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_ Abstract—Recent  studies on queue-length-based random-  Recent studief5][13 suggest that it is impossible to design
ized link scheduling algorithms have shown their throughpd- a scheduling algorithm for general wireless networks that i
optimality. But simulation results indicate that the packet delay both throughput-optimal and has low delay. Our simulation

in such algorithms can be quite large, even when the traffic . . .
intensity is low compared with the network capacity. The rezon experiments on a queue-length-based CSMA-like algorithm,

can be traced to the fact that these algorithms need the quese called Q-CSMA [6], have revealed that it leads to fairly karg

to be sufficiently large before the links have a good chance to delay, as the queues can become very large (see Section V).
be activated for transmission. In this paper, we propose a neé | arge queues can happen even when the incoming traffic
randomized scheduling algorithm based on the Ising model in ntansity is low, i.e., the arrival rate vector is well withthe

physics. The algorithm does not require queue build-up for ink twork it . Th b iall d
activation and can thus give better delay performance. It iseasily N€WOrk capacity region. Ihe causes can be partally unaer-

implementable in a distributed fashion and it retains throughput-  Stood by observing the activation probabilities of the $nk
optimality. For each linkv, the activation probability ig"> /(1 + "),
where the weightV,, is usually a slowly increasing function
of link v’'s queue lengthQ,,, e.9.W,,(Q.,)  log(Q, +1). As
Efficient utilization of the network resources is vitally im a result, even if linkv's neighboring links are all idle at the
portant in wireless networks, as the capacity of such nétsvormoment whenv is selected for consideration of activation,
is often severely limited. Despite the capacity limitationlink » is unlikely to be activated unless its packet queue is
network users often demand high-bandwidth and low-deléarge enough. Thus, opportunities for transmissions ate no
network services for applications such as video or othsufficiently utilized by the links in the neighborhood urttie
types of streaming. Even with today’s improved wirelesgsueues become large.
network technologies, such demands are still not met. LinkThere is a related queue-based CSMA-like algoritfem
transmission scheduling is one of the key mechanisms for which it has been shown that the queue dynamics is a
improvement in both network resource utilization and uséast-mixing Markov chain on a part of the capacity region,
perceived performance. An ideal link scheduling algorithiprovided the degree of the interference graph is boundesd. Fa
should achieve high throughput, low delay, and it should duixing implies the queues rapidly approach stationarityicl
so at low complexity. appears to imply smaller queue sizes, and hence, lower.delay
The well-known max-weight scheduling algorithm [1] isOur simulation experiments have shown that the queues are
throughput-optimal, in that it can stabilize the networleges in fact very large. Moreover, the algorithm appears to be not
for all arrival rate vectors in the interior of the capacitthroughput-optimal. In Q-CSMA, low packet delay may also
region. However, this algorithm involves solving an NPbe achieved by switching to greedy maximal scheduling when
hard combinatorial problem on each time slot. Thus, it ihe traffic rates are loyg].
not practical for large wireless networks. Another group of This paper reports a different CSMA-like algorithm, which
algorithms uses schedules of lower complexity and achiev&@®ows improvement in delay over earlier algorithms. The
a fraction of the capacity region. Such algorithms incluge t algorithm is based on a physical model called the Ising model
longest-queue-first (LQF) schedule [7] [8], which has good takes into account the ON/OFF status of the neighboring
delay performance at the expense of throughput reductidimterfering) links when calculating the activation prbideay
LQF involves sorting all the link queues on each time slofor a link. The effect is that it “encourages” a link to actiwdf
which requires global (i.e., network-wide) informationdan all the link’s neighbors are OFF and “discourages” a linkrieo
control and can be time-consuming to do. Another family afr more of its neighbors are ON. The algorithm can naturally
simple scheduling algorithms has also been studied intelysi eliminate unnecessary queue build-up that is present iaroth
the random access algorithms in which the link activatio@SMA-like algorithms and it results in much smaller queue
probabilities are dependent on the queue sizes [2] [3] [8izes and better delay performance. In addition, the sdimgdu
[6] [9]. They can be implemented similarly to the Carriealgorithm is provably throughput-optimal. Simulation uks
Sensing Multiply Access (CSMA) scheme used in practichlve confirmed the improved delay performance.
systems such as WIFI 802.11x. The implementation is built The rest of the paper is organized as follows. In Section II,
on distributed algorithms, which require only local infation we describe the system model and notations. In Section &I, w
and control. Some of these algorithms have been proven toibgoduce the Ising model, present our distributed schiegul
throughput-optimal [2] [3] [4]. algorithm, and discuss the throughput-optimality and ylela

|. INTRODUCTION



performance of the algorithm. In Section IV, we present the @ @ @ O
simulation results of both our algorithm and the Q-CSMA

algorithm and compare their performance. We conclude the OHONONO)
paper in Section V.
[I. SYSTEM MODEL AND NOTATIONS ONORONO

