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Abstract— This paper addresses the problem of utility maxi-
mization of multicast sessions with multiple trees over static in-
frastructure networks. The utility functions are general concave
functions. Inspired by the derivation of the unicast backpressure
algorithms, we introduce a problem formulation with tree-flow
conservationconstraints and derive a multicast backpressure
algorithm. The algorithm is much more distributed and local
than previous algorithms. We provide a rigorous analysis of the
performance including the primal optimality and the bound on
real queue sizes using the Lyapunov optimization technique and
the convex optimization techniques together.

I. I NTRODUCTION

Massive content distribution has become one of the most
important applications on the Internet. One important class
of content distribution technique isswarming. In a swarming
session, a file is broken into many chunks at the source node,
which are then distributed to the receivers through various
paths. Despite its origin in the end-system-based peer-to-
peer community, swarming is also attractive for content
distribution services over infrastructure networks provided by
network or service providers. For those services, infrastruc-
ture nodes are strategically placed by the providers and are
well managed and relatively static. In this setting, it has been
shown that it is beneficial to view swarming as distribution
over multiple multicast trees [1], [2]. This view allows us to
focus on a formal approach based on optimization theory to
develop optimal solutions systematically.

In this paper, we study the problem of utility maximization
of multicast sessions with multiple trees. We suppose that
each session has an infinite data backlog in its source and
is given a small number of trees over which its data is
divided and then distributed to its receivers. The objective is
to maximize the sum of session utilities which are functions
of their admitted rates. We assume that the utility functions
are general concave functions, which can reflect various
fairness criteria among sessions. The major constraints are
link capacity constraints. Then, our problem is to find the
optimal tree rate allocation while the queues in the network
remain finite.

Our contributions are as follows. First, we present a
backpressure algorithm for the utility maximization problem
of multi-tree multicast. Backpressure algorithms are desirable
since they are distributed and local: There is no global
exchange of control messages. Various forms of backpres-
sure algorithms for the unicast network flow problems have
been introduced [3]–[9]. However, applying the backpressure
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approach to multicast problems is not straightforward. Most
backpressure algorithms for unicast are derived by relaxing
the flow conservation constraints in the static optimization
formulation(see [6], [9], [10] for representative examples),
whereas it is not obvious what constraints represent such
flow conservation in multicast problems. To circumvent the
difficulty, we introduce a problem formulation withtree-flow
conservationconstraints, by which we mean that the amount
of flow on a link on a tree should be no less than the amount
of flow on its parent link with respect to the tree. Then,
we present a subgradient algorithm by relaxing the tree-
flow conservation constraints. The algorithm is more local
than earlier multicast algorithms in [1], [2], [11], [12]. The
control is distributed over the network components and the
communication overhead is low since each node only needs
to know the queue sizes at itself and at its neighboring nodes.

Second, we show how to analyze the optimality and
the network stability of the subgradient algorithm under
a general concave objective function. It is hard to simply
apply the convex optimization techniques for subgradient
algorithms to show the primal optimality of our algorithm.
This is mainly due to the assumption of general concavity
rather than strict concavity on the utility functions. The result
is the lack of a continuous map from the dual to the primal
variables, which is crucial to prove primal convergence as
described in [13], [14]. Even though the dual variables
converge, the primal variables oscillate. Instead, we showthe
primal optimality of the algorithm in the long-time average
sense using the Lyapunov optimization technique in [7],
[9]. However, we still need to use the convex optimization
techniques in [14], [15] to prove the dual optimality. Since
the subgradient algorithm uses virtual queues, we can only
show the boundedness of long-time average virtual queue
backlogs with the Lyapunov technique, which is not enough
to show network stability. We use the result on the dual
optimality to show the real queue backlogs are bounded. The
two sets of analytical techniques complement each other in
our analysis.

The use of the optimization approach on multicast prob-
lems has been reported in [1], [2], [11], [12], [16]–[18].
Most of them, except [16], [18], require global exchange
of control messages. In the algorithms, source nodes and
links belonging to the same session need to exchange their
session rates and link prices. In [11], [16], [18], the authors
consider multi-rate multicast problems with a single fixed
multicast tree for each session. In [1], [17], special objectives
are considered such as maximizing throughput or minimizing
network congestion. The authors of [12] assume that the
network bottlenecks are at the nodes’ uplink capacities



whereas we assume that the bottlenecks can be anywhere
in the network. In [1], [2], although an optimal set of trees
with an optimal rate allocation are found among all possible
trees, the algorithms are less local and the computation
requirements at each iteration are much heavier than the
proposed algorithm. In [18], a similar problem formulation
to ours is introduced; but the algorithms are different. The
algorithm in [18] uses real queue updates whereas ours uses
virtual queue updates. However, our algorithm has stronger
results on the real queue boundedness.

