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Abstract—The advancement of optical network technologies to exabytes 0'®) by 2012 to 2015. In addition, e-scientists
has enabled data-intensive e-science collaborations, whioften  desire schedulable network services to support predicate
[require thettrans;er of Ilarg? files with gre_dictablcz perfolrm?nc:e. processes [11]. An important type of schedulable servises i

0 support such applications, we design and evaluate two : . .

algorithms for scheduling time-constrained bulk transfers on large data t.ransfers with start and.end time requirement. In.
wavelength-based optical research networks. The first oneesks SUch a service, each data-transfer job request can be made in
to maximize the network throughput while maintaining a levd advance and can specify a start time and an end time. If it has
of fairess among the jobs. The second algorithm works in a sufficient resources, the network guarantees that it wilibe
overloaded network and serves as an alternative to the first o gata transfer after the requested start time and finish it

algorithm. It seeks to extend the end times by the smallest . . o
possible proportion and complete all the jobs by the extend&end before the requested end time. This paper presgfitsission

times. The main challenge is that the underlying problems a control (AC) and schedulingalgorithms for supporting large
integer optimization problems for wavelength assignmentwhich ~ data transfers in research networks with the start and emal ti
have no known fast optimal solutions. We present a heuristic requirement. The targeted environment is wavelengthebwit
sub-algorithm called LPDAR, which converts fractional soUtlons networks, and hence, the AC/scheduling problems are partic

from linear programming into integer solutions. LPDAR is - . S
the key component used in both aforementioned algorithms. lar kinds of wavelength assignment problems, which in gainer

Evaluation shows that LPDAR leads to very good algorithms are very difficult to solve. Our focus is on developing high-
with a performance level and speed both comparable to thosefo performance and fast algorithms. The results should comple

the LP fractional solutions. ment other protocol, architecture or infrastructure petgean
Index Terms—Wavelength Scheduling, Advance Reservation, support of e-science and grid computing [3], [4], [7], [12],
Admission Control, Bulk Data Transfer, E-science [13], [14], [15], [16].
The paper adopts the optimization-based paradigm pro-
|. INTRODUCTION posed by several earlier papers [17], [18], [19], [20], [21]

The advance of communication, networking and computirﬁoedﬁca”y’ the AC and scheduling decisions are made by

technologies is dramatically changing the ways how sdienti ed rlﬁtw_orll; controllter Elt]t?t has ta ﬁIObal Iwew oft_thel network
research is conducted. A new terexscience has emerged an € Job requests. 1he controller Soves optimal resourc

to describe the “large-scale science carried out through d?"olf.atloPh prob(ljem.s. with _?;[]art ar!d snd ]E.'tmef (t:r(])_nstralnts ”;]
tributed global collaborations enabled by networks, reggi makxing these decisions. 1he main benetit ot this approach,

access to very large scale data collections, computing e demonstrated in [20], [21], is greatly improved network

4 ) o fficiency.
sources, and high-performance visualization” [1]. Welbted resource € ) . .
e-science (and the related grid computing [2]) examples i _This paper continues the earlier work reported in [20],

clude high-energy nuclear physics (HEP), radio astrono 1] and the distinctions are as follows. In the earlier pape

geoscience and climate studies. To support e-sciencei-actly'> assumed that the bandwidth of every link is infinitely
er]S|bIe; this is a useful assumption to model an all-route

ties, a new generation of high-speed research and educa 0 . .

networks have been developed. These include Internet2 CEEt r:]etwor:k.dLln_egr progral\)T\mlng problclamsi wgrerormu—

the Department of Energy’s ESnet [4], National Lambda Rat ed where the Jecision varr:a €s wEre r_TIab-va ued. Z‘:”voivl

[5], CA*net4 [6] in Canada, and the pan-EuropB&NT2 [7]. € next-generation research networks will be a mixtur
packet networks, traditional optical circuit-switchedwerks

