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Abstract—Recent studies on queue-length-based random-
ized link scheduling algorithms have shown their throughput-
optimality. But simulation results indicate that the packet delay
in such algorithms can be quite large, even when the traffic
intensity is low compared with the network capacity. The reason
can be traced to the fact that these algorithms need the queues
to be sufficiently large before the links have a good chance to
be activated for transmission. In this paper, we propose a new
randomized scheduling algorithm based on the Ising model in
physics. The algorithm does not require queue build-up for link
activation and can thus give better delay performance. It iseasily
implementable in a distributed fashion and it retains throughput-
optimality.

I. I NTRODUCTION

Efficient utilization of the network resources is vitally im-
portant in wireless networks, as the capacity of such networks
is often severely limited. Despite the capacity limitation,
network users often demand high-bandwidth and low-delay
network services for applications such as video or other
types of streaming. Even with today’s improved wireless
network technologies, such demands are still not met. Link
transmission scheduling is one of the key mechanisms for
improvement in both network resource utilization and user
perceived performance. An ideal link scheduling algorithm
should achieve high throughput, low delay, and it should do
so at low complexity.

The well-known max-weight scheduling algorithm [1] is
throughput-optimal, in that it can stabilize the network queues
for all arrival rate vectors in the interior of the capacity
region. However, this algorithm involves solving an NP-
hard combinatorial problem on each time slot. Thus, it is
not practical for large wireless networks. Another group of
algorithms uses schedules of lower complexity and achieves
a fraction of the capacity region. Such algorithms include the
longest-queue-first (LQF) schedule [7] [8], which has good
delay performance at the expense of throughput reduction.
LQF involves sorting all the link queues on each time slot,
which requires global (i.e., network-wide) information and
control and can be time-consuming to do. Another family of
simple scheduling algorithms has also been studied intensively,
the random access algorithms in which the link activation
probabilities are dependent on the queue sizes [2] [3] [4]
[6] [9]. They can be implemented similarly to the Carrier
Sensing Multiply Access (CSMA) scheme used in practical
systems such as WIFI 802.11x. The implementation is built
on distributed algorithms, which require only local information
and control. Some of these algorithms have been proven to be
throughput-optimal [2] [3] [4].

Recent studies[5][13] suggest that it is impossible to design
a scheduling algorithm for general wireless networks that is
both throughput-optimal and has low delay. Our simulation
experiments on a queue-length-based CSMA-like algorithm,
called Q-CSMA [6], have revealed that it leads to fairly large
delay, as the queues can become very large (see Section IV).
Large queues can happen even when the incoming traffic
intensity is low, i.e., the arrival rate vector is well within the
network capacity region. The causes can be partially under-
stood by observing the activation probabilities of the links.
For each linkv, the activation probability iseWv/(1 + eWv ),
where the weightWv is usually a slowly increasing function
of link v’s queue lengthQv, e.g.Wv(Qv) ∝ log(Qv +1). As
a result, even if linkv’s neighboring links are all idle at the
moment whenv is selected for consideration of activation,
link v is unlikely to be activated unless its packet queue is
large enough. Thus, opportunities for transmissions are not
sufficiently utilized by the links in the neighborhood untilthe
queues become large.

There is a related queue-based CSMA-like algorithm[9],
for which it has been shown that the queue dynamics is a
fast-mixing Markov chain on a part of the capacity region,
provided the degree of the interference graph is bounded. Fast
mixing implies the queues rapidly approach stationarity, which
appears to imply smaller queue sizes, and hence, lower delay.
Our simulation experiments have shown that the queues are
in fact very large. Moreover, the algorithm appears to be not
throughput-optimal. In Q-CSMA, low packet delay may also
be achieved by switching to greedy maximal scheduling when
the traffic rates are low[6].

This paper reports a different CSMA-like algorithm, which
shows improvement in delay over earlier algorithms. The
algorithm is based on a physical model called the Ising model.
It takes into account the ON/OFF status of the neighboring
(interfering) links when calculating the activation probability
for a link. The effect is that it “encourages” a link to activate if
all the link’s neighbors are OFF and “discourages” a link if one
or more of its neighbors are ON. The algorithm can naturally
eliminate unnecessary queue build-up that is present in other
CSMA-like algorithms and it results in much smaller queue
sizes and better delay performance. In addition, the scheduling
algorithm is provably throughput-optimal. Simulation results
have confirmed the improved delay performance.

The rest of the paper is organized as follows. In Section II,
we describe the system model and notations. In Section III, we
introduce the Ising model, present our distributed scheduling
algorithm, and discuss the throughput-optimality and delay



performance of the algorithm. In Section IV, we present the
simulation results of both our algorithm and the Q-CSMA
algorithm and compare their performance. We conclude the
paper in Section V.