The remaining paper is organized as follows. Section II
describes the network model and problem formulation. In
Section III, we present the backpressure algorithm. In Section
IV, we show that our algorithm achieves an optimal solution
and the virtual queues are bounded in the long-time average
sense. We provide stronger results on queue boundedness in
Section V. The concluding remarks are in Section VI.

II. PROBLEM DESCRIPTION

A. Network Model

Consider a network which is represented by a directed,
edge-capacitated graphG = (V,E), whereV is the set of
nodes andE is the set of directed links. Each linke in E
has a finite capacityce > 0. Let cmax , maxe∈E ce be the
maximum link capacity over all links. LetS be the set of all
multicast sessions in the network and|S| be the number of
sessions. Each session is associated with a source and a set
of destinations, which is a subset ofV .

Each sessions is given a set of treesTs that it uses for
data transmission. Let|Ts| be the number of trees inTs. Let
T be the union ofTs. Note that if t1 ∈ Ts1 and t2 ∈ Ts2

have the same topology, we regard them as different trees.
Let rte be the transmission rate assigned for treet on link e.
Let Et be the set of links on treet. Denoteb(e) andd(e) to
be the transmitting (tail) node and the receiving (head) node
of link e, respectively. LetVt be the set of transmitting nodes
b(e) for all e in Et. Vt represents the set of nodes on tree
t which are not leaves. Leto(t) be the root node of treet.
Let p(t, e) be the parent link of linke on treet. Let Ω(t, n)
be the set of child links at noden on treet. Let xs be the
admitted rate for sessions, and ytn be the admitted rate at
noden on treet. We assume that each source has an infinite
backlog of data. LetQt

e be the real queue size at linke for
tree t.

B. Problem Formulation

Denote(ai) to be the vector with entriesai. Let x, y and
r be the vectors(xs)s∈S , (ytn)t∈T,n∈Vt

, and (rte)t∈T,e∈Et
,

respectively. The notation such as(a)t∈T means repeating
the valuea in all entries of the vector. Denote1 to be the
vector whose entries are all1’s.

Let x̄s(k) andx̄s be the time average of the admitted traffic
rate for sessions up to timek and its limit 1, respectively,

1We temporarily assume that the limit exists. We shall replacelim with
lim inf or lim sup in case that the limit does not exist.

i.e.,

x̄s(k) ,
1

k

k−1
∑

κ=0

xs(κ), x̄s , lim
k→∞

x̄s(k).

We defineȳtn(k), ȳ
t
n, r̄te(k) and r̄te similarly.

Our problemP is as follows.

P : max
∑

s∈S

Us(x̄s)

s.t. r̄te − r̄tp(t,e) − ȳtb(e) ≥ 0, ∀t ∈ T, ∀e ∈ Et, (1)
∑

t∈Ts

ȳto(t) = x̄s, ∀s ∈ S, (2)

∑

t:e∈Et

r̄te ≤ ce, ∀e ∈ E, (3)

0 ≤ x̄s ≤ Xmax, ∀s ∈ S, (4)

ȳtn ≥ 0, ∀t ∈ T, ∀n ∈ Vt, (5)

r̄te ≥ 0, ∀t ∈ T, ∀e ∈ Et. (6)

The constraints in (1) imply that for every treet, the
allocated link rate on a linke on the tree should be no less
than the sum of the link rate of its parent linkp(t, e) and the
exogenous arrival to the tail nodeb(e). It can be considered
as a relaxed form of the flow conservation constraints for
trees. We assume thatr̄t

p(t,e) , 0 if p(t, e) is null. Note that
the tree rate variables̄ytn for tree t are defined for all non-
leaf nodesn ∈ Vt. The variables̄ytn for n 6= o(t) appear
unnecessary because the only other constraints on them
are non-negativity constraints in (5). In fact, our algorithm
always assigns0 to those variables. However, these variables
are needed for performance analysis, which will become
clear in Section IV.