A large fraction of all data traffic supporting U.S. scienee I(e.g., SONET), and wavelength-switched networks [14]. The

carried by ESnet, Internet2, and National Lambda Rail [8]. . .
The need for transporting large volume of data in e-scienggor'thms in [20], [21] can handle the former two types of

has been well-argued [9], [10]. For instance, the HEP dah tworks. This paper extends the earlier work to wavelength

is expected to grow from the current petabytes (PB)'Y) SW'FChed. optical netvyorks. qu this typ_e of networks, the
optimization problem involves integer variables, whiclpne
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and scheduling algorithms for bulk transfers with advandeis possible to manage the network resources as a whole
reservations [22], [17], [23], [19], [24], [25]. Comparedtiv and make tradeoffs among all the jobs in the network. The
these earlier studies, our work distinguishes itself fangishe result is greatly improved efficiency in network resource ut
optimization-based formulation or for the degree of schiedu lization. Different from the public Internet, researchwetks
flexibility that our formulation allows. Our approach witeins- typically have far fewer tham000 core nodes in the backbone.
late into much greater resource efficiency. Secondly, faar pr Hence, it possible to use a centralized approach for keeping
studies have considered the time-constrained bulk transfck of the global information about the whole network
problem on a wavelength-switched network under an opt@nd all the jobs. Virtually all current and planned research
mization framework. Thirdly, our focus is on the overloadedetworks have adopted the approach of using centralized
situation where the network does not have sufficient ressurcontrollers for service/resource reservation and sclieglul
to satisfy all the requests. Instead of just rejecting soofe jHowever, none formulate and solve optimization problems
requests, we also consider a negotiation-based approae wlor making the resource allocation decisions. Our proposal
the users may modify the job parameters and and re-submit tbeuse a small number of controllers and have them solve
modified requests. The main content of the paper descrilies twptimization problems periodically has been shown to be
algorithms: One allows reducing the job sizes; the othemal effective enough for router-based research networks [2Q],
extending the end times. Finally, our formulations incogte This paper will present solution techniques that are fastigh
the fairness issues while dealing with multiple jobs. for wavelength-switched networks. If needed, the scatsbil

The problems of the paper are also different from typicabn be further enhanced by using a distributed hierarchy of
wavelength assignment problems (e.g., see [26], [27]) r&vhecontrollers.
the objective is to establish long-lasting light paths. éje¢he The time is divided into time slices (or time slots). Each
time dimension is important: First, bulk transfer is elastijob can be assigned different bandwidth by the controllers o
and can take time-varying wavelength assignments; secodifferent time slices. Each job can also take multiple paths
the start and end time constraints call for very differesimultaneously on each time slice, and these paths can be
formulations of the scheduling problems. different on different time slices. The file transfer reqsese

The rest of the paper is organized as follows. Section submitted to the network controllers, which verify whether
describes the two algorithms we developed for AC/schedulirthere are sufficient network resources to finish the jobsreefo
Section Il shows the performance evaluations of the pregosthe requested end times. If the resources are insufficient,
algorithms. The related work is shown in Section IV. Theome jobs may be rejected or the requested file sizes or

conclusion is drawn in Section V. end times may be re-negotiated. The process of deciding the
admissibility of the job requests is calledimission control
Il. ADMISSION CONTROL AND SCHEDULING After AC, the network controllers will assign bandwidth teet
ALGORITHMS admitted jobs on each time slice and on each allowed path.

This assignment process is callscheduling The scheduling
stage may use the results from the AC stage. However, in

We first present the system model and a high-level overvigygneral, the AC and scheduling stages may involve different
of the AC and scheduling framework proposed in [21]. Thisptimization problems. AC and scheduling are conducted pe-
paper extends the framework to wavelength-switched nésvoriodically everyr time units, wherer > 0. More specifically,
by providing two AC/scheduling algorithms for bulk transfeat time instancesr, & = 1,2, ..., the controllers collect all
jobs with time constraints and integrality constraints. the new requests that arrived on the interi@ — 1)7, k7],

The network is represented by a directed gréph (V, E), make the AC decision first, and then, schedule the transfers
where V' is the set of nodes andl’ is the set of edges. Theof all jobs.
capacity of a link (an edge) € E is denoted byC,. Since Both AC and scheduling must take into account the previous
we are dealing with a wavelength-switched netwofk, is jobs, which have been admitted earlier but remain unfinished
the total number of wavelengths of lirk Job requests arrive The value ofr should be small enough so that new job
at the network following a random process. Each job requasijuests can be checked for admission and scheduled as early
1 is a 6-tuple(A;, s;,d;, D;, S;, E;), where A; is the arrival as possible. However, it should be more than the computation
time of the requests; and d; are the source and destinatiortime required for AC and scheduling. More details about this
nodes, respectivelyl); is the size of the jobS; and F; are periodic AC/scheduling framework can be found in [21].
the requested start time and end times, whére< S; < E,. To extend the framework to wavelength-switched networks,
In words, request, which is made at time = A;, asks the the challenge is to find fast algorithms for handling the unde
network to transfer a file of siz&; from nodes; to noded; lying integer optimization problems while maintaining hig
over the time intervalS;, E;]. efficiency. The paper mainly describes two AC/scheduling