II. SYSTEM MODEL AND NOTATIONS

We consider a single-channel wireless network character-
ized by an undirectedinterference graph, G = (V,E), where
the vertex setV represents the wireless links and the edge set
E indicates the interference relations between the links. Link
u and v are connected by an edge(u, v) ∈ E if and only if
their transmissions interfere each other. The interferinglinks
cannot be activated for transmission simultaneously. Thus, a
scheduleis an independent set of the graphG.

We assume the links all have identical capacity and the
packets are all of an identical size. We consider a discrete-time
system where the time slot size is equal to the transmission
time of one packet. Thus, each link’s capacity is one packet
per time slot. At the beginning of each time slot, scheduling
decisions are made whether each of the links will be activated
for transmission on that time slot.

We represent a schedule by a vectorx ∈ {−1, 1}|V |. If a
link l is included in the schedule, thelth entryxl is set to 1.
We also say linkl is ON or activated. Otherwise,xl = −1
and link l is said to beOFF. A schedule always means a
feasible schedule; that is, no two interfering links are both
ON in a schedule. The set of all schedules is denoted byM.
An arbitrary vector in{−1, 1}|V | is called aconfiguration,
which may or may not be feasible. A scheduling algorithm is
a way to choose a schedule in each time slot.

Since the focus of the paper is on MAC-layer scheduling,
we consider one-hop traffic, i.e., after transmitted by a link,
a packet leaves the network. Packets arrive at the transmitters
of the links according to a discrete-time finite-state Markov
chain. The arrivals for different links are independent of each
other. The system state at time slott can be described by the
queue sizes, the ON-OFF status of the links, and the number
of arrivals at timet. The schedules considered in this paper
depend only on the queue sizes and the ON-OFF status of the
links. Hence, the system state is also a discrete-time Markov
chain. System stability means that the Markov chain is positive
recurrent.

The stability region is defined as the set of all arrival rate
vectors for which there exists a scheduling algorithm that
stabilizes the network queues. A scheduling algorithm is said
to be throughput-optimalif it can stabilize the queues under
any arrival rate vector in the stability region. The capacity
region is the closure of the stability region [1].

III. A LGORITHM AND ANALYSIS

One drawback of the existing CSMA-like algorithms is that,
when the queue size of a link is not large enough, the activation
probability is very small. The link is unlikely to be activated
even if no other links in the neighborhood are transmitting.
Our algorithm is more mindful of the ON-OFF status of the
neighboring links in the scheduling decision. For a link that
has packets to transmit, it should be encouraged to transmit
if no interfering links are transmitting. The inspiration of the
algorithm is from a model in physics, called theIsing model.
We will briefly introduce the Ising model first.

Fig. 1. Ising model and spin values

A. Ising Model

The Ising model[10][12] is a mathematical model of fer-
romagnetism. It uses spin variables with two possible values,
+1 or −1, to represent magnetic dipole moments. The spin
variables are described as the vertices of a graph, usually,a
lattice, and neighboring spin variables can interact with each
other. Given such a graph, a configurationσ is a vector that
specifies all the spin values andσ(v) is the spin value at vertex
v (see Fig.1 for an example).

In this model, the energy of a configurationσ is given
by H(σ) = −

∑

v∼w σ(v)σ(w), where v ∼ w meansv
and w are neighbors in the graph. As one can see, the
energy increases with the number of neighboring pairs whose
spin values disagree. TheGibbs distributioncorresponding to
energyH is a probability distribution, denoted byµ, on the
configuration space,Ω. Under parameterβ > 0, it is given
by µ(σ) = 1

Z(β)e
−βH(σ), where Z(β) is the normalizing

constant. Clearly,Z(β) =
∑

σ∈Ω e
−βH(σ).

The Glauber dynamics on Ising model is a Markov chain
of configurations withΩ as the state space, whose stationary
distribution is the Gibbs distribution. Given the current con-
figuration (i.e., state)σ, the Markov chain makes a transition
to a new configurationσ′ according to the following rule:
First, pick a vertexv uniformly at random from the graph;
and then, choose the spin value forv to be either+1 or
−1 randomly according to the probabilitiesq(+1;σ, v) or
q(−1;σ, v) = 1− q(+1;σ, v), respectively, where

q(+1;σ, v) =
eβS(σ,v)

eβS(σ,v) + e−βS(σ,v)
. (1)

Here,S(σ, v) =
∑

w:w∼v σ(w). Note that the new configu-
ration σ′ may differ from the current configurationσ only at
vertexv.