We consider a single-channel wireless network character-
ized by an undirectethterference graphG = (V, E), where
the vertex se¥’ represents the wireless links and the edge set
E indicates the interference relations between the linkskLi A. Ising Model
u andv are connected by an edge, v) € E if and only if
their transmissions interfere each other. The interfelimks

Fig. 1. Ising model and spin values

The Ising model[10/[12] is a mathematical model of fer-
X L ) romagnetism. It uses spin variables with two possible \&lue
cannot be activated for transmission simultaneously. ,TlalusJrl or —1, to represent magnetic dipole moments. The spin
SCC\?dUIeS an mﬂeple_znliient”sEt of t_hde gr_ap?tn _ 4 yyariables are described as the vertices of a graph, usally,
e assume the links all have identical capacity and th&iice and neighboring spin variables can interact wihe
packets are all of an identical size. We consider a disdnete- other. Given such a graph, a configuratieris a vector that

system where the time slot size is equal to the transmissi cifies all the spin values angv) is the spin value at vertex
time of one packet. Thus, each link’s capacity is one pac t(see Fig.1 for an example)

per _ti_me slot. At the beginning of each ti_me slqt, sched.uling In this model, the energy of a configuration is given
decisions are made whether each of the links will be acWatSy H(o) = -, . o(v)o(w), wherev ~ w meansv

for transmission on that time slot. v and w are neighbors in the graph. As one can see, the
. We.re-present a schedule by a vecioe {_1’.1} Ifa energy increases with the number of neighboring pairs whose
link I is mcIudgd n the schedu_le, i€ entry L1 1S setto 1. spin values disagree. Th&bbs distributioncorresponding to
We also say linkl is ON or activated Otherwise,z; = —1 = gnarav i is a probability distribution, denoted by, on the

and link [ is said to beOFF. A schedule always means a-onfiguration spac Under paramete > 0. it is given
feasible schedule; that is, no two interfering links arehbo y u?a) _ ieﬁ%}(a) Whepre 209 IZ the’norme?lizing

ON in a schedule. The set of all schedules is denotedhy Z(8)

i X ; . _ _ —BH(o)
An arbitrary vector in{—1,1}Vl is called aconfiguration co_lr]ztarg.l ClgarI)éZ(ﬁ) N Zaefie. ( d I Mark hai
which may or may not be feasible. A scheduling algorithm is € ‘olauber dynamics on ISing modet 1S a viarkov chain
a way to choose a schedule in each time slot of configurations withQ2 as the state space, whose stationary

Since the focus of the paper is on MAC-layer schedulingiStribUtion is the Gibbs distribution. Given the curremwie
(

we consider one-hop traffic, i.e., after transmitted by &,lin guration (i.e., _state).r, th/e Marko_v chain makes a_transition
a packet leaves the network. Packets arrive at the tramsmit 0 anew conﬂguraﬂonf_ according to the following rule:
of the links according to a discrete-time finite-state Marko Irst, pick a vertexy unlfo_rmly at random fror_n the graph;
chain. The arrivals for different links are independent atte and then, choose th? spin value forto. .b.e either+1 or
other. The system state at time siatan be described by the 1 randomly according to the probabilities+1; a,v) or
queue sizes, the ON-OFF status of the links, and the numBér 139 v) = 1 —a(+1;0,v), respectively, where
of arrivals at timet. The schedules considered in this paper ePS(aw)
depend only on the queue sizes and the ON-OFF status of the ¢(+1;0,0) = eB5(0.0) 1 ¢ BS(@0) @)
links. Hence, the system state is also a discrete-time Marklglere S
chain. System stability means that the Markov chain is pesit '
recurrent.