In our framework, the network resource is managed kajgorithms that meet this challenge. The first one maximizes
a small number ohetwork controllers(NC), which control the throughput with end time guarantee. When end time guar-
job admission, bandwidth (wavelength) allocation and [setantee is impossible due to excessive demand, three possible
of the allocated resources. One advantage of the approachdarses of actions can be taken: (i) Some jobs are rejected;
that resource reservation and allocation decisions aredba§i) the users agree to reduce the demand sizes and the
on a global view of the network and on all the job requestaetwork guarantees the end times for the modified demand

A. System Overview



sizes; (iii) the users agree to relax the end times and tbkthe requested end times of the known jobs. Pét;, d;, 7)
network guarantees the delivery of the entire jobs by thee the set of allowed paths for jalon time slicej, wheres;
extended end times. Our first algorithm is suitable for actias the source node and] is the destination node. Let;(p, j)
(ii). Its objective is to improve the network throughput ¥ehi be the bandwidth assigned on pathe P(s;,d;,j) for job
maintaining a level fairness among the jobs in the processiof J on the time slicej € L. It is assumed to be constant on
reducing the job sizes. Our second algorithm is suitable ftre entire slice. The problem formulation is given by:
action (iii). It finds the smallest (common) factor by which

the end times should be extended so that all the jobs can be

completed by the new end times. There is a simple algorithm>tage 1 (MCF)

for action (i) and we will not focus on'it We leave developing ~ max Z (1)

more sophisticate algorithms for action (i) to future work. S-t-z Z 2i(p.j) - LEN(j) = ZD:,¥ie J (2

. . . JEL PEP(si,di,5)
B. Maximizing Throughput with End Time Guarantee Z 2i(p,j) < Cu(j), Ve ENje L 3)

In this scheduling algorithm, our objective is to make effi- =5 (570, ;)
p

cient use of the network resources while maintaining fasne re€p
among the jobs. The resource efficiency will be measured inz;(p,j) =0, Vp € P(s;,d;,j),j < I(S;) orj > I(E;),
terms of a weighted throughput of the network. The end times Vie J (4)
of the jobs will be guaranteed by this algorithm, although . N .

. > - d. .
this may require the users to reduce the demand sizes in aﬁCz(p’]) 20, ¥p € P(si,di, j), Vi € J,¥j € L ®)

overloaded network. The core scheduling algorithm cossist In the stage-1 problem, we do not impose the integrality
of solving two optimization problems in two stages. constraint; all variables are assumed to be real-valdeds
« In stage 1, we pretend the bandwidth is infinitely divisealled the concurrent throughput and the problem seeks to
ible and formulate a linear programming problem. Theaximize the concurrent throughput. It asks: What is the
optimal valueZ* will be called the maximum concurrentmaximum concurrent throughpat* such that, after every job
throughput of the network. size is scaled by’*, the link capacity constraints, as well as
« In stage 2, we us&* to enforce fairness among the jobghe start and end time constraints, are still satisfied fdiraé
while maximizing the weighted throughput, which is slices? Note that, iZ* < 1, it is not possible to satisfy the
better measure of the network resource efficiency thaeadline of all the jobs. However, if the file sizes are reduce
the maximum concurrent throughput. by a common factor t&Z* D; for all job ¢, then, the requests
The optimization problem in stage 2 is an integer prograrf@n all be satisfied. IZ* > 1, then the file sizes can all
which dominates the computation cost. We will present a go8& scaled up by the factaz™ and still be handled by the
heuristic algorithm, LPDAR, to solve the stage-2 problem. hetwork without any link capacity or deadline violation. We
1) Stage 1- Computing the Maximum Concurrent ThrougMLl" IOosely say the network i®verloadedif Z* is less than
put: The formulation in stage 1 is adapted from the wellor equal tol. If Z* is greater tharl by a non-trivial amount,
known maximum concurrent flow (MCF) problem, which igve say the network isinderloaded
a special type of network linear program. In the path-basedWe next describe the formulation in more details.
formulation, the variables are the bandwidth assignments o « In (2), the left hand side is the total traffic scheduled to be
the allowed paths of each job on every time slice, as wellas th  transferred for joh. It is the sum of the flows assigned
maximum concurrent throughput. For each file-transfer job, on all time slices and on all allowed paths for jokNote
the formulation allows an explicitly defined collection aiths that LEN(j) is the length of slice.
on every time slice and bandwidth reservations are done onlys Expression (3) says that the capacity constraints must be
on these path$We have found in [20] that a small number  satisfied for all edges on every time slice. Hefg(j) is
of paths per job (4 to 8 paths) is usually enough for achieving the capacity of edge on slicej. In all the experiments in
very good performance in the networks we tested. this paper, each link capacity is assumed to be a constant