B. Modified Ising Model and Glauber Dynamics

The Gibbs distribution for the Ising model puts more
probability masses on lower-energy configurations, in which
the neighboring spins tend to agree in value. For the wireless
link scheduling problem, each link can be in either ON or OFF
state1. We will use the value1 or −1 to represent an ON or
OFF state, respectively. A link in the ON state is also said to
be activated.

In a transmission schedule, which by definition is feasible,
any pair of neighboring links (with respect to the interference
graph) cannot be both in the ON state. In a maximal schedule,
a link must be in the ON state if its neighbors are all OFF.

We will later propose a randomized scheduling algorithm,
which generates a stationary distribution on the space of

1A link in the ON state may or may not be transmitting a packet. Alink
in the OFF state cannot transmit a packet.



schedules. Similar to several other scheduling algorithmsof
this family, we wish to have the probability mass to be
concentrated on the max-weight schedules, where each link
weight is some increasing function of the link’s queue size.
As in earlier algorithms, the concentration happens when
the queue sizes are sufficiently large. However, for smaller
queue sizes, the earlier algorithms do not even favor maximal
schedules, and this behavior causes the queue sizes to grow
even when the traffic intensity is light or moderate.

Since we prefer maximal schedules, we wish the probability
mass to be also concentrated on the maximal schedules under
all queue-size regimes. For that objective, we will consider
the following modification to the Ising model. The underlying
graph is the interference graphG = (V,E) in which each
vertex is a wireless link.

A configurationof the system is a|V |-dimensional vec-
tor that describes the ON-OFF status of all the links. The
configuration space isΩ , {−1, 1}|V |. Note that the space
of schedulesM is a subset ofΩ. Given a vectorσ ∈ Ω,
σ(v) = 1 indicates linkv is ON andσ(v) = −1 indicates
link v is OFF. Underσ ∈ Ω, we associate aspin valuewith
each link v and denote it bysσ(v). For each linkv, sσ(v)
takes a value from the set{Av,−1}, whereAv > 0. If link
v is ON in σ, sσ(v) = Av; if it is OFF, sσ(v) = −1. Note
that, in the standard Ising model,Av = +1 for all v. Hence,
our modification is a generalization. In the eventual algorithm,
eachAv is an increasing function of linkv’s queue size. For
now, let us consider it fixed.

We define the energy of configurationσ ∈ Ω under the
vectorA = (Av)v∈V as

H(σ,A) = −
∑

(v,w)∈E

sσ(v)sσ(w). (2)

Remark 1:When there is no ambiguity, we use the simpli-
fied notationH(σ) instead.

Note that a neighboring pair,v and w, contributes the
following to the total energy: (i)−AvAw if they are both
ON; (ii) Av if v is ON andw is OFF; (iii) Aw if w is ON
and v is OFF; and (iv)−1 when both are OFF. WhenAv

or Aw is large, an ON-ON pair(v, w), which corresponds
to two interfering links, contributes a negative value witha
large magnitude to the total energy. Hence, a high-energy
configuration tends to have few such ON-ON pairs, but many
ON-OFF pairs. WhenAv is close to1 for all v, OFF-OFF
pairs are also discouraged in a high-energy configuration. For
instance, in a highest-energy configuration, a link cannot be
OFF when its neighbors are all OFF.

Glauber Dynamics: The proposed randomized scheduling
algorithm, which will be described in Section III-C, has an
embedded Glauber dynamics on the spaceΩ with a stationary
distribution that puts more probability masses on higher-
energy configurations2. In particular, the Glauber dynamics
will have the following stationary probability distribution, µ,

µ(σ) =
1

Z(β)
eβH(σ), σ ∈ Ω, (3)

2Note that this objective is the opposite to the Ising model, which puts
more probability masses on lower-energy configurations.

whereβ is a positive parameter and the normalizing constant
Z(β) is given byZ(β) =

∑

σ∈Ω e
βH(σ).

Given that the Glauber dynamics is in configuration (i.e.,
state)σ ∈ Ω, the next configuration can differ fromσ in at
most one entry. Letθ+σ,v be a configuration inΩ such that
θ+σ,v(v) = 1 andθ+σ,v(w) = σ(w) for anyw 6= v. Let θ−σ,v ∈ Ω
be such thatθ−σ,v(v) = −1 andθ−σ,v(w) = σ(w) for anyw 6= v.

For determining the next configuration, first, a link is chosen
uniformly at random; second, given linkv is chosen, it will be
turned ON with probabilityq(1;σ, v) and OFF with probability
q(−1;σ, v) = 1− q(1;σ, v), where

q(1;σ, v) =
µ(θ+σ,v)

µ(θ+σ,v) + µ(θ−σ,v)
=

e−AvβS(σ,v)

eβS(σ,v) + e−AvβS(σ,v)
.