The stability region is defined as the set of all arrival rat\éertem.
vectors for which there exists a scheduling algorithm th&. Modified Ising Model and Glauber Dynamics

stabilizes the networ-k queues. Asch_gduling algorithmid sa The Gibbs distribution for the Ising model puts more
to be throughput-optimaif it can stabilize the queues under, opapility masses on lower-energy configurations, in Whic
any arrival rate vector in the stability region. The capacite neighboring spins tend to agree in value. For the wiseles
region is the closure of the stability region [1]. link scheduling problem, each link can be in either ON or OFF
1. ALGORITHM AND ANALYSIS staté. We will use the valuel or —1 to represent an ON or

One drawback of the existing CSMA-like algorithms is that; FF state, respectively. A link in the ON state is also said 1o
when the queue size of a link is not large enough, the aativati eactivated

probability is very small. The link is unlikely to be actieat Ina Frar;sm!siit())n _SChIG.}dlfle’ V.V?]iCh by deﬁnigon s f?;Sible’
even if no other links in the neighborhood are transmitting""y Pair of neighboring links (with respect to the interfere

Our algorithm is more mindful of the ON-OFF status of th raph) cannot be both in the ON state. In a maximal schedule,

neighboring links in the scheduling decision. For a linktthd® link must be in the ON state if its neighbors are all OFF.

has packets to transmit, it should be encouraged to transmméeh vggr::trzrcegrogossti\tﬁ)rrlg?fO(;?sltzr?k?uigzeglri“Tr?ealggar\gzm(’)f

if no interfering links are transmitting. The inspiratiof the w

algorlthm IS frqm a model in physms, Ca"?d thging model 14 jink in the ON state may or may not be transmitting a packetink
We will briefly introduce the Ising model first. in the OFF state cannot transmit a packet.

(0,0) = > pws 0(w). Note that the new configu-
ration o/ may differ from the current configuration only at



schedules. Similar to several other scheduling algoritiifins where is a positive parameter and the normalizing constant
this family, we wish to have the probability mass to be(3) is given by Z(8) = 3" ., e#H(?).
concentrated on the max-weight schedules, where each linlGiven that the Glauber dynamics is in configuration (i.e.,
weight is some increasing function of the link's queue sizgtate)o € 0, the next configuration can differ from in at
As in earlier algorithms, the concentration happens whenost one entry. Let!, be a configuration irf2 such that
the queue sizes are sufficiently large. However, for smallef, (v) =1 and@j)v(w)’ =o(w) foranyw # v. Letf, , € Q
queue sizes, the earlier algorithms do not even favor maxintge such that, ,(v) = —1 andd, ,(w) = o(w) for anyw # v.
schedules, and this behavior causes the queue sizes to grofor determining the next configuration, first, a link is chose
even when the traffic intensity is light or moderate. uniformly at random; second, given linkis chosen, it will be
Since we prefer maximal schedules, we wish the probabilityrned ON with probability;(1; o, v) and OFF with probability
mass to be also concentrated on the maximal schedules ungeri; o, v) = 1 — ¢(1;0,v), where
all queue-size regimes. For that objective, we will conside

the following modification to the Ising model. The underlyin g(1;0,0) = u(%v) _ e—AuBS(0,0)

graph is the interference graphi = (V, F) in which each o w03 ,) + u(l5,)  efSov) 4 e=AvfS(an)”

vertex is a wireless link. 4)
A configurationof the system is gV|-dimensional vec- 1 Ay, +1

tor that describes the ON-OFF status of all the links. The - 5(1 — tanh( 2 BS(o,v))). ®)

configuration space i€ £ {—1,1}/VI. Note that the space . o

of schedulesM is a subset of). Given a vectors € Q, Inthe aboveS(o,v) =3 ., ,)ep So(w), which is the sum
o(v) = 1 indicates linkv is ON ando(v) = —1 indicates ©f the spin values of link’s neighbors. 3

link v is OFF. Unders € Q, we associate apin valuewith ~ The quantityq(1; o, v) is called theactivation probability
each linkv and denote it bys,(v). For each linko, s,(v) for link v given that the system is in configuratienand that
takes a value from the sétd,, —1}, where 4, > 0. If link Ilnk v is selectgd for can|derat|on. It only depends on the
v is ON in g, s,(v) = A,; if it is OFF, s,(v) = —1. Note SPin values of linkv’s neighboring links. Such a property of
that, in the standard Ising model,, = +1 for all v. Hence, locality makes the scheduling protocol simple, since oobal
our modification is a generalization. In the eventual akpon, information needs to be collected.

eachA, is an increasing function of link’s queue size. For

now, let us consider it fixed. C. Proposed Distributed Scheduling Algorithm
We define the energy of configuratien € 2 under the In the proposed scheduling algorithm, the spin value of an
vector A = (A, )ev as ON link is an increasing function of the link’s queue size and
hence will vary with time. Specifically, for each ON linkat
H(o, A) == Y so(v)se(w). (2) timet, its spin value isd,(t) = 2(d — 1) + log(Q,(t) + 1),
(v,w)€EE where Q,(t) is link v’s queue size at timé and d is the

