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Abstract— The paper investigates theoretical issues in ap-
plying the universal swarming technique to efficient content
distribution. In a swarming session, a file is distributed toall
the receivers by having all the nodes in the session exchange
file chunks. By universal-swarming, not only all the nodes
in the session, but also some nodes outside the session may
participate in the chunk exchange to improve the distribution
performance. We present a universal swarming model where
the chunks are distributed along different Steiner trees rooted
at the source and covering all the receivers. We assume chunks
arrive dynamically at the sources and focus on finding stable
universal swarming algorithms. To achieve the throughput
region, universal swarming usually involves a tree-selection
subproblem of finding a min-cost Steiner tree, which is NP-
hard. We propose a universal swarming scheme that employs an
approximate tree-selection algorithm. We show that it achieves
network stability for a reduced throughput region, where the
reduction ratio is no more than the approximation ratio of
the tree-selection algorithm. We propose a second universal
swarming scheme that employs a randomized tree-selection
algorithm. It achieves the throughput region, but with a weaker
stability result.

I. I NTRODUCTION

The Internet is being used to transfer content on a more
and more massive scale. A recent innovation for efficient
content distribution is a technique known asswarming. In
a swarming session, the file to be distributed is broken into
many chunks at the original source, which are then spread
out across the peers. Subsequently, the peers exchange the
chunks with each other to speed up the distribution process.
Many different ways of swarming have been proposed, such
as FastReplica [1], Bullet [2], [3], Chunkcast [4], BitTorrent
[5], and CoBlitz [6].

The swarming technique was originally introduced by the
end-user communities for peer-to-peer (P2P) file sharing.
The subject of this paper is how to apply swarming to
infrastructure-based content distribution. Compared with the
dynamic end-user file-sharing situation, the infrastructure
networks and the content servers are relatively static (how-
ever, the traffic can still be dynamic). In this setting, it is
beneficial to view swarming as distribution over multiple
multicast trees. This view allows us to pose the question
of how to optimally distribute the content. (See [7].) Fur-
thermore, it is often easier to first develop sophisticated
algorithms under the static assumption, and then, adapt them
to practical situations. Hence, in this paper, swarming is
synonymous to distribution over multiple multicast trees.
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This paper concerns a class of improved swarming tech-
niques, known asuniversal swarming. We associate with
each file to be distributed asession, which consists of
the source of a file and the receivers who are interested
in downloading the file. In traditional swarming, chunk
exchange is restricted to the nodes of the session. However,
in universal swarming, multiple sessions are combined into a
single “super session” on a shared overlay network. Universal
swarming takes advantages of the heterogenous resource
capacities of different sessions, such as the source upload
bandwidth, receiver download bandwidth, or aggregate up-
load bandwidth, and allows the sessions to share each other’s
resources. The result is that the distribution efficiency ofthe
resource-poor sessions can improve greatly with negligible
impact on the resource-rich sessions (see [8]).

In universal swarming, if we focus on a particular file, not
only the source and all the receivers participate in the chunk
exchange process, some other nodes who are not interested in
the file may also participate. We call the latter out-of-session
nodes. To illustrate the essence of universal swarming, as
well as the main issues, consider the toy example in Fig. 1.
The numbers associated with the links are their capacities.
Let us consider a particular file for which the source is node
1 and the receivers are nodes 2 and 3. Node 4 is out of the
session. Let us focus on a fixed chunk and consider how it
can be distributed to the receivers. With some thoughts, it
can be seen that the chunk propagates on a tree rooted at the
source and covering both receivers. All possible distribution
trees are shown in Fig. 2. We notice that a distribution tree
may or may not include the out-of-session node, 4. Thus, a
distribution tree is aSteinertree rooted at the source covering
all the receivers; the out-of-session nodes (e.g., node 4) are
the Steiner nodes.

With this model of multiple multicast trees, one of the
main questions is how to assign the chunks to different
distribution trees so as to optimize certain performance
objective, such as maximizing the sum of the utility functions
of the sessions, or minimizing the distribution time of the
slowest session. This is arate allocation problemon the
multicast trees. One such question was addressed in [7] in
the context of non-universal swarming, where each session’s
multicast trees are spanning trees instead of Steiner trees.
For universal swarming, the question was addressed in [8].

This paper addresses thestability problem. The main
question is: Given a set of data rates from the sources
(which are possibly the solutions to the aforementioned rate
allocation problem), how do we get a universal swarming
algorithm so that the network queues will be stable? For



the example in Fig. 1, a source rate of 2 is the largest
distribution rate that can be supported by the network. When
the file chunks arrive at (or generated by) the source node
1 at a mean rate2 − 2ǫ, whereǫ > 0 is a small number,
we can place chunks on the first and the second trees in
Fig. 2 at a mean rate1 − ǫ each. For this example, the
solution actually stabilizes the network. But, this conclusion
requires technique conditions and is not generally true for
more complicated situations.
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Fig. 1. Node 1 sends the file to nodes 2 and 3.
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Fig. 2. All possible distribution trees for the example in Fig. 1.