Consider an arbitrary AC/scheduling instariee wherek is
a non-negative integer. The following variables shouldeseb
on k. For notational simplicity, we omit: in the notations.

Let J be the set of job requests known to the system at time

k7, waiting to be admitted and/or scheduled. L&tbe the

across the time slices, i.e0.(j) = C. for all ;.

Expression (4) is the start and end time constraint for
every job on every allowed path. Herg,S;) andI(E;)

are the time slices on which the requested start and end
times (S; and E;, respectively) fall. The rate assignment

collection of future time slices that need to be considered. must be zero before the start time and after the end time.
This collection is finite since it only needs to cover the &%  The number of variables required to solve the stage-1
LFirst, list all the jobs in a sequence according to some aidtrative prOblem ISG(k x |£| x |J|)’ V\.Iherek. is the maximum qumbgr
policy, priority, request times, or a combination of thedext, conduct a Of paths allowed for each jol£| is the number of jobs in
binary search to find a last job in the sequence before whidhalobs can the network and.J| is the number of time slices that need to
bg finished ahead of the_lr respective end times. The algasitintroduced in be considered, which is determined by the maximum of the
this paper can be used in each stage of the binary search. . . . . .
requested end times. Since stage 1is a linear program, It can

2Note that the allowed paths can be time-varying. The reguformulation . ) )
can accommodate time-varying policy-induced constraints be solved in a reasonable amount of time for typical research



networks, as demonstrated in [20], [21]. We shall see that ite (10) is the integrality constraint for wavelength assign-
is stage 2 that dominates the computation time, which must mentsz;(p, j). Here,Z, denotes the set of non-negative
be coped with. integers.

~ 2) Stage 2:Note that the optimal solution that we obtairRemark 1: The factorl — o in (9) increases the chance that
in stage 1 is not what the controller will apply to the networkhe stage-2 problem has an integer solution for eath, 7).
The maximum concurrent throughpidt: will be used in the |f not, o can be further increased.

constraints in stage 2 to achieve fairness among the jobs.HBmark 2: In the overloaded situation wheg < 1 for some
stage 2, we will find a near optimal “throughput” of the wholgop i, Z; tells how much jobi should have its demand size
network while maintaining fairness, and we will obtain @ée reduced, for all with Z; < 1, in order to guarantee that the

solutions for wavelength assignments. time constraints of all the jobs are met. & > 1 for some
_ For each jobi € J, following the convention in the MCF ;, the solution(;(p,j)),; can transfer up taZ; times the
literature, we define the throughput for jotby demand sizeD;. In the actual practice, we may assign any

number of wavelengths betweén; (p, j7)/Z;] andz;(p, 7) to
Zi=> > @) LEN(j)/D;. (6) job i on each patlp and time sﬁceg'. /7] )
JEL peP(s4,di,]) Heuristic Algorithm for the Stage-2 Problem - LPDAR
The computation time required to solve the stage-2 problem
sing standard integer programming solvers is prohibitive
ong. We have developed a much faster heuristic solution,
which comes with the cost of a slight loss of optimality.

The stage-2 optimization problem is as follows. It maxirsize
the weighted throughput of all jobs, where the weights aee t
(normalized) file sizes. The objective function gives prefee
to larger jobs. Implicitly, we regard larger jobs as beingreno o . - . S
important, since they are typically associated with lasgale In the heurlstlc solu_t|on, we start by 'ghoring the integyal
scientific experiments, as shown by traffic studies on ESBjet[ConStralnt and freating Fhe problem as a linear program. we
: men transform the continuous version of the solution imo a
functions based on specific policy considerations. Foaimst, Integer version. The detailed steps are as follows.
the weights can be inversely proportional to the file sizes.1) We start by solving the stage-2 problem without the
In that case, the resource allocation decision favors emall ~ integrality constraint. That is, we first solve a linear
jobs and tries to finish more smaller jobs at a possibly slight ~ Program. The result will be called LP.
expense of larger jobs. Another possibility is that the siser 2) Given the real-valued solution to the linear program, we
can specify how important their submitted jobs are. When the ~ truncate the values far; (p, j) down to the nearest inte-
network is overloaded, these importance levels get treetsla gers. We call the resultinear Programming-Discretized

