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Slotted Wavelength Scheduling for Bulk Transfers
in Research Networks

Zhe Wang, Sanjay Ranka and Ye Xia

Abstract—The advancement of optical network technologies
has enabled data-intensive e-science collaborations, which often
require the transfer of large files with predictable performance.
To support such applications, we design and evaluate two
algorithms for scheduling time-constrained bulk transfers on
wavelength-based optical research networks. The first one seeks
to maximize the network throughput while maintaining a level
of fairness among the jobs. The second algorithm works in a
overloaded network and serves as an alternative to the first
algorithm. It seeks to extend the end times by the smallest
possible proportion and complete all the jobs by the extended end
times. The main challenge is that the underlying problems are
integer optimization problems for wavelength assignment,which
have no known fast optimal solutions. We present a heuristic
sub-algorithm called LPDAR, which converts fractional solutions
from linear programming into integer solutions. LPDAR is
the key component used in both aforementioned algorithms.
Evaluation shows that LPDAR leads to very good algorithms
with a performance level and speed both comparable to those of
the LP fractional solutions.

Index Terms—Wavelength Scheduling, Advance Reservation,
Admission Control, Bulk Data Transfer, E-science

I. I NTRODUCTION

The advance of communication, networking and computing
technologies is dramatically changing the ways how scientific
research is conducted. A new term,e-science, has emerged
to describe the “large-scale science carried out through dis-
tributed global collaborations enabled by networks, requiring
access to very large scale data collections, computing re-
sources, and high-performance visualization” [1]. Well-quoted
e-science (and the related grid computing [2]) examples in-
clude high-energy nuclear physics (HEP), radio astronomy,
geoscience and climate studies. To support e-science activi-
ties, a new generation of high-speed research and education
networks have been developed. These include Internet2 [3],
the Department of Energy’s ESnet [4], National Lambda Rail
[5], CA*net4 [6] in Canada, and the pan-Europe GÉANT2 [7].
A large fraction of all data traffic supporting U.S. science is
carried by ESnet, Internet2, and National Lambda Rail [8].

The need for transporting large volume of data in e-science
has been well-argued [9], [10]. For instance, the HEP data
is expected to grow from the current petabytes (PB) (1015)
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to exabytes (1018) by 2012 to 2015. In addition, e-scientists
desire schedulable network services to support predicablework
processes [11]. An important type of schedulable services is
large data transfers with start and end time requirement. In
such a service, each data-transfer job request can be made in
advance and can specify a start time and an end time. If it has
sufficient resources, the network guarantees that it will begin
the data transfer after the requested start time and finish it
before the requested end time. This paper presentsadmission
control (AC) and schedulingalgorithms for supporting large
data transfers in research networks with the start and end time
requirement. The targeted environment is wavelength-switched
networks, and hence, the AC/scheduling problems are particu-
lar kinds of wavelength assignment problems, which in general
are very difficult to solve. Our focus is on developing high-
performance and fast algorithms. The results should comple-
ment other protocol, architecture or infrastructure projects in
support of e-science and grid computing [3], [4], [7], [12],
[13], [14], [15], [16].

The paper adopts the optimization-based paradigm pro-
posed by several earlier papers [17], [18], [19], [20], [21].
Specifically, the AC and scheduling decisions are made by
the network controller that has a global view of the network
and the job requests. The controller solves optimal resource
allocation problems with start and end time constraints in
making these decisions. The main benefit of this approach,
as demonstrated in [20], [21], is greatly improved network
resource efficiency.

This paper continues the earlier work reported in [20],
[21] and the distinctions are as follows. In the earlier papers,
it is assumed that the bandwidth of every link is infinitely
divisible; this is a useful assumption to model an all-router
packet network. Linear programming problems were formu-
lated where the decision variables were real-valued. However,
the next-generation research networks will be a mixture of IP
packet networks, traditional optical circuit-switched networks
(e.g., SONET), and wavelength-switched networks [14]. The
algorithms in [20], [21] can handle the former two types of
networks. This paper extends the earlier work to wavelength-
switched optical networks. For this type of networks, the
optimization problem involves integer variables, which repre-
sent the numbers of wavelengths assigned to the data transfer
jobs. The resulting integer programming problem typically
takes prohibitively long computation time to solve. One of the
main contributions of the current paper is that it gives novel
solution techniques that require far less computation timeat
the expense of only small loss of optimality.