Remark 1:When there is no ambiguity, we use the Simp“[naxmum vertex degre_e in the graph o
i ) . The proposed algorithm has a Glauber dynamics in the
fied notationH (o) instead. L ) X : .
Note that iahbori . d tributes th background, which is the one described in Section 111-B with
foll ote ta tﬁ nteltg | oring r.JaI.rv jnAw,.fct(;]n ribu esb the the modification that the spin values are time-varying. When
ch_)W.'.nng i € ogNeneégy._ (')SFE_ W, IA e_]}/ are OON the state of the Glauber dynamics at timis not feasible as a
4 (i (;FIF'U 'Sd ; anl wh's both (il (SUFIF wV\/IE - schedule, the algorithm converts the state into a validduee
an Av IS I - an g)vlzl_ONW en bo arre]. h : N ”d by turning OFF some links. Specifically, I (¢)},>1 be
:)r th |_sta][ge_, ar|1_ K ) tpg”(tv’w)’ W 'Ct. corrtlespc\)/\r%r? the sequence of states of the Glauber dynamics; there is
0 fwo Interiering finks, contributes a negative value a sequence of schedulds’(t)}:>1, which are feasible by

large magnitude to the total energy. Hence, a high-energy;. ... ; . .
configuration tends to have few such ON-ON pairs, but maﬁgﬁnltlon, generated by the algorithm.dft) is feasible, then

: ) oy(t) = o(t). Otherwise,o’(t) is a restriction ofo(¢) in the
ON-QFF pairs. Whend, is close tol for all v, OFF-OFF [sense that'(t)(v) < o(t)(v) for all v € V; that is, if link v
pairs are also discouraged in a high-energy configuration.

st i highest t f link ¢ f’os OFF inco(t), then it must be OFF in the schedut§t).
Instance, 1n a hignest-energy contiguration, a fink cani®t o 5 me siot is divided into a control slot and a data slot.
OFF when its neighbors are all OFF.

Glauber D ics: Th d domized scheduli For efficiency, the data slot size should be much larger than
auber Lynamics. The proposed randomized SCheauling, o 40| slot size. The control slot is further dividedoin
algorithm, which will be described in Section III-C, has a

bedded Glauber d ; h ith a stat + W’ mini-slots wherelV and W’ are chosen constant
embedde auber dynamics on e_s_rﬁom a stationary integers. The firstV’ mini-slots formcontrol phase land the
distribution that puts more probability masses on highe

f fioRs | ticular. the Glauber d . é’oal is to collectively set the vectar(t). The secondi?’’
energy configuratiors in particular, the Llauber dynamics,,;; qjots formcontrol phase lland the goal is to collectively
will have the following stationary probability distribotn, s,

set the vectors’(¢t). During control phase |, the links that

1 attempt to change their entry valuesaft) must correspond

plo) = m to an independent set, denoted bf¢), in the interference
graph; this is accomplished using the INTENT messages.

2Note that this objective is the opposite to the Ising modeijciv puts During control phase Il, only ON links will compete for th?_
more probability masses on lower-energy configurations. channel and RESERVE messages are used for the competition.
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Each RESERVE message also contains the current queue sizéhe Glauber Dynamics (t). The objective is to allow at

information of the link. most one link to transmit in each link’s neighborhood, evien i
On each time slot, each linkv with a non-empty queue multiple links may be ON (according te(t)) in that neigh-
runs the following steps. borhood. It is important to note that ON-ON neighboring pair

are usually few by the design of the algorithm. Furthermore,
Distributed Scheduling Algorithm (at Link v) the use of multiple I"’) mini-slots and randomizing timers

further reduce the chance of collisions of RESERVE messages

o ] ) from ON-ON neighbors. Hence, collisions among RESERVE

1. At the beginning of the time slot, link c’alculatesS'(a(t— _messages will be rare. If a collision still occurs on a mioks
1),v) based on the neighboring links” ON-OFF status (ig| |inks that sent the colliding messages will ke€t)(v) at
o(t—1)) and queue sizes that it learned during the previogs |, the event that some required control information, such
time slot. Linkv calculates the probability(1; o(f —1),v) a5 the current queue length, is not updated due to collisions