into weights. (LPD).
3) After the truncation, there may be some remaining band-

width (in terms of the number of wavelengths) left in

Stage 2 the network. We next adjust the LPD solution by making
ey ZiD; use of the remaining bandwidth to get a better solution,
max 2713 ) which will be calledLinear Programming-Discretized
e with Adjusted Rate§ PDAR). The adjustment is done

M . . .
s.t.z Z 2i(p. ) LEN(j) = ZiDs, WicJ (8) by the greedy algorithm shown in Algorithm 1.

J=1p€P(si,di,j)

Algorithm 1 Greedy Algorithm for Bandwidth Adjustment

Zi>(1—-w)z*, Vield 9) : — —

3 4 1: For each time slicg € £, for each jobi € J, and for
(3) - (4) each pattp € P(s;,d;,j), find the remaining bandwidth
zi(p,j) € Z4,Vp € P(s;,d;, j),Vi € J,Vj € L. (10) of path p,RB,, by:

Some details about the state-2 formulation are as follows. RB) — ggiGI;{RBe}- (11)

First, we interpreC, as the number of wavelengths available
on link e; all the demands; are normalized by the capacity
per wavelength; and;(p,j) is the number of wavelengths
assigned, which must be non-negative integers. zi(p,j) — zi(p,j) + RB,. (12)

« Condition (8) says that, for each job, the total flow as-_
signment, when summed over all time slices and allowec?'
paths, must be equal t8; times the job size.

« Condition (9) is the fairness constraint. It ensures that th RB. — RB. — RB,, Vec¢€p. (13)
throughput of each job is at least some fraction of the
maximum concurrent throughput* computed in stage
1. Here,« is a parameter between 0 and 1. We next explain Algorithm 1. At each time slicg for

« (3) and (4) are as the link capacity constraint and stagaich jobi and each of its allowed path the following takes
and end time constraints as before. place. The network controller finds the remaining bandwidth

Il RB, is the remaining bandwidth of edge
2: Increase the bandwidth assignment on pathy RB,,:

For each edge € p, decrease its remaining bandwidth by
RB,:




on the pathp, RB,, which is the minimum of the remaining The intention is to finish the jobs earlier rather than later

bandwidth of all the edges on the patt{see (11)). Then, we if possible. The solution tends to pack more flows in

increase the bandwidth assignmentp, j) to use up all the earlier time slices, but leaves the network load light to

remaining bandwidth on the path(see (12)). After that, the better accommodate future job requests.

remaining bandwidth of each edge= p is decreased bR B, o Expression (15) says the sum of total flows assigned on

(see (13)). all time slices and on all allowed paths for jois greater
than or equal to the demand of jebThat is, each jol

C. Relaxing End Times has to be completed by the extended end time.

Expression (16) ensures the flow assignment can be

In the algorithm presented in Section 1I-B, the end times of ® i ) i
positive from the start time to the extended end time.

the jobs are strictly enforced, but the job sizes may be redluc : ) : i ; ,

depending on whether the network is overloaded or not. In® _(3) is the link capacity c_onstramt; (10)_ is the non-negativ

some applications or for some users, it is more important to Nteger wavelength assignment requirement.

finish the entire transfer with a small amount but predieabRemark: An alternative way to extend the deadline is by

delay than to enforce a strict deadline. In other words, éf tiExtending the intervals between the start and end times by

network is overloaded, the deadlines can be extended but th@ same constant factor+ b for all jobs. For brevity, we do

the jobs must be transferred in their entirety. In this c#ése, not further discuss this option in this paper.

network should try to find out the smallest possible end-time There are two remaining questions: how to find the smallest

extension/relaxation. We call this thRelaxing-End-Time Vvalueb for which the SUB-RET problem is feasible and how