Recently, some other authors have begun to study AC
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and scheduling algorithms for bulk transfers with advance
reservations [22], [17], [23], [19], [24], [25]. Compared with
these earlier studies, our work distinguishes itself for using the
optimization-based formulation or for the degree of scheduling
flexibility that our formulation allows. Our approach will trans-
late into much greater resource efficiency. Secondly, few prior
studies have considered the time-constrained bulk transfer
problem on a wavelength-switched network under an opti-
mization framework. Thirdly, our focus is on the overloaded
situation where the network does not have sufficient resources
to satisfy all the requests. Instead of just rejecting some job
requests, we also consider a negotiation-based approach where
the users may modify the job parameters and and re-submit the
modified requests. The main content of the paper describes two
algorithms: One allows reducing the job sizes; the other allows
extending the end times. Finally, our formulations incorporate
the fairness issues while dealing with multiple jobs.

The problems of the paper are also different from typical
wavelength assignment problems (e.g., see [26], [27]), where
the objective is to establish long-lasting light paths. Here, the
time dimension is important: First, bulk transfer is elastic
and can take time-varying wavelength assignments; second,
the start and end time constraints call for very different
formulations of the scheduling problems.

The rest of the paper is organized as follows. Section II
describes the two algorithms we developed for AC/scheduling.
Section III shows the performance evaluations of the proposed
algorithms. The related work is shown in Section IV. The
conclusion is drawn in Section V.

II. A DMISSION CONTROL AND SCHEDULING

ALGORITHMS

A. System Overview

We first present the system model and a high-level overview
of the AC and scheduling framework proposed in [21]. This
paper extends the framework to wavelength-switched networks
by providing two AC/scheduling algorithms for bulk transfer
jobs with time constraints and integrality constraints.

The network is represented by a directed graphG = (V, E),
whereV is the set of nodes andE is the set of edges. The
capacity of a link (an edge)e ∈ E is denoted byCe. Since
we are dealing with a wavelength-switched network,Ce is
the total number of wavelengths of linke. Job requests arrive
at the network following a random process. Each job request
i is a 6-tuple(Ai, si, di, Di, Si, Ei), whereAi is the arrival
time of the request,si and di are the source and destination
nodes, respectively,Di is the size of the job,Si and Ei are
the requested start time and end times, whereAi ≤ Si ≤ Ei.
In words, requesti, which is made at timet = Ai, asks the
network to transfer a file of sizeDi from nodesi to nodedi

over the time interval[Si, Ei].
In our framework, the network resource is managed by

a small number ofnetwork controllers(NC), which control
job admission, bandwidth (wavelength) allocation and setup
of the allocated resources. One advantage of the approach is
that resource reservation and allocation decisions are based
on a global view of the network and on all the job requests.

It is possible to manage the network resources as a whole
and make tradeoffs among all the jobs in the network. The
result is greatly improved efficiency in network resource uti-
lization. Different from the public Internet, research networks
typically have far fewer than1000 core nodes in the backbone.
Hence, it possible to use a centralized approach for keeping
track of the global information about the whole network
and all the jobs. Virtually all current and planned research
networks have adopted the approach of using centralized
controllers for service/resource reservation and scheduling.
However, none formulate and solve optimization problems
for making the resource allocation decisions. Our proposal
to use a small number of controllers and have them solve
optimization problems periodically has been shown to be
effective enough for router-based research networks [20],[21].
This paper will present solution techniques that are fast enough
for wavelength-switched networks. If needed, the scalability
can be further enhanced by using a distributed hierarchy of
controllers.

The time is divided into time slices (or time slots). Each
job can be assigned different bandwidth by the controllers on
different time slices. Each job can also take multiple paths
simultaneously on each time slice, and these paths can be
different on different time slices. The file transfer requests are
submitted to the network controllers, which verify whether
there are sufficient network resources to finish the jobs before
the requested end times. If the resources are insufficient,
some jobs may be rejected or the requested file sizes or
end times may be re-negotiated. The process of deciding the
admissibility of the job requests is calledadmission control.
After AC, the network controllers will assign bandwidth to the
admitted jobs on each time slice and on each allowed path.
This assignment process is calledscheduling. The scheduling
stage may use the results from the AC stage. However, in
general, the AC and scheduling stages may involve different
optimization problems. AC and scheduling are conducted pe-
riodically everyτ time units, whereτ > 0. More specifically,
at time instanceskτ , k = 1, 2, . . ., the controllers collect all
the new requests that arrived on the interval[(k − 1)τ, kτ ],
make the AC decision first, and then, schedule the transfers
of all jobs.

Both AC and scheduling must take into account the previous
jobs, which have been admitted earlier but remain unfinished.
The value of τ should be small enough so that new job
requests can be checked for admission and scheduled as early
as possible. However, it should be more than the computation
time required for AC and scheduling. More details about this
periodic AC/scheduling framework can be found in [21].