Initialization:

based on the expressions in (4). old information from an earlier time slot can be used without
Control Phase | - W Mini-Slots: Set o(t)(v) affecting the proper functioning of the algorithm; the irapa
2. Link v selects a random back-off timi#&, uniformly in ©n efficiency will also be negligible.
{0,1,...,W —1} and sets a timer df} control mini-slots. _ The control overhead can be made small. Each INTENT or

3. If link v hears an INTENT message from any of itfRESERVE message is relatively small compared with a data
neighboring links before thel’ timer expires, it sets Packet, if the duration of a data slot is extended sufficjentl
o(t)(v) = o(t — 1)(v) and it will not transmit an INTENT long. Furthermore, the number of control messages is ldnite
message( will not be included ing(t)). by our design. The parametdr’ can be small because of the

4. Otherwise, when thd timer expires, linkv broadcasts rare occurrence of the ON-ON neighboring pairsinin our
an INTENT message at the beginning of ti& + 1)-th ~Simulation,W" = 4 is usually sufficient.
mini-slot.

a) If link v’s INTENT message has a collisiyink v sets Effect of 5. As can be observed from (3), &b increases,
o(t)(v) = ot — 1)(v) (v is not included in(t)). the distributiony is increasingly biased towards higher-energy

b) Otherwise, linkv setso(¢)(v) = 1 (chooses ON) with States, which tend to have more ON-OFF neighboring link
probability ¢(1; o, v) and it setss(¢)(v) = —1 (chooses P&irs and fewer ON-ON or OFF-OFF pairs. Asdecreases,

OFF) with probabilityg(—1; o, v). the probabilities for configurations of different energydis
become more and more equalized. Expression (5) suggests tha
Control Phase Il - W’ Mini-Slots: Set o’(¢)(v) a larger$ value leads to a higher activation probability for link
5. If link v haso(¢)(v) = 1, it executes the following: v, if its neighbors are OFF (thus giving a negati¥é, v)).

a) Link v selects a random back-off tini, uniformly in Hence, a largers tends to result in more aggressive link
{0,1,...,W’ — 1} and sets a timer of}, control mini- activations, and consequently, smaller_queue sizes. Hawev
slots. It setso’(t)(v) = 0. our stgdy has §hown that a largémay increase the mixing

b) When theT, timer expires,v broadcasts a RESERVEtME, i.e., the time taken _for the Glal_Jber dynamics to reach
message containing its current queue size. stationarity. Thus, choosing a relatively small may be

¢) Iflink v has not heard any RESERVE messages from f§sential in having and proving the fast-mixing propertewh
neighboring links before the timer expiration and if it§v€ do not assume time-scale separation. We will exploreethes

own RESERVE message does not have a collision, linksues in future work.

v setso’ (t)(v) = 1. Activation Probability and Performance: As mentioned
in the introduction section, the delay performance of the
Data Slot: gueue-based CSMA algorithm is non-ideal in part because
6. If o/(t)(v) = 1, link v transmits a packet. the queue of a link has to build up sufficiently in order

for the link to have a substantial activation probabilityurO

. . . algorithm naturally avoids this unfavorable situationoifr
Remark 2:The information used to compuio(t—1), v) ), we see that the activation probability is a hyperbolic

in step1 is obtained from the broadcast of the RESERV f . ith i d hori i latiafh
messages in the previous time slot (see step 5b)). A lin ngent function with scaling and horizontal translatifhen
' all the neighbors of linkv are OFF (the factorS(c,v) is

hears the RESERVE messages with queue sizes from thgse N I
. : : . . egative), the activation probability is at least even for
neighbors that are ON in the previous time slot (according tg :
. . . very small A, (and hence, very small queue size). More
o(t — 1)), but hears nothing from the OFF links. This does : ;
concretely, suppose link has two neighbors and they are

not pose a problem fo_r computin(o (¢ - 1).’1})’ sinc_:e the both OFF, which results it$ (o, v) = —2. Suppose3 = 0.1
computation only requires the queue size information of tr}:\endA ! 2(d — 1) + log(Q —’i- 1). Su ' ose the maxirﬁum
ON neighbors and the totalumberof OFF neighbors. Vo S\ - =ubp .