(4)

=
1

2
(1− tanh(

Av + 1

2
βS(σ, v))). (5)

In the above,S(σ, v) ,
∑

w:(v,w)∈E sσ(w), which is the sum
of the spin values of linkv’s neighbors.

The quantityq(1;σ, v) is called theactivation probability
for link v given that the system is in configurationσ and that
link v is selected for consideration. It only depends on the
spin values of linkv’s neighboring links. Such a property of
locality makes the scheduling protocol simple, since only local
information needs to be collected.

C. Proposed Distributed Scheduling Algorithm

In the proposed scheduling algorithm, the spin value of an
ON link is an increasing function of the link’s queue size and
hence will vary with time. Specifically, for each ON linkv at
time t, its spin value isAv(t) = 2(d̄ − 1) + log(Qv(t) + 1),
whereQv(t) is link v’s queue size at timet and d̄ is the
maximum vertex degree in the graphG.

The proposed algorithm has a Glauber dynamics in the
background, which is the one described in Section III-B with
the modification that the spin values are time-varying. When
the state of the Glauber dynamics at timet is not feasible as a
schedule, the algorithm converts the state into a valid schedule
by turning OFF some links. Specifically, let{σ(t)}t≥1 be
the sequence of states of the Glauber dynamics; there is
a sequence of schedules{σ′(t)}t≥1, which are feasible by
definition, generated by the algorithm. Ifσ(t) is feasible, then
σ′(t) = σ(t). Otherwise,σ′(t) is a restriction ofσ(t) in the
sense thatσ′(t)(v) ≤ σ(t)(v) for all v ∈ V ; that is, if link v
is OFF inσ(t), then it must be OFF in the scheduleσ′(t).

A time slot is divided into a control slot and a data slot.
For efficiency, the data slot size should be much larger than
the control slot size. The control slot is further divided into
W + W ′ mini-slots whereW andW ′ are chosen constant
integers. The firstW mini-slots formcontrol phase Iand the
goal is to collectively set the vectorσ(t). The secondW ′

mini-slots formcontrol phase IIand the goal is to collectively
set the vectorσ′(t). During control phase I, the links that
attempt to change their entry values inσ(t) must correspond
to an independent set, denoted byξ(t), in the interference
graph; this is accomplished using the INTENT messages.
During control phase II, only ON links will compete for the
channel and RESERVE messages are used for the competition.



Each RESERVE message also contains the current queue size
information of the link.

On each time slott, each linkv with a non-empty queue
runs the following steps.

Distributed Scheduling Algorithm (at Link v)

Initialization:

1. At the beginning of the time slot, linkv calculatesS(σ(t−
1), v) based on the neighboring links’ ON-OFF status (in
σ(t−1)) and queue sizes that it learned during the previous
time slot. Linkv calculates the probabilityq(1;σ(t−1), v)
based on the expressions in (4).

Control Phase I - W Mini-Slots: Set σ(t)(v)
2. Link v selects a random back-off timeT1 uniformly in

{0, 1, . . . ,W −1} and sets a timer ofT1 control mini-slots.
3. If link v hears an INTENT message from any of its

neighboring links before theT1 timer expires, it sets
σ(t)(v) = σ(t− 1)(v) and it will not transmit an INTENT
message (v will not be included inξ(t)).

4. Otherwise, when theT1 timer expires, linkv broadcasts
an INTENT message at the beginning of the(T1 + 1)-th
mini-slot.
a) If link v’s INTENT message has a collision3, link v sets
σ(t)(v) = σ(t− 1)(v) (v is not included inξ(t)).

b) Otherwise, linkv setsσ(t)(v) = 1 (chooses ON) with
probability q(1;σ, v) and it setsσ(t)(v) = −1 (chooses
OFF) with probabilityq(−1;σ, v).

Control Phase II - W ′ Mini-Slots: Set σ′(t)(v)
5. If link v hasσ(t)(v) = 1, it executes the following:

a) Link v selects a random back-off timeT2 uniformly in
{0, 1, . . . ,W ′ − 1} and sets a timer ofT2 control mini-
slots. It setsσ′(t)(v) = 0.

b) When theT2 timer expires,v broadcasts a RESERVE
message containing its current queue size.

c) If link v has not heard any RESERVE messages from its
neighboring links before the timer expiration and if its
own RESERVE message does not have a collision, link
v setsσ′(t)(v) = 1.

Data Slot:
6. If σ′(t)(v) = 1, link v transmits a packet.