The constraints in (2) mean that the aggregate rate trans-
mitted by the trees for a session must be equal to the session
rate. The constraints in (3) are the link capacity constraints
that the sum of the transmission rates on a link cannot exceed
the link capacity. In (4), we assume the session rates must be
bounded byXmax from above, whereXmax is a constant.

Let Λ be

Λ , {(x, y, r)|(x, y, r) is feasible to problemP.}.
We have the following assumption onΛ.
Assumption 1:There exists a feasible solution ofP such

that the constraints in (1) hold with strict inequality.
It is highly probable that the above assumption is valid in
real networks and it is used for showing the dual optimality
of our algorithm.

We also define the setsΛ(x,y) andΛr as follows, respec-
tively.

Λ(x,y) , {(x, y)|(x, y) satisfies the constraints in (2), (4)

and (5).},
Λr , {r|r satisfies the constraints in (3) and (6).}.

These notations will be used to simplify later expressions.
We have the following assumptions on the utility function

Us(xs).



Assumption 2:Us is a concave function.Us is continuous
and differentiable. The derivative ofUs is bounded on
[0, Xmax].
Note thatUs is a somewhat general concave function. It
could be linear or non-strictly concave. We do not even
assume that it is monotonically increasing. Under this as-
sumption, which is more general than that in [6], [14],
we do not have a continuous map from the dual variables
to the primal variables in the subgradient algorithm. Such
continuity is available in [6], [14] and is used to prove the
primal optimality. The assumption also implies thatUs is
bounded on[0, Xmax].

III. B ACKPRESSUREALGORITHM

Let [·]+ and [·]ba denote the projection onto the non-
negative domain and the interval of[a, b], respectively. Let
γt
e be the non-negative Lagrange multipliers associated with

the constraints in (1). Letγ be the vector(γt
e)t∈T,e∈Et

. From
problem P, we relax the constraints in (1) and write the
Lagrangian as follows.

L(x, y, r; γ)

=
∑

s∈S

Us(xs) +
∑

t∈T

∑

e∈Et

γt
e(r

t
e − rtp(t,e) − ytb(e))

=
∑

s∈S

(

Us(xs)−
∑

t∈Ts

yto(t)
∑

e∈Ω(t,o(t))

γt
e

)

−
∑

s∈S

∑

t∈Ts

∑

e∈Et:e 6∈Ω(t,o(t))

ytb(e)γ
t
e

+
∑

e∈E

∑

s∈S

∑

t∈Ts:e∈Et

rte(γ
t
e −

∑

e′∈Ω(t,d(e))

γt
e′).

The last equality holds because, for allt,
∑

e∈Et

ytb(e)γ
t
e =

∑

e∈Ω(t,o(t))

ytb(e)γ
t
e +

∑

e∈Et:e 6∈Ω(t,o(t))

ytb(e)γ
t
e,

whereb(e) = o(t) for e ∈ Ω(t, o(t)).
Then, the dual function is given by

D(γ)

= max
(x,y)∈Λ(x,y),r∈Λr

L(x, y, r; γ)

= max
(x,y)∈Λ(x,y)

∑

s∈S

(

Us(xs)−
∑

t∈Ts

yto(t)
∑

e∈Ω(t,o(t))

γt
e

)

+ max
(x,y)∈Λ(x,y)

∑

s∈S

(

−
∑

t∈Ts

∑

e∈Et:e 6∈Ω(t,o(t))

ytb(e)γ
t
e

)

+max
r∈Λr

∑

e∈E

∑

s∈S

∑

t∈Ts:e∈Et

rte(γ
t
e −

∑

e′∈Ω(t,d(e))

γt
e′) (7)

= max
(x,y)∈Λ(x,y)

∑

s∈S

(

Us(xs)−
∑

t∈Ts

yto(t)
∑

e∈Ω(t,o(t))

γt
e

)

+max
r∈Λr

∑

e∈E

∑

s∈S

∑

t∈Ts:e∈Et

rte(γ
t
e −

∑

e′∈Ω(t,d(e))

γt
e′),

where the second equality holds because the constraints of
the maximization can be separated over the three terms, and
the last equality holds because the maximum of the second

term in (7) is always zero. Then, the dual problem is as
follows.

min D(γ)

s.t. γt
e ≥ 0, ∀t ∈ T, ∀e ∈ Et.

Following the standard subgradient method [15], we have
a subgradient algorithm as follows.