To extend the framework to wavelength-switched networks,
the challenge is to find fast algorithms for handling the under-
lying integer optimization problems while maintaining high
efficiency. The paper mainly describes two AC/scheduling
algorithms that meet this challenge. The first one maximizes
the throughput with end time guarantee. When end time guar-
antee is impossible due to excessive demand, three possible
courses of actions can be taken: (i) Some jobs are rejected;
(ii) the users agree to reduce the demand sizes and the
network guarantees the end times for the modified demand
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sizes; (iii) the users agree to relax the end times and the
network guarantees the delivery of the entire jobs by the
extended end times. Our first algorithm is suitable for action
(ii). Its objective is to improve the network throughput while
maintaining a level fairness among the jobs in the process of
reducing the job sizes. Our second algorithm is suitable for
action (iii). It finds the smallest (common) factor by which
the end times should be extended so that all the jobs can be
completed by the new end times. There is a simple algorithm
for action (i) and we will not focus on it1. We leave developing
more sophisticate algorithms for action (i) to future work.

B. Maximizing Throughput with End Time Guarantee

In this scheduling algorithm, our objective is to make effi-
cient use of the network resources while maintaining fairness
among the jobs. The resource efficiency will be measured in
terms of a weighted throughput of the network. The end times
of the jobs will be guaranteed by this algorithm, although
this may require the users to reduce the demand sizes in an
overloaded network. The core scheduling algorithm consists
of solving two optimization problems in two stages.

• In stage 1, we pretend the bandwidth is infinitely divis-
ible and formulate a linear programming problem. The
optimal valueZ∗ will be called the maximum concurrent
throughput of the network.

• In stage 2, we useZ∗ to enforce fairness among the jobs
while maximizing the weighted throughput, which is a
better measure of the network resource efficiency than
the maximum concurrent throughput.

The optimization problem in stage 2 is an integer program,
which dominates the computation cost. We will present a good
heuristic algorithm, LPDAR, to solve the stage-2 problem.

1) Stage 1 - Computing the Maximum Concurrent Through-
put: The formulation in stage 1 is adapted from the well-
known maximum concurrent flow (MCF) problem, which is
a special type of network linear program. In the path-based
formulation, the variables are the bandwidth assignments on
the allowed paths of each job on every time slice, as well as the
maximum concurrent throughput. For each file-transfer job,
the formulation allows an explicitly defined collection of paths
on every time slice and bandwidth reservations are done only
on these paths.2 We have found in [20] that a small number
of paths per job (4 to 8 paths) is usually enough for achieving
very good performance in the networks we tested.

Consider an arbitrary AC/scheduling instancekτ , wherek is
a non-negative integer. The following variables should depend
on k. For notational simplicity, we omitk in the notations.
Let J be the set of job requests known to the system at time
kτ , waiting to be admitted and/or scheduled. LetL be the
collection of future time slices that need to be considered.
This collection is finite since it only needs to cover the largest

1First, list all the jobs in a sequence according to some administrative
policy, priority, request times, or a combination of these.Next, conduct a
binary search to find a last job in the sequence before which all the jobs can
be finished ahead of their respective end times. The algorithms introduced in
this paper can be used in each stage of the binary search.

2Note that the allowed paths can be time-varying. The resulting formulation
can accommodate time-varying policy-induced constraints.

of the requested end times of the known jobs. LetP (si, di, j)
be the set of allowed paths for jobi on time slicej, wheresi

is the source node anddi is the destination node. Letxi(p, j)
be the bandwidth assigned on pathp ∈ P (si, di, j) for job
i ∈ J on the time slicej ∈ L. It is assumed to be constant on
the entire slice. The problem formulation is given by:

Stage 1 (MCF)

max Z (1)

s.t.
∑

j∈L

∑

p∈P (si,di,j)

xi(p, j) · LEN(j) = ZDi, ∀i ∈ J (2)

∑

i∈J

∑

p∈P (si,di,j)
p:e∈p

xi(p, j) ≤ Ce(j), ∀e ∈ E, ∀j ∈ L (3)

xi(p, j) = 0, ∀p ∈ P (si, di, j), j ≤ I(Si) or j > I(Ei),

∀i ∈ J (4)

xi(p, j) ≥ 0, ∀p ∈ P (si, di, j), ∀i ∈ J, ∀j ∈ L. (5)

