈ Ω, suppose H(σ) ≥ (1− ε)H∗, where 0 < ε < 1.
Then,

W (σ′) ≥ (1− ε(1 + |E|))W ∗ − 2|E| − |E|2. (29)

Proof: If F = ∅, then σ ∈ M and, by (17), W (σ) ≥
H(σ). Hence, by (18), W (σ) ≥ (1 − ε)H∗ ≥ (1 − ε)W ∗ −
(1− ε)|E| ≥ (1− ε(1 + |E|))W ∗ − 2|E| − |E|2.

Next, suppose F 6= ∅. Since σ′ ∈M, by (17),

W (σ′)− |E| ≤ H(σ′) ≤W (σ′).

Then, by (15) and by noticing WF c(σ) = W (σ′), we have

W (σ) ≥W (σ′) ≥ H(σ′).

We will expand H(σ) and H(σ̂) using (16). First, note that
HF c(σ) = HF c(σ

′). Since all the vertices in F are OFF in
the configuration σ′, we have HF (σ′) = −N+(σ). Moreover,
if (v, w) ∈ C(F, F c), it must be that both v and w are OFF
in the configuration σ′. Hence,∑

(v,w)∈C(F,F c)

sσ′(v)sσ′(w) = −|C(F, F c)|.

Therefore,

H(σ′) = HF c(σ)−N+(σ)− |C(F, F c)|. (30)

Next, we consider H(σ). By Lemma 9, Av ≤ εH∗ + |E|
for every v ∈ F . Hence,∑

(v,w)∈C(F,F c)

sσ(v)sσ(w) ≤ (εH∗ + |E|) |C(F, F c)|.

By (16) and the fact that HF (σ) ≤ 0, we have H(σ) ≤
HF c(σ)+(εH∗+|E|) |C(F, F c)|. Replacing HF c(σ) by using
(30), we get

H(σ) ≤H(σ′) +N+(σ) + |C(F, F c)|
+ (εH∗ + |E|) |C(F, F c)|.

=H(σ′) +N+(σ) + (|E|+ 1)|C(F, F c)|
+ ε|C(F, F c)|H∗

≤H(σ′) + ε|C(F, F c)|H∗ + |E|+ |E|2.

The final inequality is because |C(F, F c)| ≤ N+(σ) +
|C(F, F c)| ≤ |E|.

Since by assumption H(σ) ≥ (1− ε)H∗, we have

H(σ′) ≥(1− ε(1 + |C(F, F c)|))H∗ − |E| − |E|2

≥(1− ε(1 + |C(F, F c)|))(W ∗ − |E|)− |E| − |E|2

=(1− ε(1 + |C(F, F c)|))W ∗

− (1− ε(1 + |C(F, F c)|))|E| − |E| − |E|2

≥(1− ε(1 + |E|))W ∗ − 2|E| − |E|2.

The second inequality is due to (18). Finally, since σ′ ∈ M,
by (17), H(σ′) ≤W (σ′).

In summary, when σ has nearly the maximum energy, the
derived schedule σ′ has nearly the maximum weight.

V. FURTHER DISCUSSIONS ABOUT I-CSMA
A. Control Overhead

The control overhead can be made small by enlarging the
data slot size. Suppose the data slot size is equivalent to
D control mini-slots. The algorithm has an efficiency ratio
of D/(D + W + W ′), which is the fraction of time used
for transmitting data packets. In step 6, the transmitted data
packet during a data slot may consist of multiple link-layer
frames to improve the efficiency. When the duration of a data
slot is extended sufficiently long, each INTENT or RESERVE
message is relatively small compared with a large data packet.

Let us consider how large W needs to be. Suppose a
neighborhood has d links, all interfering with each other,
where d > 1. Control phase I says each link independently
chooses a number uniformly at random from 0, 1, . . . ,W − 1.
Let X = (X0, X1, . . . , XW−1) be a random vector, where
each Xi is the number of links that have chosen number
i. The random vector X has a multinomial distribution: If
a set of integers k0, k1, . . . , kW−1 satisfies the property that
ki ∈ {0, 1, . . . ,W − 1} for each i and

∑W−1
i=0 ki = d, then

P(X0 = k0, X1 = k1, · · · , XW−1 = kW−1)

=
d!

k0!k1! · · · kW−1!
(

1

W
)k0(

1

W
)k1 · · · ( 1

W
)kW−1

=
d!

k0!k1! · · · kW−1!