(x(k), y(k), r(k)) = arg max
(x,y)∈Λ(x,y),r∈Λr

L(x, y, r; γ(k)),

(8)

γt
e(k + 1) = [γt

e(k)− δ(rte(k)− rtp(t,e)(k)− ytb(e)(k))]
+,

∀t ∈ T, ∀e ∈ Et, (9)

whereδ > 0 is a step size.
Let qte(k) = (1/δ)γt

e(k), which represents a virtual queue
size at link e for tree t at time slot k. Let q(k) be the
vector (qte(k))t∈T,e∈Et

. Then, we can rewrite the algorithm
as follows.

• Session and tree rate control: At each time slotk,
sessions solves the following optimization problem and
assigns an optimal solution toxs(k) and yt

o(t)(k) for
t ∈ Ts.

max
1

δ
Us(xs)−

∑

t∈Ts

yto(t)
∑

e∈Ω(t,o(t))

qte(k) (10)

s.t.
∑

t∈Ts

yto(t) = xs,

0 ≤ xs ≤ Xmax,

yto(t) ≥ 0, ∀t ∈ Ts.

• Link scheduling: At each time slotk, each link e
solves the following optimization problem and assigns
an optimal solution torte(k) for treest such thate ∈ Et.

max
∑

t:e∈Et

rte(q
t
e(k)−

∑

e′∈Ω(t,d(e))

qte′(k)) (11)

s.t.
∑

t:e∈Et

rte ≤ ce,

rte ≥ 0, ∀t : e ∈ Et.

• Virtual queue update: At each time slotk, each linke
updates the virtual queues for treest such thate ∈ Et

as follows:

qte(k + 1) = [qte(k)− rte(k) + rtp(t,e)(k) + ytb(e)(k)]
+.

(12)

The subproblems (10) and (11) can be easily solved. First,
we can solve subproblem (10) as follows. Lett∗s(k) be a tree
with the minimum total queue backlog at the source for the
outgoing links on the tree:

t∗s(k) ∈ arg min
t∈Ts

∑

e∈Ω(t,o(t))

qte(k).

If there are more than one such trees, we pick one of
them arbitrarily but deterministically. Then, we considerthe



following expression:

ζs(xs) ,
1

δ
U ′
s(xs)−

∑

e∈Ω(t∗s(k),o(t
∗

s(k)))

q
t∗s(k)
e (k).

If there exists xs on [0, Xmax] satisfying the equality
ζs(xs) = 0, let xs(k) denote it. Otherwise, we setxs(k)
as follows:

xs(k) =

{

Xmax, if ζs(xs) > 0 for all xs ∈ [0, Xmax],
0, otherwise.

Then, for allt ∈ Ts, we setyt
o(t) to be

yto(t)(k) =

{

xs(k), if t = t∗s(k),
0, otherwise.

Note that sinceU ′
s may not be one-to-one,xs(k) can oscillate

over time even ifqte(k) stabilizes. Once sources determines
its session ratexs(k) and treet∗s(k), it pushesxs(k) amount
of data from its reservoir to the outgoing links at the root of
the selected tree. To summarize, sources selects only one
tree that has the minimum total queue backlog at the source
for the outgoing links on the tree. Then, it sendsxs amount
of data onto the selected tree.

Subproblem (11) can be solved as follows. First, each link
e finds the tree with the maximum differential backlog,

β∗
e (k) , max

t:e∈Et

{qte(k)−
∑

e′∈Ω(t,d(e))

qte′(k)}. (13)

If β∗
e (k) ≥ 0, then letτ∗e (k) be the tree that solves (13) with

tie broken deterministically. Ifβ∗
e (k) < 0, then we setτ∗e (k)

to be null. Next, linke assignsrte(k) for each treet on link
e as follows:

rte(k) =

{

ce, if t = τ∗e (k),
0, otherwise.

If τ∗e (k) is null, all rte(k) at link e are assigned zero.
After link e determines the treeτ∗e (k) which uses the link

capacity exclusively, the tail node of the link transmitsce
amount of data if it has sufficient data in the (real) queue.
Otherwise, it transmits only the data in the queue and does
not use the remaining link capacity.2 Then, the receiving
node duplicates the received data into the queues of the child
links of link e on the tree.

It is not difficult to check that at each time slotk, the above
algorithm finds a solution that maximizes the LagrangianL
given the dual variablesδq(k). This property is important in
the later performance analysis.