: : . vertex degree of the interference graphis d = 3, and
Control phase Il is for conflict resolution. At the end of th S S
; , >4. T
phase, a valid schedul€(¢) is produced based on the Stat%onsequentlyAv 4. The activation probability is equal to

%.73, 0.80, 0.86, 0.90 for A, =4, 6, 8, 10, which corresponds

to @, =0, 7.4, 54.6, 403.4, respectively. Hence, the activation
3The receiver of a link transmits an acknowledgement in naspao a Qy = 0,74,54.6,403 P y

INTENT or RESERVE message from the sender of the link. A smii is Probability starts at a relatively high value and can inseea
detected by the absent of an acknowledgement. rapidly towardsl as the queue size increases. In short, our



algorithm reacts faster to the queue build-up and has lowerLemma 3: SupposeA, > 2(d — 1) for all v € V. For a
delay than the queue-based CSMA, especially when the queien o € Q, supposeH (o) > (1 — e)H*, where0 < € <
sizes are small. 1/(1+]|E|). Then,W (o') > (1—€e(1+|E|))W*—2|E|—|E|?.

On the other hand, if one or more neighbors of limlare We now return to the analysis of the proposed scheduling
ON, resulting in a positiveS(o, v), the activation probability algorithm. In our cased, (t) = 2(d — 1) + log(Q,(t) + 1) at
can be very close t0 for even a small queue size at link time ¢ and the link weight at time is d,A,(t). Hence, the
Hence, ON-ON neighboring pairs are strongly discouragedfunction f,(q) is given by f,(q) = d,(2(d—1) +log(q+1)),
L which satisfies (7). When link is ON at timet, its spin value
D. Throughput Optimality ) ) ~is A,(t). The total weight of any configuration € Q is given

For the proposed scheduling algorithm, we can establish B (6) with A(t) = (A, (t))wev replacingA. Now, we only

throughput-optimality. In this section, we outline the pfof  need to check the conditions of Theorem 2 for our algorithm.

throughput-optimality under the time-scale separaticauag- Under a given vector, let
tion, i.e., the Glauber dynamics is in the steady state imyeve
time slot. We refer the reader to [16] for more details abbat t X(A,e)={oceQ:H(s,A) < (1—eH*(A)}, (9
proof. A proof without the time-scale separation assunmptio
is left to future work. where0 < e < 1.

Therorem 1:The proposed randomized scheduling algo- Lemma 4:For any §, where0 < § < 1, there exists
rithm is throughput-optimal. B(e,6) > 0 such that when|Q|| > B(e, ), u(X(A,€)) < 9.

We first need some definitions. Given the interference graphRemark 4:For fixed ¢ and §, each particular) satisfying
G = (V,E), letd, denote the degree of vertexin G and let ||Q|| > B(¢,d) determinesA, which in turn determines
d be the maximum vertex degree, i.€.~ max,cv d,. Let  X(A,¢), H*(A), W*(A), etc. The distributiory: is a con-
A be the vectol(A, ),cv. Let the weight of vertex (or link  ditional distribution given thatd is known.
v) be W, (A) = d, A,. For a configurationr € €2, define the | emma 4 says that whe{()|| is large enough, the stationary
weight of o under A to be the total weight of all the verticesgijstributiorf of the Glauber dynamics concentrates on the set

that are ON ino, i.e., Xe=Q\&, i.e, u(xc) > 1—4. Each element € X has
W(o, A) = Z W, (A) = Z dyA,.  (6) nearly the maximum energy. _ .
o veViolo)=1 Suppose the state of the Glauber dynamics at tirrie

o(t) € Q, which may or may not be a valid schedule (i.e.,
If o € M, ie., o is avalid schedule, thefi’(c, A) is the feasible). If o(¢) is not feasible, the proposed scheduling
schedule weight. algorithm converts it into a valid schedule bt by turning

Let W*(A) be the maximum schedule weight undéri.e., OFF some of the links. We consider the most aggressive
W*(A4) = maxger W(o, A). Let H*(A) be the maximum version of such a conversion scheme in which all the ON links
energy underd, where the maximization is taken over allyith ON neighbors ins(t) are turned OFF. The resulting valid

possible configurations, i.el/*(A) = max,eq H(o,A).  schedule is denoted by (¢). More precisely, the conversion
~ Remark 3:When there is no ambiguity, we use the simplischeme is characterized by a mapping, o — o/, defined
fied notationsV (o), W, W*, and H* instead. as follows. Givens, let us define a subsdt C V: A vertex

To prove Theoreml, we will use a theorem from [11]. , is in F if and only if v is ON andv has at least one ON
Consider a finite family of non-decreasing functiofis on  neighbor ino. In other words, all ON-ON neighboring pairs
Ry, wherev € V, with the property thatim, . f,(¢) =0  of vertices are inF. Let F* = V\ F. Then,o’ = ¢(c) is given
for eachv. In addition, suppose the following holds for eacr[g,y

v: ForanyM; > 0, My > 0 and0 < e < 1, there exists

Q < oo such that for allg > Q, o) {U(U) for v € F¢, 10
g \v) =
(1—€)fulq) < folg—M1) < fo(qg+M2) < (1+¢€) fo(q). (7) —1 forvelF.
Given such a family of function(f,).cv, let A,(t) = Note thato’ is a valid schedule, i.eq’ € M.