(RET) problem. After the network solves the RET problent0 cope with the integrality constraints. For the first qioest

the new end times can be proposed to the network users, Wid Use a binary search method to find the smalieSor the

may accept or decline the proposaL This negotiation pmcﬁcond question, we use the same heuristic solution LPDAR

can be further repeated. in Section Il. To guarantee that all the jobs will finish in the
This section presents the algorithm for solving the REgNd using LPDAR, we add another loop into the algorithm that

problem. This algorithm is only needed when the netwofkrther extends the end times a bit more if the network still

is overloaded and when some users are willing to relax t§annot satisfy all the jobs’ requirement. The final algaitis

end times of their jobs. If the network is not overloadedisted as Algorithm 2. In the algorithnd,,,.. is a given large

the algorithm in Section 1I-B suffices, which of course alsgnough constantj is a small constant, e.gs, = 0.1 in our

handles the overloaded situation by asking the users taeedgvaluations.

the job sizes. -
Our solution of the RET problem involves the following\'g0rithm 2 RET

sub-problem, calleUB-RET. 1: Perform binary search oft), b,,..] to find the minimum
b for which the SUB-RET problem is feasiblgthout the

SUB-RET integrality constraintgi.e., replacing (10) by (5) in SUB-
min S>>0 wp.d) (14) RET). Call the minimurr. A

jec i€J peP(si,ds,j) 2: Obtain the real-valued solution to SUB-RET under

without the integrality constraints; apply Algorithm 1 to
get the integer-valued solution.
3: if the bandwidth assignment results generated by 3tep

st> Y wip.j) LEN(j)>D;,VieJ (15)
JEL pEP(5i,d;.j)

zi(p,j) = 0, Vp € P(si,d;, ), cannot satisfy the requirement of all the joben
J<I(S;)orj>I((1+b)E;),VieJ (16) 4 b« b+, go back to step.
(3), (10). 5. end if

SUB-RET should be understood primarily as a feasibility
problem; the objective function (14) is not essential arm loa
substituted by other functions. We introduce a paramietar [1l. EVALUATION
(16) to measure how much the end times should be extendedThe performance improvement of the overall optimization
(1+b) is the factor by which each of the end times is relaxegtamework with multipath, time-varying bandwidth alloicat
Under a particulab, any feasible solution to SUB-RET canand periodical reallocation has been verified previousiy.[2
complete every job by the time/((1+b) E;), wherel (-) isthe Here, we focus on performance evaluation of the algorithms
rounding of the time on slice boundaries. Later, in Algarith introduced in the paper. The focus is to examine the per-
2, we will find the smallesb for which SUB-RET is feasible. formance and speed of the sub-algorithm, LPDAR, which is

We next explain some details about SUB-RET. a heuristic technique to find an integer solution based on
o L is understood to contain all the relevant time slicethe initial linear programming solution. LPDAR is the key
after extending the end times by a factar+ b). component in both algorithms for solving the maximizing-

o Expression (14) is known as th@uick-Finish (QF) throughput problem and the RET problem.
objective function, which was first introduced in [21]. In  We will compare LPDAR to LP and LPD. Since it is prac-
this function,v(j) is a given cost function increasing intically impossible to get the optimal integer solutionsngsi
time j. We choose it to be(j) = j+1 in our evaluations. standard solvers for mixed integer programming but for very



small setups, we will not be able to show those results. &aste comply with the integer-valued wavelength constraint. LP-
we use the LP solutions as performance benchmarks, sim&R, which adjusts the wavelength assignment by utilizing
they generally provide upper bounds for the optimal integére remaining bandwidth on the paths when possible, pegorm
solutions. However, LP does not produce integer solutionsuch better than LPD. For instance, LPDAR achieves nearly
in general. We also evaluate the required computation tir8% of the throughput of LP in the case of two wavelengths
to determine the scalability of the algorithms, and will who per link; it achieves 95% or more of the throughput of LP with
that both LPDAR and LPD are fast algorithms. But, LPDARour or more wavelengths per link. In short, the simple gyeed
produces much better results than the less sophisticatBd LRlgorithm of LPDAR is effective for throughput improvement
The experiments were conducted on random networks and
the Abilene network. The latter was the backbone network for

1.05 T T .
Internet 2. Experiments on the Abilene network show how % o.glsi ................  n » »
well the proposed algorithms work on practical networks; Y A
experiments on the random networks show how general the E 0.85 i— L
observed results are or how they scale with the network size. S 0?7'2
In this paper, we show only a subset of the results, which are £ orp /S -
typical instances. The random networks that we use typicall = 0% LPDAR % |
have between 100 to 400 nodes, with an average node degree 2 4 6 8 10

Number of Wavelengths

of 4. We use the network generator, BPRITE [28], to generate

the random networks using Waxman'’s algorithm [29]. In Wax- _ .