The parameterδ can be used to adjust the performance
bound. Rewriting the algorithm from (8)-(9) into (10)-(12)
has the benefit that only the sources need to adjustδ if the
performance bound needs to be changed.

In a real implementation, each source node performs the
session and tree rate allocation and each node performs the
link scheduling and virtual queue updates for its outgoing
links. They exchange the virtual queue length of their outgo-
ing links with their neighbors at each time slot. Furthermore,

2In the analysis of real queue boundedness, we need to assume that the
remaining link capacity is not used.

since the total number of trees is reasonably small, each
node can keep the tree topology information. Therefore, each
packet only needs to carry its tree identifier.

IV. L ONG-TIME AVERAGE PERFORMANCEANALYSIS

We show in this section that with the algorithm (10)-
(12), the achieved utility can be arbitrarily close to the
optimum and the virtual queue sizes are bounded in the
long-time average sense. The analysis follows the Lyapunov
optimization technique in [7], [9].

DefineY to be

Y , {y|∃(x, r) such that(x, y, r) is feasible toP.}.
Let Y be the largest admitted rate onytn such that the

vectorysym , (Y )t∈T,n∈Vt
, whose entries are allY ’s, is in

Y. That is,ysym is obtained by pushing the same rates as
much as possible not only into the root nodes of the trees
but also into all other non-leaf nodes of the trees.

We consider the followingǫ-tightened problemP(ǫ).

P(ǫ) : max
∑

s∈S

Us(x̄s)

s.t. r̄te − r̄tp(t,e) − ȳtb(e) ≥ ǫ, ∀t ∈ T, ∀e ∈ Et,

and the constraints (2) - (6),

where0 < ǫ < Y . ProblemP(ǫ) is well defined for allǫ
such that0 < ǫ < Y . Sinceysym is in Y, (Y − ǫ)t∈T,n∈Vt

is a part of a feasible solution to problemP(ǫ). Therefore,
we can always find a feasible solution for allǫ such that
0 < ǫ < Y .

The above problem formulation is obtained by tightening
the constraints in (1) of problemP. Such tightening can be
considered as, for every tree, pushing additionalǫ flow into
every non-leaf node on the tree.

DefineΛ(ǫ) andY(ǫ) to be

Λ(ǫ) , {(x, y, r)|(x, y, r) is feasible toP(ǫ).},
Y(ǫ) , {y|∃(x, r) such that(x, y, r) is feasible toP(ǫ).},

respectively, where0 < ǫ < Y . It is easy to see thatΛ(ǫ)
andY(ǫ) are subsets ofΛ andY, respectively. That is, any
feasible solution of problemP(ǫ) is feasible to problemP.

Let (x∗, y∗, r∗) and(x∗(ǫ), y∗(ǫ), r∗(ǫ)) be some optimal
solutions of problemP and P(ǫ), respectively. Note that
(x∗(ǫ), y∗(ǫ), r∗(ǫ)) is feasible to problemP.
Remark: The optimal solution of theǫ-tightened problem is
used in the analysis. To get a proper performance bound, it
is important to decide which constraints are tightened. Here,
we tighten the constraints that were relaxed when we derived
the algorithm. It allows us to easily associateǫ with each of
the virtual queues, which is crucial to get the virtual queue
size bound.

Define Umax to be
∑

s∈S max0≤xs≤Xmax
Us(xs). Note

thatUmax is well defined. Letf∗ andf∗(ǫ) be the optimal
objective values of problemP andP(ǫ), respectively. Then,
we have the following lemma.

Lemma 1:

f∗(ǫ) → f∗, as ǫ → 0.



Proof: The proof is omitted for brevity.
Let

∑

s,t,e(·) be the abbreviated notation of
∑

s∈S

∑

t∈Ts

∑

e∈Et
(·). Define the Lyapunov function

V (k) and the Lyapunov drift∆(k) as follows:

V (k) ,
∑

s,t,e

(qte(k))
2, ∆(k) , V (k + 1)− V (k).

Then, we can get a bound for the Lyapunov drift as
follows.

Lemma 2:For any finiteδ > 0 and 0 < ǫ < Y , there
exists a constantB such that for all time slotst and all
virtual queue sizesq(k), the Lyapunov drift satisfies

∆(k)− 2

δ

∑

s∈S

Us(xs(k)) ≤ B − 2

δ
f∗(ǫ)− 2ǫ

∑

s,t,e

qte(k).