In the stage-1 problem, we do not impose the integrality
constraint; all variables are assumed to be real-valued.Z is
called the concurrent throughput and the problem seeks to
maximize the concurrent throughput. It asks: What is the
maximum concurrent throughputZ∗ such that, after every job
size is scaled byZ∗, the link capacity constraints, as well as
the start and end time constraints, are still satisfied for all time
slices? Note that, ifZ∗ < 1, it is not possible to satisfy the
deadline of all the jobs. However, if the file sizes are reduced
by a common factor toZ∗Di for all job i, then, the requests
can all be satisfied. IfZ∗ ≥ 1, then the file sizes can all
be scaled up by the factorZ∗ and still be handled by the
network without any link capacity or deadline violation. We
will loosely say the network isoverloadedif Z∗ is less than
or equal to1. If Z∗ is greater than1 by a non-trivial amount,
we say the network isunderloaded.

We next describe the formulation in more details.

• In (2), the left hand side is the total traffic scheduled to be
transferred for jobi. It is the sum of the flows assigned
on all time slices and on all allowed paths for jobi. Note
that LEN(j) is the length of slicej.

• Expression (3) says that the capacity constraints must be
satisfied for all edges on every time slice. Here,Ce(j) is
the capacity of edgee on slicej. In all the experiments in
this paper, each link capacity is assumed to be a constant
across the time slices, i.e.,Ce(j) = Ce for all j.

• Expression (4) is the start and end time constraint for
every job on every allowed path. Here,I(Si) andI(Ei)
are the time slices on which the requested start and end
times (Si andEi, respectively) fall. The rate assignment
must be zero before the start time and after the end time.

The number of variables required to solve the stage-1
problem isΘ(k×|L|×|J |), wherek is the maximum number
of paths allowed for each job,|L| is the number of jobs in
the network and|J | is the number of time slices that need to
be considered, which is determined by the maximum of the
requested end times. Since stage 1 is a linear program, it can
be solved in a reasonable amount of time for typical research
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networks, as demonstrated in [20], [21]. We shall see that it
is stage 2 that dominates the computation time, which must
be coped with.

2) Stage 2:Note that the optimal solution that we obtain
in stage 1 is not what the controller will apply to the network.
The maximum concurrent throughputZ∗ will be used in the
constraints in stage 2 to achieve fairness among the jobs. In
stage 2, we will find a near optimal “throughput” of the whole
network while maintaining fairness, and we will obtain integer
solutions for wavelength assignments.

For each jobi ∈ J , following the convention in the MCF
literature, we define the throughput for jobi by

Zi =
∑

j∈L

∑

p∈P (si,di,j)

xi(p, j) · LEN(j)/Di. (6)

The stage-2 optimization problem is as follows. It maximizes
the weighted throughput of all jobs, where the weights are the
(normalized) file sizes. The objective function gives preference
to larger jobs. Implicitly, we regard larger jobs as being more
important, since they are typically associated with large-scale
scientific experiments, as shown by traffic studies on ESnet [8].
However, the network administrator can define other weight
functions based on specific policy considerations. For instance,
the weights can be inversely proportional to the file sizes.
In that case, the resource allocation decision favors smaller
jobs and tries to finish more smaller jobs at a possibly slight
expense of larger jobs. Another possibility is that the users
can specify how important their submitted jobs are. When the
network is overloaded, these importance levels get translated
into weights.

Stage 2

max

∑
i∈J ZiDi∑

i∈J Di

(7)

s.t.
M∑

j=1

∑

p∈P (si,di,j)

xi(p, j)LEN(j) = ZiDi, ∀i ∈ J (8)

Zi ≥ (1− α)Z∗, ∀i ∈ J (9)

(3)− (4)

xi(p, j) ∈ Z+, ∀p ∈ P (si, di, j), ∀i ∈ J, ∀j ∈ L. (10)

Some details about the state-2 formulation are as follows.
First, we interpretCe as the number of wavelengths available
on link e; all the demandsDi are normalized by the capacity
per wavelength; andxi(p, j) is the number of wavelengths
assigned, which must be non-negative integers.

• Condition (8) says that, for each job, the total flow as-
signment, when summed over all time slices and allowed
paths, must be equal toZi times the job size.

• Condition (9) is the fairness constraint. It ensures that the
throughput of each job is at least some fraction of the
maximum concurrent throughputZ∗ computed in stage
1. Here,α is a parameter between 0 and 1.

• (3) and (4) are as the link capacity constraint and start
and end time constraints as before.

• (10) is the integrality constraint for wavelength assign-
mentsxi(p, j). Here,Z+ denotes the set of non-negative
integers.