Remark 2:The information used to computeS(σ(t−1), v)
in step 1 is obtained from the broadcast of the RESERVE
messages in the previous time slot (see step 5b)). A link
hears the RESERVE messages with queue sizes from those
neighbors that are ON in the previous time slot (according to
σ(t − 1)), but hears nothing from the OFF links. This does
not pose a problem for computingS(σ(t − 1), v), since the
computation only requires the queue size information of the
ON neighbors and the totalnumberof OFF neighbors.

Control phase II is for conflict resolution. At the end of the
phase, a valid scheduleσ′(t) is produced based on the state

3The receiver of a link transmits an acknowledgement in response to a
INTENT or RESERVE message from the sender of the link. A collision is
detected by the absent of an acknowledgement.

of the Glauber Dynamicsσ(t). The objective is to allow at
most one link to transmit in each link’s neighborhood, even if
multiple links may be ON (according toσ(t)) in that neigh-
borhood. It is important to note that ON-ON neighboring pairs
are usually few by the design of the algorithm. Furthermore,
the use of multiple (W ′) mini-slots and randomizing timers
further reduce the chance of collisions of RESERVE messages
from ON-ON neighbors. Hence, collisions among RESERVE
messages will be rare. If a collision still occurs on a mini-slot,
all links that sent the colliding messages will keepσ′(t)(v) at
0. In the event that some required control information, such
as the current queue length, is not updated due to collisions,
old information from an earlier time slot can be used without
affecting the proper functioning of the algorithm; the impact
on efficiency will also be negligible.

The control overhead can be made small. Each INTENT or
RESERVE message is relatively small compared with a data
packet, if the duration of a data slot is extended sufficiently
long. Furthermore, the number of control messages is limited
by our design. The parameterW ′ can be small because of the
rare occurrence of the ON-ON neighboring pairs inσ. In our
simulation,W ′ = 4 is usually sufficient.

Effect of β: As can be observed from (3), asβ increases,
the distributionµ is increasingly biased towards higher-energy
states, which tend to have more ON-OFF neighboring link
pairs and fewer ON-ON or OFF-OFF pairs. Asβ decreases,
the probabilities for configurations of different energy levels
become more and more equalized. Expression (5) suggests that
a largerβ value leads to a higher activation probability for link
v, if its neighbors are OFF (thus giving a negativeS(σ, v)).
Hence, a largerβ tends to result in more aggressive link
activations, and consequently, smaller queue sizes. However,
our study has shown that a largerβ may increase the mixing
time, i.e., the time taken for the Glauber dynamics to reach
stationarity. Thus, choosing a relatively smallβ may be
essential in having and proving the fast-mixing property when
we do not assume time-scale separation. We will explore these
issues in future work.
Activation Probability and Performance: As mentioned
in the introduction section, the delay performance of the
queue-based CSMA algorithm is non-ideal in part because
the queue of a link has to build up sufficiently in order
for the link to have a substantial activation probability. Our
algorithm naturally avoids this unfavorable situation. From
(5), we see that the activation probability is a hyperbolic
tangent function with scaling and horizontal translation.When
all the neighbors of linkv are OFF (the factorS(σ, v) is
negative), the activation probability is at least0.5 even for
very small Av (and hence, very small queue size). More
concretely, suppose linkv has two neighbors and they are
both OFF, which results inS(σ, v) = −2. Supposeβ = 0.1
andAv = 2(d̄ − 1) + log(Qv + 1). Suppose the maximum
vertex degree of the interference graphG is d̄ = 3, and
consequently,Av ≥ 4. The activation probability is equal to
0.73, 0.80, 0.86, 0.90 for Av = 4, 6, 8, 10, which corresponds
toQv = 0, 7.4, 54.6, 403.4, respectively. Hence, the activation
probability starts at a relatively high value and can increase
rapidly towards1 as the queue size increases. In short, our



algorithm reacts faster to the queue build-up and has lower
delay than the queue-based CSMA, especially when the queue
sizes are small.

On the other hand, if one or more neighbors of linkv are
ON, resulting in a positiveS(σ, v), the activation probability
can be very close to0 for even a small queue size at linkv.
Hence, ON-ON neighboring pairs are strongly discouraged.

D. Throughput Optimality

For the proposed scheduling algorithm, we can establish its
throughput-optimality. In this section, we outline the proof of
throughput-optimality under the time-scale separation assump-
tion, i.e., the Glauber dynamics is in the steady state in every
time slot. We refer the reader to [16] for more details about the
proof. A proof without the time-scale separation assumption
is left to future work.

Therorem 1:The proposed randomized scheduling algo-
rithm is throughput-optimal.