(14)
Proof: For brevity, we only give a sketch of the proof.

By squaring (12) and followed by simple manipulation, we
have

(qte)
2(k + 1)− (qte)

2(k)

≤ (rte(k)− rtp(t,e)(k)− ytb(e)(k))
2

− 2qte(k)(r
t
e(k)− rtp(t,e)(k)− ytb(e)(k)).

Summing the inequality over allt ∈ T and alle ∈ Et and
adding the term−(2/δ)

∑

s∈S Us(xs(k)) to the both sides
of the inequality, we have

∆(k)− 2

δ

∑

s∈S

Us(xs(k))

≤ B − 2
∑

s∈S

(1

δ
Us(xs(k))−

∑

t∈Ts

∑

e∈Et

ytb(e)(k)q
t
e(k)

)

− 2
∑

s,t,e

qte(k)
(

rte(k)− rtp(t,e)(k)
)

, (15)

whereB ,
∑

s,t,e(cmax +Xmax)
2.

Since the algorithm (10)-(11) greedily minimizes the right
hand side of (15), and(x∗(ǫ), y∗(ǫ), r∗(ǫ)) is feasible to
problemP andP(ǫ), after a few simple manipulations, we
get (14).

Using the above lemma, we can derive the following
theorem.

Theorem 3:For any parameterδ > 0, the algorithm (10)-
(12) satisfies the following performance bounds.

lim inf
k→∞

∑

s∈S

Us(x̄s(k)) ≥ f∗ − Bδ

2
, (16)

lim sup
k→∞

1

k

k−1
∑

κ=0

∑

s,t,e

qte(κ) ≤
B + 2Umax/δ

2Y
. (17)

Proof: For brevity, we only give a sketch of the proof.
From (14), summing the inequality overk ∈ {0, 1, ...,K−1},
we get

V (K)− V (0)− 2

δ

K−1
∑

κ=0

∑

s∈S

Us(xs(κ))

≤ BK − 2K

δ
f∗(ǫ)− 2ǫ

K−1
∑

κ=0

∑

s,t,e

qte(κ). (18)

Using the fact that removing the termsV (K) and
−2ǫ

∑K−1
κ=0

∑

s,t,e q
t
e(κ) preserves the inequality, rearrang-

ing (18), and taking thelim inf asK → ∞, we get

lim inf
K→∞

1

K

K−1
∑

κ=0

∑

s∈S

Us(xs(κ)) ≥ f∗(ǫ)− δB

2
.

Using Jensen’s inequality and lettingǫ → 0, we get (16).
On the other hand, from (18), using the definition ofUmax

and the fact that removing the termsV (K) and−2Kf∗(ǫ)/δ
preserves the inequality, rearranging (18), and taking the
lim sup asK → ∞, we get

lim sup
k→∞

1

k

k−1
∑

κ=0

∑

s,t,e

qte(κ) ≤
B + 2Umax/δ

2ǫ
.

Letting ǫ → Y , we get (17).

Theorem 3 implies that the long-time average of the
solution given by the algorithm can be arbitrarily close
to the optimal solution of problemP by choosingδ to
be arbitrarily small. However, the bound on the long-time
average of the virtual queue sizes increases asδ decreases.
Therefore, the parameterδ can be used as a knob to tradeoff
the optimization performance and virtual queue size bounds.

Note that the boundedness of the virtual queue sizes does
not imply that the algorithm stabilizes the network. To claim
that, we have to show that the real queue sizes are bounded,
which we will do in Section V.

V. FURTHER RESULTS ONQUEUE BOUNDEDNESS

In this section, we show stronger results on the bounded-
ness of the queues. We show that the virtual and real queue
sizes at every time slot are bounded above, respectively.

A. Dual Optimality and Boundedness of Virtual Queues

The boundedness of the virtual queues can be proven
from the dual optimality of our algorithm using the convex
optimization techniques in [14], [15].

Let J t
e(y, r) , rte−rt

p(t,e)−yt
b(e) andJ(y, r) be the vector

(J t
e(y, r))t∈T,e∈Et

. Sincex, y andr are bounded, there exists
a constantMJ < ∞ such that

MJ ≥ max
(x,y)∈Λ(x,y),r∈Λr

‖J(y, r)‖2.

Let Γ∗ , {γ∗ ≥ 0|D(γ∗) = minγ≥0 D(γ)} be the set of
optimal dual solutions of problemP.