Remark 1: The factor1−α in (9) increases the chance that
the stage-2 problem has an integer solution for eachxi(p, j).
If not, α can be further increased.
Remark 2: In the overloaded situation whereZi < 1 for some
job i, Zi tells how much jobi should have its demand size
reduced, for alli with Zi < 1, in order to guarantee that the
time constraints of all the jobs are met. IfZi > 1 for some
i, the solution(xi(p, j))p,j can transfer up toZi times the
demand sizeDi. In the actual practice, we may assign any
number of wavelengths between⌈xi(p, j)/Zi⌉ andxi(p, j) to
job i on each pathp and time slicej.
Heuristic Algorithm for the Stage-2 Problem - LPDAR

The computation time required to solve the stage-2 problem
using standard integer programming solvers is prohibitively
long. We have developed a much faster heuristic solution,
which comes with the cost of a slight loss of optimality.
In the heuristic solution, we start by ignoring the integrality
constraint and treating the problem as a linear program. We
then transform the continuous version of the solution into an
integer version. The detailed steps are as follows.

1) We start by solving the stage-2 problem without the
integrality constraint. That is, we first solve a linear
program. The result will be called LP.

2) Given the real-valued solution to the linear program, we
truncate the values forxi(p, j) down to the nearest inte-
gers. We call the resultLinear Programming-Discretized
(LPD).

3) After the truncation, there may be some remaining band-
width (in terms of the number of wavelengths) left in
the network. We next adjust the LPD solution by making
use of the remaining bandwidth to get a better solution,
which will be calledLinear Programming-Discretized
with Adjusted Rates(LPDAR). The adjustment is done
by the greedy algorithm shown in Algorithm 1.

Algorithm 1 Greedy Algorithm for Bandwidth Adjustment
1: For each time slicej ∈ L, for each jobi ∈ J , and for

each pathp ∈ P (si, di, j), find the remaining bandwidth
of path p,RBp, by:

RBp ← min
e:e∈p
{RBe}. (11)

// RBe is the remaining bandwidth of edgee.
2: Increase the bandwidth assignment on pathp by RBp:

xi(p, j)← xi(p, j) + RBp. (12)

3: For each edgee ∈ p, decrease its remaining bandwidth by
RBp:

RBe ← RBe −RBp, ∀e ∈ p. (13)

We next explain Algorithm 1. At each time slicej, for
each jobi and each of its allowed pathp, the following takes
place. The network controller finds the remaining bandwidth
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on the pathp, RBp, which is the minimum of the remaining
bandwidth of all the edges on the pathp (see (11)). Then, we
increase the bandwidth assignmentxi(p, j) to use up all the
remaining bandwidth on the pathp (see (12)). After that, the
remaining bandwidth of each edgee ∈ p is decreased byRBp

(see (13)).

C. Relaxing End Times

In the algorithm presented in Section II-B, the end times of
the jobs are strictly enforced, but the job sizes may be reduced
depending on whether the network is overloaded or not. In
some applications or for some users, it is more important to
finish the entire transfer with a small amount but predictable
delay than to enforce a strict deadline. In other words, if the
network is overloaded, the deadlines can be extended but the
the jobs must be transferred in their entirety. In this case,the
network should try to find out the smallest possible end-time
extension/relaxation. We call this theRelaxing-End-Time
(RET) problem. After the network solves the RET problem,
the new end times can be proposed to the network users, who
may accept or decline the proposal. This negotiation process
can be further repeated.

This section presents the algorithm for solving the RET
problem. This algorithm is only needed when the network
is overloaded and when some users are willing to relax the
end times of their jobs. If the network is not overloaded,
the algorithm in Section II-B suffices, which of course also
handles the overloaded situation by asking the users to reduce
the job sizes.

Our solution of the RET problem involves the following
sub-problem, calledSUB-RET.

SUB-RET

min
∑

j∈L

γ(j)
∑

i∈J

∑

p∈P (si,di,j)

xi(p, j) (14)

s.t.
∑

j∈L

∑

p∈P (si,di,j)

xi(p, j) · LEN(j) ≥ Di, ∀i ∈ J (15)

xi(p, j) = 0, ∀p ∈ P (si, di, j),

j ≤ I(Si) or j > I((1 + b)Ei), ∀i ∈ J (16)

(3), (10).

SUB-RET should be understood primarily as a feasibility
problem; the objective function (14) is not essential and can be
substituted by other functions. We introduce a parameterb in
(16) to measure how much the end times should be extended;
(1+b) is the factor by which each of the end times is relaxed.
Under a particularb, any feasible solution to SUB-RET can
complete every jobi by the timeI((1+b)Ei), whereI(·) is the
rounding of the time on slice boundaries. Later, in Algorithm
2, we will find the smallestb for which SUB-RET is feasible.