Research on similar stability questions has been very
active, but generally, in the context of unicast setting (e.g.
[9]–[18]), possibly with multiple paths per connection. The
presence of multicast puts our problem in a class of its
own in that many earlier stable control algorithms, such as
the maximum backpressure-based algorithm [9], [11], and
techniques for stability analysis are not directly applicable.
The main reason is that, unlike unicast, the flow conservation
condition no longer holds under multicast.

Another salient aspect of the universal swarming prob-
lem is most related to the problem of link scheduling in
wireless networks subject to link interference constraints,
which has attracted much attention recently [10], [14], [16]–
[30]. In [10], Tassiulaset. al. showed that the maximum-
weight link schedule achieves (i.e., stabilizes) the entire
interior of the throughput region1, where the weights are
the queue size differences, or the backpressure. However,

1Subsequently, when we say an algorithm achieves or stabilizes a region,
we mean the interior of the region.

finding such a schedule is in general an NP-hard problem.
The universal swarming problem usually involves an NP-
hard subproblem in order to achieve the entire throughput
region, which is to find a minimum-cost Steiner tree. This
similarity makes many of the concerns and investigative
approaches in the wireless link scheduling problem relevant
to the universal swarming problem. In [16], [23], Linet.
al. showed that approximation algorithms for the maximum-
weight scheduling problem can be used to stabilize a portion
of the throughput region. Some researchers considered max-
imal scheduling algorithms and studied what their stability
regions are [17], [18], [27]–[30]. Tassiulas [19] proposed
a randomized scheduling algorithm that achieves the entire
throughput region.

In this paper, we develop a universal swarming scheme
that employs an approximation algorithm to the tree selection
(a.k.a. scheduling) problem, which achieves a rate region
equal to the throughput region reduced by a constant factor
γ, γ ≥ 1. We show thatγ is no more than the approximation
ratio of the tree scheduling algorithm. The scheme requires
network signaling and source traffic regulation. We proposea
second universal swarming scheme that utilizes a randomized
tree selection algorithm, which achieves the entire throughput
region, but with a weaker stability property. The difference
between our problem and the wireless scheduling problem is
substantial. We must consider multi-hop, multicast communi-
cations, whereas most of the papers on the wireless problem
are about unicast communication and many focus on single-
hop traffic. The difficulties with multi-hop communication
arise from the fact that the arrival processes to the internal
links are usually unknown.

The rest of the paper is organized as follows. The models
and the problem description are given in Section II. The first
universal swarming scheme and the analysis are presented
in Section III. The second scheme and the analysis are
presented in Section IV. The detailed proofs are omitted and
can be found in [31]. The conclusion is in Section V.

II. PROBLEM DESCRIPTION

We consider a time-slotted system where each time slot
has a duration of one time unit. Let the network be rep-
resented by a directed graphG = (V, E), where V is
the set of nodes andE is the set of links. For each link
e ∈ E, let ce denote its capacity, wherece > 0. For ease of
presentation but without loss of generality, we assume that
each session, which distributes a distinct file, has one source,
and hence, there is a one-to-one mapping between a session
and a source. LetS denote the set of sources (sessions); for
eachs ∈ S, let Vs ⊆ V be the set of receivers associated
with the source (session)S.

For each sources ∈ S, suppose unit-length packets (or
file chunks) arrive at the source according to a random
process, which will be distributed over the network to all
the receivers,Vs. The motivation for using a source model
with dynamic arrivals is that the content may not be a
static file or stored locally. The model is general enough
to cover realtime content, streaming video with time-varying



bandwidth, or non-locally stored static data. Even if the entire
file is static and stored at the source, this source model
can still be appropriate: One can assume the arrival process
is deterministic with a constant arrival rate. LetAs(k) be
the number of packet arrivals on time slotk. Let us make
the following assumption on the arrival processes{A(k)}
throughout the paper, unless mentioned otherwise. Additional
assumptions may be added as needed.

AS 1: For each sources ∈ S, E[As(k)] = λs, and
E[(As(k))2] < K1 for some0 < K1 < ∞, for all time
k. Furthermore, for every pair of sourcess and s′, the
covariance Cov(As(k), As′ (k)) < K2 for some0 < K2 <

∞, for all k.
Note that the second order statistics of{A(k)} have uniform
bounds. As discussed in Section I, for the static file case,λs

could be the solution of a rate allocation problem.
In this paper, we will present stable universal swarming

algorithms to distribute the packets to all the receivers. For
eachs ∈ S, the packets will be transmitted along various
multicast distribution trees rooted ats to the receiversVs.
An analog to this in the unicast case is data delivery using
multiple paths between the sender and the receiver.