We first need some definitions. Given the interference graph
G = (V,E), let dv denote the degree of vertexv in G and let
d̄ be the maximum vertex degree, i.e.,d̄ = maxv∈V dv. Let
A be the vector(Av)v∈V . Let the weight of vertexv (or link
v) beWv(A) = dvAv. For a configurationσ ∈ Ω, define the
weight of σ underA to be the total weight of all the vertices
that are ON inσ, i.e.,

W (σ,A) =
∑

v∈V :σ(v)=1

Wv(A) =
∑

v∈V :σ(v)=1

dvAv. (6)

If σ ∈ M, i.e., σ is a valid schedule, thenW (σ,A) is the
schedule weight.

LetW ∗(A) be the maximum schedule weight underA, i.e.,
W ∗(A) = maxσ∈MW (σ,A). Let H∗(A) be the maximum
energy underA, where the maximization is taken over all
possible configurations, i.e.,H∗(A) = maxσ∈ΩH(σ,A).

Remark 3:When there is no ambiguity, we use the simpli-
fied notationsW (σ), Wv, W ∗, andH∗ instead.

To prove Theorem1, we will use a theorem from [11].
Consider a finite family of non-decreasing functionsfv on
R+, wherev ∈ V , with the property thatlimq→∞ fv(q) = ∞
for eachv. In addition, suppose the following holds for each
v: For anyM1 > 0, M2 > 0 and 0 < ǫ < 1, there exists
Q̄ <∞ such that for allq > Q̄,

(1−ǫ)fv(q) ≤ fv(q−M1) ≤ fv(q+M2) ≤ (1+ǫ)fv(q). (7)

Given such a family of function(fv)v∈V , let Av(t) =
fv(Qv(t))/dv, whereQv(t) is the queue size of linkv at
time t. Hence, the weight of each linkv ∈ V at time
t is dvAv(t) = fv(Qv(t)). Let A(t) = (Av(t))v∈V . Let
||Q(t)|| =

√
∑

v∈V Q
2
v(t). The following theorem is proved

in [11].
Therorem 2:Consider a scheduling algorithm. Suppose for

any ǫ and δ, 0 < ǫ, δ < 1, there exists aB > 0 such that
in any time slott, with probability greater than1 − δ, the
scheduling algorithm chooses a scheduleσ(t) ∈ M satisfying
the following: Whenever||Q(t)|| > B,

W (σ(t), A(t)) ≥ (1− ǫ)W ∗(A(t)). (8)

Then, the scheduling algorithm is throughput-optimal.
We need some supporting lemmas.

Lemma 3:SupposeAv ≥ 2(d̄ − 1) for all v ∈ V . For a
given σ ∈ Ω, supposeH(σ) ≥ (1 − ǫ)H∗, where0 < ǫ <
1/(1+|E|). Then,W (σ′) ≥ (1−ǫ(1+|E|))W ∗−2|E|−|E|2.

We now return to the analysis of the proposed scheduling
algorithm. In our case,Av(t) = 2(d̄− 1) + log(Qv(t) + 1) at
time t and the link weight at timet is dvAv(t). Hence, the
functionfv(q) is given byfv(q) = dv(2(d̄− 1)+ log(q+1)),
which satisfies (7). When linkv is ON at timet, its spin value
is Av(t). The total weight of any configurationσ ∈ Ω is given
by (6) with A(t) = (Av(t))v∈V replacingA. Now, we only
need to check the conditions of Theorem 2 for our algorithm.

Under a given vectorA, let

X (A, ǫ) = {σ ∈ Ω : H(σ,A) < (1− ǫ)H∗(A)}, (9)

where0 < ǫ < 1.
Lemma 4:For any δ, where 0 < δ < 1, there exists

B(ǫ, δ) > 0 such that when||Q|| > B(ǫ, δ), µ(X (A, ǫ)) < δ.
Remark 4:For fixed ǫ and δ, each particularQ satisfying

||Q|| > B(ǫ, δ) determinesA, which in turn determines
X (A, ǫ), H∗(A), W ∗(A), etc. The distributionµ is a con-
ditional distribution given thatA is known.

Lemma 4 says that when||Q|| is large enough, the stationary
distribution4 of the Glauber dynamics concentrates on the set
X c = Ω\X , i.e., µ(X c) ≥ 1 − δ. Each elementσ ∈ X c has
nearly the maximum energy.