1

W d
;

otherwise, the probability is zero. Let us consider the probabil-
ity that there exists a number in {0, 1, . . . ,W − 1} chosen by
exactly one link. When such an event happens, control phase
I will be able to select exactly one link in the neighborhood
to be included in the updating set ξ(t). The probability
is
∑
ki 6=1,∀i

d!
k0!k1!···kW−1!

1
Wd . It is possible to compute the

probability exactly for only very small values of W and d. For
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TABLE I

PROBABILITY BY POISSON APPROXMIATION

d/W W = 10 W = 20 W = 40 W = 80

4 0.5327∗ 0.7817∗ 0.9523 0.9977
3 0.8016∗ 0.9607 0.9985 > 0.9999
2 0.9574 0.9982 > 0.9999 > 0.9999
1 0.9898 0.9999 > 0.9999 > 0.9999

1/2 0.9730 0.9993 > 0.9999 > 0.9999
1/4 0.8853∗ 0.9868 0.9998 > 0.9999

other cases, we consider the Poisson approximation. Suppose,
for each i ∈ {0, 1, . . . ,W − 1}, the number of links choosing
the number i is a Poisson random variable with a mean d/W ,
and the random variable is denoted by Yi. Suppose the random
variables Y0, Y1, . . . , YW−1 are i.i.d. Then,

P(Yi = 1 for some i) = 1− (1− d

W
e−d/W )W . (31)

For d/W = 4, 3, 2, 1, 1/2, and 1/4, the values of 1− d
W e−d/W

are 0.9267, 0.8506, 0.7293, 0.6321, 0.6967 and 0.8053, re-
spectively. For these values of d/W , the probability expressed
in (31) approaches 1 very rapidly as W increases. As seen
from Table I9, the probability becomes very close to 1 when
W is fairly small. For instance, for W = 10 and d = 20,
the probability is about 0.9574; for W = 20 and d = 40,
the probability is about 0.9982; for W = 40 and d = 160,
the probability is about 0.9523. Table I does not show the
cases where d/W is much less than 1, since, first, the Poisson
approximation is no longer accurate in those cases, and second,
there is no need of them. In control phase I, when W is much
greater than d, the probability of having at least one number
chosen by exactly one link should be extremely close to 1.
To summarize, having W = 20 is enough to handle up to 60
links in any neighborhood.

Next, the parameter W ′ can be made small because of the
rare occurrence of the ON-ON neighboring pairs in σ. In our
simulation, W ′ = 8 is sufficient. Finally, the number of control
messages is limited by our design. Consider a neighborhood
with d mutually interfering links. In phase I, at most one link
transmits an INTENT message if randomization successfully
resolves collision. In phase II, a link v is allowed to transmit
a RESERVE message only if σ(v) = 1. The number of such
links is small.

B. Effect of β
As can be observed from (3), under a fixed set of queue

sizes, when β increases, the distribution µ is increasingly
biased towards higher-energy states and the I-CSMA algorithm
increasingly resembles the max-weight scheduling algorithm,
which is known to have a small stationary total queue size
[24]. Thus, we expect the total queue size is smaller when β
is larger. Furthermore, expression (5) suggests that a larger β
value leads to a higher activation probability for a link v, if its

9We have verified the accuracy of the Poisson approximation by comparing
its results with simulation-based sampling experiments. All entries except
those marked with ∗ are within a 3% error margin. For the four cases with
larger error margins, the sampling results are: 0.37 for W = 10 and d = 40,
0.69 for W = 10 and d = 30, 0.99 for W = 10 and d = 3, and 0.72 for
W = 20 and d = 80.

neighbors are OFF (thus giving a negative S(σ, v)). Hence, a
larger β tends to result in more aggressive link activation,
and consequently, smaller stationary queue sizes. However,
our simulation experiments have shown that a larger β may
increase the mixing time, i.e., the time taken for the Glauber
dynamics to reach stationarity. Because of that, a larger β value
may increase the total queue size. When β is sufficiently large,
the algorithm may not even be throughput-optimal when the
time-scale separation assumption is significantly violated (see
the beginning of Section IV for the assumption, which we
rely on for the proof of throughput-optimality). Thus, there is
tension in choosing a larger or smaller β. The effect of β on
the total queue size can be seen in the simulation results in
Section VII. We may further explore this issue in future work.