man’s algorithm nodes are placed on a plane' the pl’Obﬂbil'I:fg' 2. Throughput comparison between LP, LPD and LPDAR enthilene
. ! T >~ ~network with 11 nodes and 20 pairs of links

of interconnecting two nodes decreases exponentially tiigh

Euclidean distance between them. Each link has a capacit){:ig 2 shows the normalized throughput of LP, LPD, and

of 20 Gbps. Our instance of the Abilene network consists : - :
a backbone of 11 nodes. The backbone links each haveSi())DAR in the Abilene network with 11 backbone nodes

Gbps capacity. The job size is uniformly distributed benwee[ d 20 pairs of links. We see that LPD sill suffers much
[1,100] Gigabytes. Thex value in the stage-2 problem is Seﬁhroughput reduction when the number of wavelengths pkr lin

—Is small. At two wavelengths per link, LPD achieves around
80% of the throughput of LP. The throughput improvement
when using LPDAR is more dramatic than in the random
network case. LPDAR achieves nearly identical throughput a

linear programming problems on Intel-based workstations.

imizi i ; LP.
A. Maximizing Throughput with End Time Guarantee
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Fig. 3. Computation time comparison of LP, LPD and LPDAR oraadom
Fig. 1. Throughput comparison of LP, LPD and LPDAR on a randetavork network with 100 nodes and 200 pairs of links.
with 100 nodes and 200 pairs of links
2) Computation TimeRecall that the motivation to develop

1) Throughput Comparison:: Fig. 1 shows that the the heuristic algorithm, LPDAR, is that it is impractical to
throughput comparison of LP, LPD and LPDAR under difsolve the original integer programming problem of stage 2
ferent numbers of wavelengths on each link while holding thesing standard solvers. Fig. 3 shows representative sefsult
capacity of each link constant. The throughput is normélizeomparing the computation times of LP, LPD and LPDAR. We
with respect to that of LP. The network has 100 nodes ahdve not been able to measure the computation time required
200 pairs of links. LP achieves the best possible throughgat solving the optimal integer version since this takes too
but does not satisfy the integrality constraint. From Fig. long. Note that the computation times of the three algorghm
we see that the throughput of LPD suffers when the numbeae quite similar. This is because LPD and LPDAR also need to
of wavelengths per link is small. When the network has onBolve the linear program first and this step dominates the com
two wavelengths on each link, LPD achieves about half gitation time. In our previous papers [20], [21], we conédct
throughput of LP. The reason is that, when the number ofany experiments on the computation time under different
wavelengths is small, LPD tends to truncate a non-triviprameters and showed that linear programming formulgition
portion of the continuous bandwidth assignment in order tmn be solved quickly enough for practical scenarios. Ihtlig