Suppose the state of the Glauber dynamics at timet is
σ(t) ∈ Ω, which may or may not be a valid schedule (i.e.,
feasible). If σ(t) is not feasible, the proposed scheduling
algorithm converts it into a valid schedule inM by turning
OFF some of the links. We consider the most aggressive
version of such a conversion scheme in which all the ON links
with ON neighbors inσ(t) are turned OFF. The resulting valid
schedule is denoted byσ′(t). More precisely, the conversion
scheme is characterized by a mapping,φ : σ 7→ σ′, defined
as follows. Givenσ, let us define a subsetF ⊆ V : A vertex
v is in F if and only if v is ON andv has at least one ON
neighbor inσ. In other words, all ON-ON neighboring pairs
of vertices are inF . LetF c = V \F . Then,σ′ = φ(σ) is given
by

σ′(v) =

{

σ(v) for v ∈ F c,

−1 for v ∈ F .
(10)

Note thatσ′ is a valid schedule, i.e.,σ′ ∈ M.
The key is to show that ifσ has near maximum energy, then

σ′ has near maximum weight.
Proof: (of Theorem 1) Consider theǫ andδ required by

Theorem 2. For theǫ in Lemma 4, we replace it with any
ǫ1 satisfying0 < ǫ1 <

ǫ
2(|E|+1) . Then, Lemma 4 says that

there existsB1, which depends onǫ1 and δ, such that when
||Q(t)|| > B1, µ(X (A(t), ǫ1)) < δ.

Let Y(A(t), ǫ1) = {φ(σ)|σ ∈ X c(A(t), ǫ1)}. Then, when
||Q(t)|| > B1, P (σ′(t) ∈ Y(A(t), ǫ1)) = µ(X c(A(t), ǫ1)) ≥
1 − δ. We only need to show thatW (σ′(t), A(t)) ≥ (1 −
ǫ)W ∗(A(t)) for σ′(t) ∈ Y(A(t), ǫ1). For that purpose, we

4This is the stationary distribution conditional on holdingthe queue sizes
Q, and hence,A unchanged.



Fig. 2. Interference graphs: 8-link ring (8-cycle) and 16-link grid. The
vertices correspond to wireless links in the network.

apply Lemma 3 withǫ replaced byǫ1.

W (σ′(t), A(t))

≥(1− ǫ1(1 + |E|))W ∗(A(t)) − 2|E| − |E|2

>(1− ǫ/2)W ∗(A(t)) − 2|E| − |E|2

=(1− ǫ)W ∗(A(t)) + ǫW ∗(A(t))/2− 2|E| − |E|2

≥(1− ǫ)W ∗(A(t)), whenW ∗(A(t)) ≥ (4|E|+ 2|E|2)/ǫ

It is easy to see that there exists someB2 > 0 such that
when ||Q(t)|| > B2, W ∗(A(t)) ≥ (4|E| + 2|E|2)/ǫ. Finally,
we can chooseB = max{B1, B2}. For eachQ(t) such that
||Q(t)|| > B, which determinesA(t), we haveP (σ′(t) ∈
Y(A(t), ǫ1)) ≥ 1−δ andW (σ′(t), A(t)) > (1− ǫ)W ∗(A(t)).

Let us now return to the actual schedule,σ′′(t), derived
from σ(t) by the proposed algorithm in Section III-C. Let
ψ : σ(t) 7→ σ′′(t) represent the conversion fromσ(t) to
σ′′(t) by the proposed algorithm, and letZ(A(t), ǫ1) =
{ψ(σ)|σ ∈ X c(A(t), ǫ1)}. Then,P (σ′′(t) ∈ Z(A(t), ǫ1)) =
µ(X c(A(t), ǫ1)) ≥ 1− δ.

Next, for everyσ′′(t) ∈ Z(A(t), ǫ1), we can findσ(t) ∈
X c(A(t), ǫ1) such thatσ′′(t) = ψ(σ(t)); with such σ(t),
let σ′(t) = φ(σ(t)). Then,σ′(t) ∈ Y(A(t), ǫ1). Being both
converted from the sameσ(t), the actual scheduleσ′′(t)
has at least as much weight asσ′(t), according to the
rules of the two conversion schemes. We have just shown
that W (σ′′(t), A(t)) > (1 − ǫ)W ∗(A(t)) for all σ′′(t) ∈
Z(A(t), ǫ1).

Hence, the conditions of Theorem 2 are satisfied by the
proposed algorithm, which then must be throughput-optimal.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
scheduling algorithm by simulation and compare it with the
Q-CSMA algorithm [6]. Our focus is on the average queue
length, which, by Little’s law, is directly related to the average
delay experienced by the packets.

We used two interference graphs to evaluate the algorithms
in different situations. One is a4×4 grid with 16 vertices; the
other is a ring with 8 vertices, also known as an 8-cycle (see
Fig. 2). The vertices represent wireless links and the edges
represent the interference relations between the links.

For the first part of the simulation, we assumed that the
incoming traffic to each linkv follows a Bernoulli process
with rate λv. The arrival processes for different links are
independent. For each set of traffic rates, we ran the simulation
10 times and took the average. Each simulation run lasted for
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Fig. 3. 16-link grid interference graph, Bernoulli arrival

106 time slots, and we recorded the sum of the final queue
sizes of all the links as the performance measure.