VI. HEURISTIC I-CSMA SCHEDULING ALGORITHM

As discussed in Remark 4, the I-CSMA algorithm in Section
III-C selects an independent set ξ(t) for parallel update during
control phase I on each time slot. Parallel update speeds up the
Markov chain transitions and potentially reduces the mixing
time and queue sizes. Requiring the updating set ξ(t) to be
an independent set is for the theoretical reason that one can
still easily compute the stationary distribution of the Glauber
dynamics. However, much of the complexity of control phase
I is due to the requirement to select an independent updating
set. Removing that requirement will simplify the algorithm.

We next propose a much simpler heuristic I-CSMA algo-
rithm. In this algorithm, we allow every link to update its
ON-OFF status on each time slot based on its neighbors’
information during the previous time slot. On time slot t, each
link v with a non-empty queue runs the following procedure.

Heuristic I-CSMA Algorithm (at link v)

1. At the beginning of the time slot, link v calculates S(σ(t−
1), v) based on the neighboring links’ ON-OFF status (in
σ(t−1)) and queue sizes that it learned during the previous
time slot. Link v calculates the probability q(1;σ(t−1), v)
based on the expressions in (4).

2. Link v sets σ(t)(v) = 1 (chooses ON) with probability
q(1;σ, v), or it sets σ(t)(v) = −1 (chooses OFF) with
probability q(−1;σ, v).

3. Link v sets σ′(t)(v) = 0. If σ(t)(v) = 1, it executes the
following:

a) Link v selects a random back-off time Tv uniformly in
{0, 1, . . . ,W − 1} and sets a timer of Tv mini-slots.

b) When the Tv timer expires, v broadcasts a RESERVE
message containing its current queue size.

c) If link v has not heard any RESERVE messages from its
neighboring links before the timer expiration and if its
own RESERVE message does not have a collision, link
v sets σ′(t)(v) = 1.

4. In the data slot, if σ′(t)(v) = 1, link v transmits a packet.

Compared with the original I-CSMA algorithm in Section
III-C, line 2 above replaces all the steps in control phase I and
line 3 is the same as control phase II. The heuristic I-CSMA
algorithm bypasses the selection of an independent set ξ(t) as
the updating set.
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Fig. 2. Interference graphs: 16-link grid, 10-link clique and 20-link random
topology. The vertices correspond to wireless links in the network.

We expect the heuristic algorithm to be throughput-optimal
(or nearly so) under some mild technical conditions. But, we
have no analytical proofs yet. Our simulation results show that
its performance is similar to that of the original algorithm (see
Section VII-D).

VII. SIMULATION RESULTS

In this section, we show simulation-based performance
evaluation of the I-CSMA algorithm. We compare I-CSMA
with Q-CSMA, which is both popular and quite related to I-
CSMA. Having proved throughput-optimality, our focus here
is the average total queue length, which, by Little’s law, is
related to the average delay experienced by packets.

We used three interference graphs to evaluate the algorithms
in different situations. One is a 4 × 4 grid with 16 vertices;
another is a clique with 10 vertices, also known as an 10-
clique; and the last one is a random network with 20 links
(see Fig. 2). Recall that the vertices represent wireless links.

The incoming traffic to each link v follows an i.i.d. stochas-
tic process with an average rate λv . The arrival processes for
different links are independent. For each set of traffic rates,
we ran the simulation 10 times and took the average. Each
simulation run lasted for 106 time slots, giving enough time
for the queues to become steady, and we recorded the sum
of the long-time average queue sizes of all the links as the
performance measure.