We next explain some details about SUB-RET.
• L is understood to contain all the relevant time slices

after extending the end times by a factor(1 + b).
• Expression (14) is known as theQuick-Finish (QF)

objective function, which was first introduced in [21]. In
this function,γ(j) is a given cost function increasing in
time j. We choose it to beγ(j) = j+1 in our evaluations.

The intention is to finish the jobs earlier rather than later
if possible. The solution tends to pack more flows in
earlier time slices, but leaves the network load light to
better accommodate future job requests.

• Expression (15) says the sum of total flows assigned on
all time slices and on all allowed paths for jobi is greater
than or equal to the demand of jobi. That is, each jobi
has to be completed by the extended end time.

• Expression (16) ensures the flow assignment can be
positive from the start time to the extended end time.

• (3) is the link capacity constraint; (10) is the non-negative
integer wavelength assignment requirement.

Remark: An alternative way to extend the deadline is by
extending the intervals between the start and end times by
the same constant factor1 + b for all jobs. For brevity, we do
not further discuss this option in this paper.

There are two remaining questions: how to find the smallest
valueb for which the SUB-RET problem is feasible and how
to cope with the integrality constraints. For the first question,
we use a binary search method to find the smallestb. For the
second question, we use the same heuristic solution LPDAR
in Section II. To guarantee that all the jobs will finish in the
end using LPDAR, we add another loop into the algorithm that
further extends the end times a bit more if the network still
cannot satisfy all the jobs’ requirement. The final algorithm is
listed as Algorithm 2. In the algorithm,bmax is a given large
enough constant;δ is a small constant, e.g.,δ = 0.1 in our
evaluations.

Algorithm 2 RET
1: Perform binary search on[0, bmax] to find the minimum

b for which the SUB-RET problem is feasiblewithout the
integrality constraints(i.e., replacing (10) by (5) in SUB-
RET). Call the minimum̂b.

2: Obtain the real-valued solution to SUB-RET underb̂
without the integrality constraints; apply Algorithm 1 to
get the integer-valued solution.

3: if the bandwidth assignment results generated by step2
cannot satisfy the requirement of all the jobsthen

4: b̂← b̂ + δ; go back to step2.
5: end if

III. E VALUATION

The performance improvement of the overall optimization
framework with multipath, time-varying bandwidth allocation
and periodical reallocation has been verified previously [21].
Here, we focus on performance evaluation of the algorithms
introduced in the paper. The focus is to examine the per-
formance and speed of the sub-algorithm, LPDAR, which is
a heuristic technique to find an integer solution based on
the initial linear programming solution. LPDAR is the key
component in both algorithms for solving the maximizing-
throughput problem and the RET problem.

We will compare LPDAR to LP and LPD. Since it is prac-
tically impossible to get the optimal integer solutions using
standard solvers for mixed integer programming but for very
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small setups, we will not be able to show those results. Instead,
we use the LP solutions as performance benchmarks, since
they generally provide upper bounds for the optimal integer
solutions. However, LP does not produce integer solutions
in general. We also evaluate the required computation time
to determine the scalability of the algorithms, and will show
that both LPDAR and LPD are fast algorithms. But, LPDAR
produces much better results than the less sophisticated LPD.

The experiments were conducted on random networks and
the Abilene network. The latter was the backbone network for
Internet 2. Experiments on the Abilene network show how
well the proposed algorithms work on practical networks;
experiments on the random networks show how general the
observed results are or how they scale with the network size.
In this paper, we show only a subset of the results, which are
typical instances. The random networks that we use typically
have between 100 to 400 nodes, with an average node degree
of 4. We use the network generator, BPRITE [28], to generate
the random networks using Waxman’s algorithm [29]. In Wax-
man’s algorithm, nodes are placed on a plane; the probability
of interconnecting two nodes decreases exponentially withthe
Euclidean distance between them. Each link has a capacity
of 20 Gbps. Our instance of the Abilene network consists of
a backbone of 11 nodes. The backbone links each have 20
Gbps capacity. The job size is uniformly distributed between
[1, 100] Gigabytes. Theα value in the stage-2 problem is set
to 0.1. We use the commercial CPLEX package for solving
linear programming problems on Intel-based workstations.