of the results in Fig. 3, that conclusion carries over to our The NSF-supported DRAGON [13] project develops control
current situation. plane architecture and middleware for multi-domain traffic
engineering and resource allocation, e.g., using GMPLS pro
tocols [33] for setting up SONET circuits or lightpaths. It
supports advance reservations of label switched paths)(LSP
In the RET problem, completing all the jobs is moren requested time periods. CHEETAH [15] is a similar project
important than strictly enforcing the end times. In thistparto DRAGON but it focuses on simpler, distributed operations
we compare the fraction of jobs finished and average end tigg path computation and bandwidth management to support
in the solutions obtained by LP, LPD and LPDAR at the engligh arrival rates of immediate connection requests. OSEAR
of Algorithm 2. [16] is the control plane project for DOE’s ESnet, also simil
1) Fraction of jobs finished:We computed the fraction to DRAGON. BRUW is the counterpart of OSCARS for
of jobs finished by LP, LPD and LPDAR for a variety ofinternet2. Other notable related work in this categoryides
scenarios. Algorithm 2 guarantees to find auch that, when [12], [14], [34] [35], [36]. Most of the above control-plane
the end times are extended b+ b), the solution by LPDAR  architectures and tools provide rudimentary AC and sctiegul
(and hence, by LP) can complete all the jobs. In contragligorithms for simple job types.
under the same extended end times, LPD only finished a vernRecent papers on AC and scheduling algorithms for bulk
small fraction (typically zero) of the jobs for these casegransfers with advance reservations include [22], [17D][2
Furthermore, the value dfwas often the same as (or slightly[21], [23], [19], [24], [25]. All these papers study the ptem
larger than) the minimum value under which the LP solutiofyr router networks where the bandwidth is assumed to be
can finish all the jobs. In short, LPDAR has performandegfinitely divisible. In [19], the AC and scheduling problem
comparable to LP but substantially better than LPD. considered only for the single link case. As a result, multi-
2) Average End TimeThe average end time of all jobs is apath routing and network-level bandwidth allocation aré no
measure of how fast the jobs are completed. Fig. 4 comparekvant issues in [19]. The problem studied in [22] is simil
the average end time of the results by LP and LPDAR. The those examined in our earlier papers [20], [21], but the
unit is in the number of time slices. Note that most of themphasis is different.In [23], the authors consider shiigle
jobs in the solution of LPD are not finished by the end afdmission control or link-by-link admission control under
Algorithm 2 execution. Hence, the average end time is n@ihgle-path routing. The admission control does not rely on
relevant in the LPD case. formulating optimization problems. The AC decision is lzhse
In these experiments, we use the Quick-Finish objectivd the job’s average bandwidth requirement, which is com-
function for the SUB-RET problem, which has the effect ofuted using the size of the job and the deadline information.
trying to finish a job earlier if possible. As expected, LP hasThe bandwidth of existing jobs may be re-allocated in the
smaller average end time since it does not have the intggrafiingle link case but not in the network case. The authors of
constraints. LPDAR is nearly as good as LP, despite that[#5] propose a malleable reservation scheme for bulk teansf
gives integer solutions. Similar results have been obseove which checks every possible interval between the requested
the Abilene network, which are omitted. start and end times for the job and tries to find a path that
Fig. 4 shows that the average end time increases as tfa@ accommodate the entire job on that interval. In [24], the
number of jobs increases. This is because the network d@esnputational complexity of a related path-finding problem
not change in the experiments while the number of jobs varig¢s studied and an approximation algorithm is suggested. [17
starts with an advance reservation problem for bulk transfe
40 /I but converts it into a constant bandwidth allocation probte

B. Relaxing End Times

maximize the job acceptance rate. The bandwidth consdraint
are at the ingress and egress links only, and hence, thece is n

35

30 . .
routing Issue.

Average End Time (Time Slices)

2 Ty Several earlier studies [37], [38], [39] have considered

20 TR admission control at an individual link for applicationsath
ﬁ/ LPDAR -~ require minimum bandwidth guarantee on some time inter-
10 20 30 40 50 60 70 80 90 100 vals. The concern is typically about designing efficientadat

Number of Jobs

structures[38]. [24], [40], [25], [41] and [39] go beyonadgle-
link advance reservations and tackle the more general path-
finding problem, but typically only for new requests, one at
a time. The routes and bandwidth of existing jobs are un-
changed. The authors of [18] advocate periodic re-optitiina
to determine new bandwidth allocation. However, they do not
assume that users make advance reservations with requested
Compared with the traditional QoS frameworks, such a&nd times. Many papers study advance reservations, raxgout
DiffServ [30], the ATM network [31], or MPLS [32], admis- or re-optimization of lightpaths in wavelength-based ogti
sion control and scheduling for research networks are tecemetworks [26], [27]. But, they do not consider the start and
concerns with much fewer published studies. end time constraints and do not focus on bulk transfers.

Fig. 4. Average end time comparison of LP, LPD and LPDAR onraloan
network with 100 nodes and 200 pairs of links

IV. ADDITIONAL RELATED WORK



V. CONCLUSION [19]

In this paper, we present two algorithms for scheduling
time-constrained bulk transfers on wavelength-basedcalpti[20]
research networks. The first one works on both underloaded
or overloaded networks. In the overloaded case, the alfgorit 21
seeks to decrease the job sizes in a way that maximizes
the network throughput while maintaining a level of fair!;les[22
among the jobs. The second algorithm works in the overloade
case and serves as an alternative to the first algorithmekisse
to extend the end times by the smallest possible proportidn d%
complete all the jobs by the extended end times.

The main challenge for us is that the underlying problems
are integer optimization problems for wavelength assiglrtme[24]
which have no known fast optimal solutions. We present a
heuristic sub-algorithm called LPDAR, which converts frad25]
tional solutions from linear programming into integer solu
tions. LPDAR is the key component used in both aforemen-
tioned algorithms. Evaluation shows that LPDAR leads to vel26]
good algorithms with a performance level and speed both

comparable to those of the LP fractional solutions.
[27]
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