We used two weight functions for Q-CSMA: Wv(t) =
log(αQv(t)+1) and Wv(t) = log log(αQv(t)+e). For our I-
CSMA algorithm, we also tried two functions: Av(t) = 2(d̄−
1)+log(Qv(t)+1) and Av(t) = 2(d̄−1)+log log(Qv(t)+e).10

The window sizes used were W = 32 for Q-CSMA and for
control phase I of I-CSMA, and W ′ = 8 for control phase II
of I-CSMA. Since the α and β values significantly affect the
queue sizes in the algorithms11, we explored a range of values
to make appropriate choices.

A. Network Traffic
1) Probability Distributions: For the traffic models, we

tried the Bernoulli, Poisson and Pareto distributions for the
number of arrivals on each time slot. While the Bernoulli and
Poisson models are used in many studies, the random traffic
generated under a bounded Pareto distribution can better simu-
late the bursty nature of LAN traffic [25]. For our experiments,

10In our experiments, Av(t) = 1+log log(Qv(t)+e) leads to even smaller
queue sizes while maintaining throughput-optimality. Since our theoretical
result for throughput-optimality requires Av(t) ≥ 2(d̄ − 1), we chose to
report the cases with Av(t) = 2(d̄− 1) + log log(Qv(t) + e).

11β shows up in (4) for I-CSMA.

we used a bounded Pareto distribution with the shape factor
γ = 1.5 and the upper bound H = 1000. Specifically, the
cumulative distribution function is F (x) = 1−(L/x)γ

1−(L/H)γ , where
x ∈ [L,H]. The lower bound L is determined from the mean
arrival rate used for an experiment, and therefore, it varies.

2) Arrival Rate Vectors: We used the following scheme to
sample the arrival rate vectors for different networks.

a) Grid Network: For the 16-link grid network, we
picked two sets of links:

L1 = {1, 3, 6, 8, 9, 11, 14, 16}, L2 = {2, 4, 5, 7, 10, 12, 13, 15}.

Each set is a maximal schedule for the network. Let s1 and s2

each be a 16-dimensional vector representation of L1 and L2:
For each i ∈ {1, 2}, set siv = 1 if link v ∈ Li; otherwise, set
siv = 0. We chose arrival rate vectors that can be represented
as:

λ = ρ
∑
i

tis
i, with

∑
i

ti = 1 and ti ≥ 0,∀i. (32)

If t1 = t2 = 0.5, all the links have equal arrival rates. It can
be shown that

∑2
i=1 tis

i lies on the boundary of the capacity
region for any fixed (t1, t2). Hence, λ of the form in (32)
is in the capacity region Λ if and only if 0 ≤ ρ ≤ 1. The
parameter ρ can be interpreted as the traffic intensity or load.
We required 0 < ρ < 1 in the simulation experiments.

b) Clique Network: For the 10-clique network, each
link interferes with all other links. We chose 10 different
link sets, each containing only one link. We let s1 =
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0)′, s2 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0)′, . . .,
s10 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)′. The arrival rate vectors were
set as in (32), with ti = 0.1 for each i. Again,

∑10
i=1 tis

i lies
on the boundary of the capacity region, and λ is in Λ if and
only if 0 ≤ ρ ≤ 1.

c) Random Network: The random topology was created
by placing vertices randomly in a unit square, and connecting
them by edges based on the distance between each pair of
vertices. For the topology shown in Fig. 2, we chose four sets
of links:

L1 = {1, 4, 7, 12, 15, 20}, L2 = {2, 5, 10, 11, 17},
L3 = {3, 6, 9, 13, 15, 18}, L4 = {1, 5, 8, 14, 16, 19}.

Each set is a maximal schedule for the network. We set the 20-
dimensional vectors s1, s2, s3, s4 accordingly. We chose arrival
rate vectors of the form in (32). It can be checked that, for any
set of weights t1, t2, t3, t4 with

∑
i ti = 1, ρ must be no more

than 1 for λ to in the capacity region. For the experiments,
we set ti = 1/4 for each i and we required ρ ∈ (0, 1).