fo(Qu(t))/dy, whereQ,(t) is the queue size of link) at  The key is to show that i has near maximum energy, then
time ¢. Hence, the weight of each link € V at time ,/ has near maximum weight.

tis dyAy(t) = fv(%v(t))- Let A(t), = (Av(t))v€V' Let Proof: (of Theorem 1) Consider theandé required by
IR = /22 ,ev @E(t). The following theorem is proved thegrem 2. For the in Lemma 4, we replace it with any
in [11]. ¢ satisfying0 < e; < 5rzry. Then, Lemma 4 says that

Therorem 2:Consider a scheduling algorithm. Suppose f%ere existsB,, which depends om; and s, such that when
anye andd, 0 < ¢,6 < 1, there exists aB > 0 such that Q)| > B ;L(X(A(t) 1)) < 6. ’

in any time slot¢, with probability greater thanl — o, the Let V(A(t _ € XC(A(t Then. when
scheduling algorithm chooses a schedulg) € M satisfying ||Q(t)||y£ 1531)’ %)(a’(tggbe(aj)J'(aA(t), elg) (z);f(l))(};.(A(tL 6,1)) ©

the following: Wheneve{|Q(t)|| > B, 1 — 4. We only need to show that/(o’(t), A(t)) > (1 —
Wi(o(t), A(t)) > (1 —e)W"(A(2)). (8) €)W*(A(t)) for o'(t) € Y(A(t),e1). For that purpose, we

Then, the SChedu“ng algo_rlthm IS throthpm_oPtlmal' 4This is the stationary distribution conditional on holditiee queue sizes
We need some supporting lemmas. Q, and henceA unchanged.



Fig. 2. Interference graphs: 8-link ring (8-cycle) and IfIgrid. The
vertices correspond to wireless links in the network.

apply Lemma 3 withe replaced bye; .
W(o'(t), A(t))

>(1—er(1+[ENW(A(t) - 2|E| - |E]?

>(1—€¢/2)W*(A()) - 2|E| — |EJ?

=(1— )W (A(t)) + W (A(t)/2 - 2| E| - | E?

>(1— W*(A(t)), when W™ (A(t)) > (4E| + 2| E|?)/e
It is easy to see that there exists soBig¢ > 0 such that
when||Q(t)|| > Bz, W*(A(t)) > (4| E| + 2|E|?)/e. Finally,
we can chooseé3 = max{Bj, B2}. For eachQ(t) such that
[|Q(t)]| > B, which determinesA(t), we haveP(c'(t) €
V(A(t),e1)) > 1= andW (o' (t), A(t)) > (1 —e)W*(A(t)).

Let us now return to the actual schedutd)(t), derived

from o(t) by the proposed algorithm in Section 1lI-C. Letl1

Y @ o(t) — o”(t) represent the conversion from(t) to
o”(t) by the proposed algorithm, and leZ(A(t),e1)
{Y(o)|o € X°(A(t),e1)}. Then, P(a”"(t) € Z(A(t),€1))
(X(A(t), 1)) > 16,

Next, for everyo”(t) € Z(A(t),e1), we can findo(t) €
X°(A(t),e1) such thato”(t) = (o(t)); with such o(t),
let o'(t) = ¢(o(t)). Then,o'(t) € Y(A(t),e1). Being both
converted from the same(t), the actual schedule”(t)
has at least as much weight as(¢), according to the

rules of the two conversion schemes. We have just shogmcez2

that W (a”(t), A(t)) > (1 — )W*(A(t)) for all o”(t) €
Z(A(t), e1).

Hence, the conditions of Theorem 2 are satisfied by the
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10° time slots, and we recorded the sum of the final queue
sizes of all the links as the performance measure.

We used two weight functions for Q-CSMAW, (t) =
log(0.1 x Q,(¢) + 1) and W, (¢t) = loglog(Q,(t) + ¢), and
the contention window is set td” = 32. For our distributed
algorithm, we tried three differertt values0.15, 0.1, and0.05
to evaluate the impact gf on performance, and the selected
window sizes ardV = 32 and W’ = 4.

a) Grid and Bernoulli Arrival: For the experiments on

the 16-link grid, we used the following scheme to sample the
arrival rate vectors. Consider two sets of links:

={1,3,6,8,9,11,14,16}, L, = {2,4,5,7,10,12,13,15}.