A. Maximizing Throughput with End Time Guarantee
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Fig. 1. Throughput comparison of LP, LPD and LPDAR on a randomnetwork
with 100 nodes and 200 pairs of links

1) Throughput Comparison:: Fig. 1 shows that the
throughput comparison of LP, LPD and LPDAR under dif-
ferent numbers of wavelengths on each link while holding the
capacity of each link constant. The throughput is normalized
with respect to that of LP. The network has 100 nodes and
200 pairs of links. LP achieves the best possible throughput
but does not satisfy the integrality constraint. From Fig. 1,
we see that the throughput of LPD suffers when the number
of wavelengths per link is small. When the network has only
two wavelengths on each link, LPD achieves about half of
throughput of LP. The reason is that, when the number of
wavelengths is small, LPD tends to truncate a non-trivial
portion of the continuous bandwidth assignment in order to

comply with the integer-valued wavelength constraint. LP-
DAR, which adjusts the wavelength assignment by utilizing
the remaining bandwidth on the paths when possible, performs
much better than LPD. For instance, LPDAR achieves nearly
90% of the throughput of LP in the case of two wavelengths
per link; it achieves 95% or more of the throughput of LP with
four or more wavelengths per link. In short, the simple greedy
algorithm of LPDAR is effective for throughput improvement.
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Fig. 2. Throughput comparison between LP, LPD and LPDAR on the Abilene
network with 11 nodes and 20 pairs of links

Fig. 2 shows the normalized throughput of LP, LPD, and
LPDAR in the Abilene network with 11 backbone nodes
and 20 pairs of links. We see that LPD still suffers much
throughput reduction when the number of wavelengths per link
is small. At two wavelengths per link, LPD achieves around
60% of the throughput of LP. The throughput improvement
when using LPDAR is more dramatic than in the random
network case. LPDAR achieves nearly identical throughput as
LP.
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Fig. 3. Computation time comparison of LP, LPD and LPDAR on a random
network with 100 nodes and 200 pairs of links.

2) Computation Time:Recall that the motivation to develop
the heuristic algorithm, LPDAR, is that it is impractical to
solve the original integer programming problem of stage 2
using standard solvers. Fig. 3 shows representative results for
comparing the computation times of LP, LPD and LPDAR. We
have not been able to measure the computation time required
for solving the optimal integer version since this takes too
long. Note that the computation times of the three algorithms
are quite similar. This is because LPD and LPDAR also need to
solve the linear program first and this step dominates the com-
putation time. In our previous papers [20], [21], we conducted
many experiments on the computation time under different
parameters and showed that linear programming formulations
can be solved quickly enough for practical scenarios. In light
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of the results in Fig. 3, that conclusion carries over to our
current situation.

B. Relaxing End Times

In the RET problem, completing all the jobs is more
important than strictly enforcing the end times. In this part,
we compare the fraction of jobs finished and average end time
in the solutions obtained by LP, LPD and LPDAR at the end
of Algorithm 2.

1) Fraction of jobs finished:We computed the fraction
of jobs finished by LP, LPD and LPDAR for a variety of
scenarios. Algorithm 2 guarantees to find ab̂ such that, when
the end times are extended by(1+ b̂), the solution by LPDAR
(and hence, by LP) can complete all the jobs. In contrast,
under the same extended end times, LPD only finished a very
small fraction (typically zero) of the jobs for these cases.
Furthermore, the value of̂b was often the same as (or slightly
larger than) the minimum value under which the LP solution
can finish all the jobs. In short, LPDAR has performance
comparable to LP but substantially better than LPD.

2) Average End Time:The average end time of all jobs is a
measure of how fast the jobs are completed. Fig. 4 compares
the average end time of the results by LP and LPDAR. The
unit is in the number of time slices. Note that most of the
jobs in the solution of LPD are not finished by the end of
Algorithm 2 execution. Hence, the average end time is not
relevant in the LPD case.

In these experiments, we use the Quick-Finish objective
function for the SUB-RET problem, which has the effect of
trying to finish a job earlier if possible. As expected, LP hasa
smaller average end time since it does not have the integrality
constraints. LPDAR is nearly as good as LP, despite that it
gives integer solutions. Similar results have been observed on
the Abilene network, which are omitted.

Fig. 4 shows that the average end time increases as the
number of jobs increases. This is because the network does
not change in the experiments while the number of jobs varies.
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Fig. 4. Average end time comparison of LP, LPD and LPDAR on a random
network with 100 nodes and 200 pairs of links

IV. A DDITIONAL RELATED WORK

Compared with the traditional QoS frameworks, such as
DiffServ [30], the ATM network [31], or MPLS [32], admis-
sion control and scheduling for research networks are recent
concerns with much fewer published studies.