Lemma 4:Γ∗ is non-empty, closed and bounded.
Proof: The proof is omitted for brevity.

For finite η > 0 andγ∗ ∈ Γ∗, let Γ(η) , {γ ≥ 0|D(γ) ≤
D(γ∗) + η}. Note thatΓ(η) is bounded.

Now, we are ready to show that the scaled virtual queue
vectorsδq(k) can be arbitrarily close toΓ∗ by choosing small
enoughδ > 0. Let d(γ,Γ∗) , minγ∗∈Γ∗ ‖γ − γ∗‖ be the
distance betweenγ and the nearest optimal solution of the
dual. For finiteη > 0, let ξ(η) , maxγ∈Γ(η) d(γ,Γ

∗) + η.
Lemma 5:For any ǫ > 0, there existδ > 0 and a

sufficiently largeK0 < ∞ such that, with any finite initial
feasibleq(0), for all k ≥ K0, d(δq(k),Γ∗) < ǫ.



Proof: For brevity, we only give a sketch of the proof.
It is similar to the proof of Proposition 5 in [14]. The
vector J(y(k), r(k)) is a subgradient ofD at δq(k) (see
[15], page 731). Fixη > 0 and pick δ such thatδ ≤
min{η/MJ , η/

√
MJ}. Then, there exists a timeK0 such

that d(δq(k),Γ∗) ≤ ξ(η) for all k ≥ K0. Sinceξ(η) → 0
as η → 0, by picking η > 0 sufficiently small, we have
ξ(η) < ǫ.

In the next lemma, we show that the virtual queue backlogs
at every time slot are bounded above in our algorithm.

Lemma 6:For any finiteδ > 0, there exists a finiteMq >
0 such that, for every linke and treet, the virtual queue size

qte(k) < Mq,

for all time slotsk.
Proof: For brevity, we only give a sketch of the

proof. Pick any γ∗ ∈ Γ∗. Given a finite δ > 0,
we chooseη such thatη = max{δMJ , δ

√
MJ}. Since

δ ≤ min{η/MJ , η/
√
MJ}, by the same argument used in

Lemma 5, there existsK0 such thatd(δq(k), γ∗) ≤ ξ(η).
Then, by the boundedness ofΓ∗, supk ‖δq(k)‖ < ∞. Since
δ > 0, supk ‖q(k)‖ < ∞.

B. Boundedness of Real Queues

To argue that the network is stabilized with the algorithm,
we need to show that the real queue sizes are bounded. In
[9], [18], the authors show the stability of their algorithms
by claiming that the long-time average of the real queue
sizes are bounded. In this section, we show that with our
algorithm, the real queue sizes at every time slot are bounded,
which is a stronger result.

Let Qt
e(k) be the real queue size at linke for tree t at

time slot k and Q(k) be the vector(Qt
e(k))t∈T,e∈Et

. The
algorithm (10)-(12) satisfies the following real queue bound.

Theorem 7:There exists a finiteMq > 0 such that, for
every link e and treet, the real queue size

Qt
e(k) < Mq,

for all time slotsk.
Proof: Let Rt

e(k) be the amount of real traffic trans-
mitted at link e on treet at time slotk and R(k) be the
vector (Rt

e(k))t∈T,e∈Et
.

Assume that all the real and virtual queues are empty at
time k = 0. Applying Loynes’ formula, we have

Qt
e(k) = max

0≤k′≤k

k
∑

u=k′

(

Rt
p(t,e)(u) + ytb(e)(u)− rte(u)

)

≤ max
0≤k′≤k

k
∑

u=k′

(

rtp(t,e)(u) + ytb(e)(u)− rte(u)
)

= qte(k + 1),

where the inequality holds becauseRt
e(k) ≤ rte(k) for all

time slotsk.
Since by Lemma 6,qte(k) < Mq for all k, Qt

e(k) is also
bounded above byMq for everyk.

VI. CONCLUSION

In this paper, we have presented a backpressure algorithm
for the utility maximization problem for multi-tree multicast.
Compared with previous algorithms, our algorithm is not
only distributed but local. It is not straightforward to show
that our algorithm leads to both primal optimality and
network stability due to the assumption of general concave
utility functions and the fact that the algorithm relies on
virtual queue updates. We have shown that two sets of
analytical tools, the Lyapunov optimization technique and
the convex optimization techniques, can complement each
other and circumvent the difficulty.
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