We used two weight functions for Q-CSMA:Wv(t) =
log(0.1 ∗ Qv(t) + 1) andWv(t) = log log(Qv(t) + e), and
the contention window is set toW = 32. For our distributed
algorithm, we tried three differentβ values0.15, 0.1, and0.05
to evaluate the impact ofβ on performance, and the selected
window sizes areW = 32 andW ′ = 4.

a) Grid and Bernoulli Arrival: For the experiments on
the 16-link grid, we used the following scheme to sample the
arrival rate vectors. Consider two sets of links:

L1 = {1, 3, 6, 8, 9, 11, 14, 16}, L2 = {2, 4, 5, 7, 10, 12, 13, 15}.

Each set is a maximal schedule for the network. Lete1 ande2

each be a16-dimensional vector representation ofL1 andL2:
For eachi ∈ {1, 2}, seteiv = 1 if link v ∈ Li; otherwise, set
eiv = 0. We chose arrival rate vectors that can be represented
as conical combinations ofe1 ande2.

λ = ρ

2
∑

i=1

tie
i, with t1 + t2 = 1. (11)

Since
∑2

i=1 tie
i lies on the boundary of the capacity region,

the parameterρ, where ρ ≥ 0, is a measure of the traffic
intensity or load.

Fig. 3 shows the simulation results for the 16-link grid.
We used(t1, t2) = (0.5, 0.5), (0.6, 0.4), (0.7, 0.3) for the
experiments and they gave very similar results. Each of the
curves in Fig.3 is the average of the three sets of experiments
corresponding to different(t1, t2) values. Note that they-axis
is in log scale. We can observe the following:

• Our algorithm leads to smaller queues than Q-CSMA
throughout the entire feasible region of the traffic in-
tensity, [0, 1). At low to medium traffic intensity, our
algorithm has close to zero queue size, while Q-CSMA
generally has102 − 103 total packets in the network.

• Both algorithms achieve stability for the entire feasible
region of the traffic intensity. This is a strong evidence
for throughput-optimality.

• β affects the performance of our algorithm. As predicted,
a largerβ generally leads to a smaller queue size due to
more aggressive link activation.

• With a well-chosenβ, the improvement by our algorithm
is up to two orders of magnitude in these cases.
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Fig. 4. 8-link ring interference graph, Bernoulli arrival
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Fig. 5. 16-link grid interference graph, Poisson arrival

b) Ring and Bernoulli Arrival:For the 8-cycle, we chose
the following two maximal schedules:L1 = {1, 3, 5, 7}, L2 =
{2, 4, 6, 8}. We lete1 = (1, 0, 1, 0)′ ande2 = (0, 1, 0, 1)′. The
arrival rate vector was set as in (11). The simulation results are
shown in Fig.4. We observe similar results as for the grid case.
Our algorithm can lead to much smaller queue sizes, especially
under low to medium traffic intensity. The improvement is not
as large as it is in the grid topology, perhaps because there are
fewer links and less interference in the 8-cycle.

c) Other Traffic Models:We have tested the algorithms
under other traffic models. One is the I.I.D. process with a
Poisson distribution, and the other is on-off bursty traffic. The
traditional Bernoulli and Poisson traffic models give smooth
traffic over a large time interval, and these types of traffic
may be less representative than bursty traffic or self-similar
traffic for local area networks[14][15]. For the on-off model,
we use Pareto distributions for the on and off durations. The
traffic for each link is still generated according to a Bernoulli
process. During the off period, the generated packets are stored
in a buffer at the source instead of being released into the
network. During the on period, the generated and previously
stored packets are injected into the network. The simulation
results for the grid topology under the two traffic models are
shown in Fig.5 and Fig. 6. We see that even under these
very different traffic patterns, the results show similar trends
in the queue sizes as in the previous cases, with our algorithm
out-performing Q-CSMA.

V. CONCLUSIONS

In this paper, we propose a randomized link scheduling
algorithm based on a modified Ising model and the associated
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Fig. 6. 16-link grid interference graph, on-off bursty traffic

Glauber dynamics. The algorithm gives better delay perfor-
mance than other queue-based CSMA-like algorithms. It is
throughput-optimal and easily implementable. We validated
the performance of the proposed algorithm and compared
it with Q-CSMA by simulation. The proof for throughput-
optimality relies on the time-scale separation assumption. In
the future work, we will attempt to remove that assumption.
We may also further explore the effect ofβ and whether or
when the algorithm leads to fast-mixing Markov chains.
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