3) Uneven Traffic: We also studied the algorithms’ perfor-
mance under uneven arrival rates for different links on the
grid network, e.g, using (t1, t2) = (0.6, 0.4) and (t1, t2) =
(0.7, 0.3) in addition to (t1, t2) = (0.5, 0.5) in (32).

B. Choices of α and β Values

We first studied the performance of both algorithms under
different α (for Q-CSMA) or β (for I-CSMA) values. The α
and β values we have tested with are: 0.01, 0.03, 0.1, 0.3, 1, 3.
Fig. 3 and Fig. 5 show the simulation results for Q-CSMA
on the 16-link grid network with the log and log log weight
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Fig. 3. 16-link grid, Q-CSMA using log function with different α’s.
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Fig. 4. 16-link grid, I-CSMA using log function with different β’s.
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Fig. 5. 16-link grid, Q-CSMA using log log function with different α’s.
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Fig. 6. 16-link grid, I-CSMA using log log function with different β’s.

functions, respectively. The traffic model is Poisson. Fig. 4 and
Fig. 6 are for I-CSMA under the same respective scenarios.
The plots are on semi-log scales.

The plots show that the α or β values have large impact

Fig. 7. 16-link grid, Pareto traffic.
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Fig. 8. 10-link clique, Poisson traffic.

on the performance of Q-CSMA or I-CSMA. For I-CSMA,
the results confirm our earlier discussion about the effect of
β. A very small β tends to result in large queues, since the
activation probabilities are not large enough until the queue
sizes become large. On the other hand, if β is too large,
the queues can also be large, especially when the arrival rate
vector is close to the boundary of the capacity region. The
reason may be that the activated links seize the channel for
too long, causing slow convergence of the Glauber dynamics
to the steady state and ultimately violating the time-scale
separation assumption. To choose the best α or β values,
we experimented on different network topologies and each
with different arrival traffic patterns: Poisson, Bernoulli, and
Pareto. The values that yielded best results were α = 0.1 and
β = 0.1 for Q-CSMA and I-CSMA, respectively, under the log
weight functions, α = 3 for Q-CSMA under the log log weight
function, and β = 1 for I-CSMA under the log log function.
We used those best values for the remaining simulation results.

C. Performance Comparison

We compared I-CSMA with Q-CSMA under various net-
work and traffic scenarios. For brevity, we have only included
a subset of the results in this paper, which are representative.
Note that the vertical axis is sometimes in the linear scale and
sometimes in the log scale, depending on the range of queue
sizes we wish to show.

Fig. 7 shows the simulation results on the grid network for
both algorithms, with the log and log log functions. In order
to better examine the differences, we use a semi-log plot only
for the high traffic intensity segment ρ ≥ 0.7. For ρ ≤ 0.6,
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Fig. 9. 20-link random graph, Pareto traffic.

we use the linear scale to zoom in and see the queue length
differences. The results for the 10-clique network and the
random network are shown in Fig. 8 and Fig. 9, respectively.
We can observe the following from these figures.
• With a well-chosen β, our I-CSMA algorithm generally

leads to smaller queues than Q-CSMA under a well-
chosen α throughout the entire feasible region of the
traffic intensity ρ ∈ [0, 1). The queue size reduction
over Q-CSMA is between a factor of 2 to 10 at low
to medium traffic intensity. At higher traffic intensity, the
improvement can be more significant.

• Both algorithms achieve stability for the entire feasible
region of the traffic intensity. This is a strong evidence
for throughput-optimality.

• For low to medium traffic intensity, the total queue
backlog in the network under I-CSMA falls in the range
of 10 to 100 packets, which are quite small and bode well
for practical applications of the algorithm.

• I-CSMA with the log log function works especially well,
often better than with the log function. The reason may
have to do with the fact that the log log function changes
very slowly with the queue size so that the Glauber
dynamics is given time to converge to the steady state
(See also Section V-B). It may also be because the prob-
ability of having ON-ON pairs is higher, allowing more
frequently rotations of link transmissions and reducing
the chance that some links monopolize the transmission
opportunities for too long (see also the discussion in
Section III-D).