Each set is a maximal schedule for the network. dleainde?

each be d6-dimensional vector representation bf and Ls:

For eachi € {1,2}, sete! = 1 if link v € L;; otherwise, set

e! = 0. We chose arrival rate vectors that can be represented
as conical combinations ef ande?.

2
A=pY tie!, withty +tp =1. (11)
1=1

i, t;¢’ lies on the boundary of the capacity region,
the parametep, wherep > 0, is a measure of the traffic
intensity or load.

Fig. 3 shows the simulation results for the 16-link grid.

proposed algorithm, which then must be throughput-optimg{;. used(t1,t2) = (0.5,0.5), (0.6,0.4), (0.7,0.3) for the

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the propo
scheduling algorithm by simulation and compare it with th

S

experiments and they gave very similar results. Each of the
curves in Fig3 is the average of the three sets of experiments
%eresponding to different, t2) values. Note that the-axis
1SN log scale. We can observe the following:

Q-CSMA algorithm[6]. Our focus is on the average queue e Our algorithm leads to smaller queues than Q-CSMA

length, which, by Little’s law, is directly related to theexrage
delay experienced by the packets.

We used two interference graphs to evaluate the algorithms

in different situations. One iséx 4 grid with 16 vertices; the

other is a ring with 8 vertices, also known as an 8-cycle (see®
Fig. 2). The vertices represent wireless links and the edges

represent the interference relations between the links.

For the first part of the simulation, we assumed that thee

incoming traffic to each linkv follows a Bernoulli process

throughout the entire feasible region of the traffic in-
tensity, [0,1). At low to medium traffic intensity, our
algorithm has close to zero queue size, while Q-CSMA
generally has 0% — 10? total packets in the network.
Both algorithms achieve stability for the entire feasible
region of the traffic intensity. This is a strong evidence
for throughput-optimality.

S affects the performance of our algorithm. As predicted,
a largerss generally leads to a smaller queue size due to

with rate \,. The arrival processes for different links are

more aggressive link activation.

« With a well-choserp, the improvement by our algorithm

independent. For each set of traffic rates, we ran the simnlat . : _
is up to two orders of magnitude in these cases.

10 times and took the average. Each simulation run lasted for
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(1]

b) Ring and Bernoulli Arrival:For the 8-cycle, we chose 4

the following two maximal scheduleg; = {1,3,5,7}, Ly =
{2,4,6,8}. We lete! = (1,0,1,0)" ande? = (0,1,0,1)". The
arrival rate vector was set as in (11). The simulation resarie
shown in Fig4. We observe similar results as for the grid casel4]
Our algorithm can lead to much smaller queue sizes, especial
under low to medium traffic intensity. The improvement is nots;
as large as it is in the grid topology, perhaps because there a
fewer links and less interference in the 8-cycle. [6
c) Other Traffic Models:We have tested the algorithms
under other traffic models. One is the I.I.D. process with &7l
Poisson distribution, and the other is on-off bursty traffibe
traditional Bernoulli and Poisson traffic models give snoot [g]
traffic over a large time interval, and these types of traffic
may be less representative than bursty traffic or self-aimil [9]
traffic for local area network§l4][15. For the on-off model,
we use Pareto distributions for the on and off durations. The
traffic for each link is still generated according to a Bedliou (10]
process. During the off period, the generated packets aredst [11]
in a buffer at the source instead of being released into the
network. During the on period, the generated and previouﬂ)é]
stored packets are injected into the network. The simuiatio
results for the grid topology under the two traffic models aif&3]
shown in Fig.5 and Fig.6. We see that even under theS([aH]
very different traffic patterns, the results show similantls
in the queue sizes as in the previous cases, with our algoritkLs]
out-performing Q-CSMA.

(3]

[16]
V. CONCLUSIONS

In this paper, we propose a randomized link scheduling
algorithm based on a modified Ising model and the associated
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Fig. 6. 16-link grid interference graph, on-off bursty fiaf

Glauber dynamics. The algorithm gives better delay perfor-
mance than other queue-based CSMA-like algorithms. It is
throughput-optimal and easily implementable. We validate
the performance of the proposed algorithm and compared
it with Q-CSMA by simulation. The proof for throughput-
optimality relies on the time-scale separation assumpfion
the future work, we will attempt to remove that assumption.
We may also further explore the effect gfand whether or
when the algorithm leads to fast-mixing Markov chains.
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