The NSF-supported DRAGON [13] project develops control
plane architecture and middleware for multi-domain traffic
engineering and resource allocation, e.g., using GMPLS pro-
tocols [33] for setting up SONET circuits or lightpaths. It
supports advance reservations of label switched paths (LSP)
on requested time periods. CHEETAH [15] is a similar project
to DRAGON but it focuses on simpler, distributed operations
for path computation and bandwidth management to support
high arrival rates of immediate connection requests. OSCARS
[16] is the control plane project for DOE’s ESnet, also similar
to DRAGON. BRUW is the counterpart of OSCARS for
Internet2. Other notable related work in this category includes
[12], [14], [34] [35], [36]. Most of the above control-plane
architectures and tools provide rudimentary AC and scheduling
algorithms for simple job types.

Recent papers on AC and scheduling algorithms for bulk
transfers with advance reservations include [22], [17], [20],
[21], [23], [19], [24], [25]. All these papers study the problem
for router networks where the bandwidth is assumed to be
infinitely divisible. In [19], the AC and scheduling problemis
considered only for the single link case. As a result, multi-
path routing and network-level bandwidth allocation are not
relevant issues in [19]. The problem studied in [22] is similar
to those examined in our earlier papers [20], [21], but the
emphasis is different.In [23], the authors consider single-link
admission control or link-by-link admission control under
single-path routing. The admission control does not rely on
formulating optimization problems. The AC decision is based
on the job’s average bandwidth requirement, which is com-
puted using the size of the job and the deadline information.
The bandwidth of existing jobs may be re-allocated in the
single link case but not in the network case. The authors of
[25] propose a malleable reservation scheme for bulk transfer,
which checks every possible interval between the requested
start and end times for the job and tries to find a path that
can accommodate the entire job on that interval. In [24], the
computational complexity of a related path-finding problem
is studied and an approximation algorithm is suggested. [17]
starts with an advance reservation problem for bulk transfer,
but converts it into a constant bandwidth allocation problem to
maximize the job acceptance rate. The bandwidth constraints
are at the ingress and egress links only, and hence, there is no
routing issue.

Several earlier studies [37], [38], [39] have considered
admission control at an individual link for applications that
require minimum bandwidth guarantee on some time inter-
vals. The concern is typically about designing efficient data
structures[38]. [24], [40], [25], [41] and [39] go beyond single-
link advance reservations and tackle the more general path-
finding problem, but typically only for new requests, one at
a time. The routes and bandwidth of existing jobs are un-
changed. The authors of [18] advocate periodic re-optimization
to determine new bandwidth allocation. However, they do not
assume that users make advance reservations with requested
end times. Many papers study advance reservations, re-routing,
or re-optimization of lightpaths in wavelength-based optical
networks [26], [27]. But, they do not consider the start and
end time constraints and do not focus on bulk transfers.
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V. CONCLUSION

In this paper, we present two algorithms for scheduling
time-constrained bulk transfers on wavelength-based optical
research networks. The first one works on both underloaded
or overloaded networks. In the overloaded case, the algorithm
seeks to decrease the job sizes in a way that maximizes
the network throughput while maintaining a level of fairness
among the jobs. The second algorithm works in the overloaded
case and serves as an alternative to the first algorithm. It seeks
to extend the end times by the smallest possible proportion and
complete all the jobs by the extended end times.

The main challenge for us is that the underlying problems
are integer optimization problems for wavelength assignment,
which have no known fast optimal solutions. We present a
heuristic sub-algorithm called LPDAR, which converts frac-
tional solutions from linear programming into integer solu-
tions. LPDAR is the key component used in both aforemen-
tioned algorithms. Evaluation shows that LPDAR leads to very
good algorithms with a performance level and speed both
comparable to those of the LP fractional solutions.
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Sweden, Tech. Rep. Tech report cs.DS/0308041, 2003.

[39] L.-O. Burchard, J. Schneider, and B. Linnert, “Rerouting strategies for
networks with advance reservations,” inProceedings of the First IEEE
International Conference on e-Science and Grid Computing (e-Science
2005), Melbourne, Australia, Dec. 2005.

[40] T. Wang and J. Chen, “Bandwidth tree - A data structure for routing
in networks with advanced reservations,” inProceedings of the IEEE
International Performance, Computing and CommunicationsConference
(IPCCC 2002), April 2002.

[41] T. Erlebach, “Call admission control for advance reservation requests
with alternatives,” Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (ETH) Zurich, Tech. Rep. TIK-
Report Nr. 142, 2002.