• I-CSMA and Q-CSMA seem to differ more when the
queue sizes are not too large, when the number of
neighbors is large on average, and when the traffic is
bursty.

The different traffic models have some impact on the simu-
lation results. The Bernoulli and Poisson arrivals are smooth,
while the Pareto arrivals are much more bursty, occasionally
having a large number of arrivals on a single time slot. The
bursty traffic causes the curves to be less smooth than the
other two traffic patterns. However, the long-term trend of the
results is not altered and I-CSMA is still able to reduce the
queue size by at least 1/2 in most of the cases.

Fig. 10 shows the simulation results on the grid network
under uneven Poisson traffic, with (t1, t2) = (0.6, 0.4). We
observe that the unevenness of the arrival rates has little impact
on the results, compared with the case of even arrival rates.
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Fig. 10. 16-link grid, uneven Poisson traffic.
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Fig. 11. 16-link grid, Pareto traffic, heuristic I-CSMA algorithm using log
function.

Though each individual queue length can be quite different
due to the uneven arrival rates, the total queue sizes are similar
between the even and uneven cases. I-CSMA still out-performs
Q-CSMA by a factor of 2 to 10.

D. Heuristic I-CSMA Algorithm
The simulation experiments for the heuristic I-CSMA al-

gorithm used the same set of interference graphs and the
Pareto traffic. We experimented with the log function with
β = 0.01, 0.03, 0.1, 0.3, 1. The results are shown in Fig. 11.

The figure shows that the heuristic I-CSMA algorithm with
an appropriate β value is able to stabilize the queues for
ρ up to nearly 1, giving strong indication of throughput-
optimality. Even with respect to the total queue size, the
heuristic algorithm performs as well as I-CSMA, which can
be seen, for example, by comparing Fig. 11 with Fig. 4. In
practice, the heuristic algorithm may be preferred due to its
simplicity and less control overhead.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a randomized link scheduling
algorithm, I-CSMA, based on a modified Ising model and
the associated Glauber dynamics. The main result is that all
versions of I-CSMA are throughput-optimal. The result allows
the removal of a major restriction in earlier related algorithms
regarding how the Markov chain in the Glauber dynamics is
truncated. Consequently, I-CSMA is more flexible than earlier
algorithms for achieving secondary objectives after achieving
throughput-optimality. Our simulation experiments show that
the version of I-CSMA presented in the paper gives better
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queue-size/delay performance than the popular Q-CSMA. The
improvement is significant and consistent, particularly in the
regime of low to moderately high traffic intensity. I-CSMA
is easily implementable. We also propose a heuristic I-CSMA
algorithm, which is observed to have similar performance in
simulation studies and is even simpler to implement.

We briefly describe possible future work. First, the proof
for throughput-optimality relies on the time-scale separation
assumption. We are currently attempting to remove that as-
sumption and find conditions under which the algorithm is still
throughput-optimal. The preliminary results are very promis-
ing. Second, one may ask whether or when the embedded
Glauber dynamics is fast mixing, how the mixing time is
related to the parameter β, and what the effects of the mix-
ing time are on throughput-optimality and queue-size/delay
performance. Third, the current I-CSMA algorithm is a link-
based algorithm in that the algorithm steps are executed by
each link. The link-based algorithm description is useful for its
conceptual simplicity and ease of presentation; it is sufficient
for theoretical analysis and performance evaluation. However,
in reality, a wireless link is associated with two wireless de-
vices that can transmit and receive packets. The control of the
link is implemented at the two devices. To make the algorithm
more practically useful, we have on-going work that converts
it into a device-based version. This introduces a different set of
challenges. Fourth, the performance-cost tradeoffs of different
versions of I-CSMA are worth further study. Fifth, it may
be interesting to explore other algorithms or variations from
the same class that uses neighboring queue sizes. The new
approach appears to be powerful and information-rich, when
compared with earlier algorithms’ approach of only using a
link’s own queue size. Its performance benefits are far from
being fully explored. Finally, theoretical analysis of the queue-
size/delay performance will be valuable; but it is expected to
be challenging.
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