We will take Neely’s definition of stability ( [14]; [32],
chapter 2) unless mentioned otherwise. For a single-queue
process{q(k)}, let us define the overflow function:

g(M) = lim sup
K→∞

1

K

K
∑

k=1

P{q(k) > M}. (1)

Definition 1: The single-queue process{q(k)} is stableif
g(M) → 0 as M → ∞. A network of queues is stable if
every queue is stable.
With this definition of network stability, it generally suffices
to show that a Lyapunov function of the queues has a neg-
ative drift when it becomes large enough. If with additional
assumptions, the network queues form an ergodic Markov
chain, the same drift condition implies the chain is positive
recurrent, or equivalently, has a stationary distribution.

A. Throughput Region

For each sources ∈ S, let the set of candidate distribution
trees be denoted byTs. Let T = ∪s∈STs. The trees can be
enumerated in an arbitrary order ast1, t2, · · · , t|T |, where
| · | denote the cardinality of a set. Throughout this paper, for
eachs ∈ S, Ts contains all possible distribution trees rooted
at the sources unless specified otherwise. Although|T | is
finite, it might be very large.

The throughput regionis defined as

Λ = {λ ≥ 0 : ∃α ≥ 0 such that
∑

t∈Ts

αt = 1, ∀s ∈ S

and
∑

s∈S

∑

{t∈Ts|e∈t}

αtλs ≤ ce, ∀e ∈ E}. (2)

Here,α represents how the traffic from the sources is split
among the distribution trees. Obviously,Λ contains the
stability region, i.e., allλ that can be stabilized by some
algorithms. This is so because, for any non-negative mean

rate vectorλ 6∈ Λ, no matter how the traffic is split among
the distribution trees, there exists a linke such that the total
arrival rate toe is strictly greater than its service rate. In
Section III, we will show the interior ofΛ is stabilizable.

We also define aγ-reduced throughput regionas 1
γ
Λ,

where γ ≥ 1. By saying that the arrival rate vectorλ is
strictly inside the region1

γ
Λ, we mean that there exist some

ǫ0 > 0 and a vectorα ≥ 0 such that
∑

t∈Ts

αt = 1, ∀s ∈ S

and
∑

s∈S

∑

{t∈Ts|e∈t} αtλs ≤ 1
γ
ce − ǫ0, ∀e ∈ E. This is

equivalent to

ce ≥ γ(ǫ0 +
∑

s∈S

∑

{t∈Ts|e∈t}

αtλs), ∀e ∈ E. (3)

Note that the region of rate vectors that are strictly inside
the region1

γ
Λ contains the interior of1

γ
Λ.

B. The Class of Algorithms: Time Sharing of Trees

Each source has at least two possible approaches to use the
multicast trees. In one approach, the traffic from each source
s may be split according to some weights(αt)t∈Ts

and
transmitted simultaneously over the trees on every time slot.
Alternatively, the distribution can be done by time-sharing
of the trees. The algorithms in this paper follow the time-
sharing approach. On each time slotk, the sources selects
one distribution tree from the setTs, denoted byts(k),
according to some tree-scheduling (tree-selection) scheme,
and transmits packets only over this tree on time slotk.
The time-sharing approach can emulate the first approach
in the sense that, when done properly, the fraction of time
each distribution tree is used over a long period of time can
approximate any weight vector(αt)t∈Ts

.
In addition to selecting the distribution treets(k) at each

time slot, an algorithm also needs to decide how many pack-
ets are released to the tree. We will present two algorithms
in the following sections. The key question is what portion
of the rate region is stabilizable by each algorithm.

III. S IGNALING , SOURCE TRAFFIC REGULATION AND

γ-APPROXIMATION M IN-COST TREE SCHEDULING

A. Signaling Approach

Stability analysis of a multi-hop network is often difficult
because the packets travel through the network hop-by-hop,
instead of being imposed directly to all links that they will
traverse. As a result, the arrival process to each internal link
can be difficult to describe. The frequently-used techniqueof
network signaling can be helpful. In our case, each sources

sends control signals to inform all the links on the currently
selected treets(k) the number of packets it wishes to transmit
over this tree by the end of time slotk. We can imagine each
signaling message carries that number of virtual packets with
it. We give the signaling messages the highest processing
priority at each node/link, and hence, they experience the
minimum delay. We assume that each signaling message
from a source arrives at each hop instantaneously.

Consider a particular time slotk and a particular internal
link e on the selected distribution tree. The real packets
issued by the source on time slotk will in general be delayed



or buffered at upstream hops and will not arrive at linke

until later. However, via signaling, linke knows how many
packets are transmitted by the source on time slotk. The
cumulative number of arrived real packets to each hop must
be no more than the cumulative number of arrived virtual
packets.

One question is how many virtual packets (real packets
as well) are to be released to the network on a time slot.
Intuitively, each sources can release all the packets arrived
during time slotk, i.e., As(k). However, the uncontrolled
randomness ofAs(k) causes difficulty in the stability analy-
sis, as we will see later. In our signaling-based algorithm,
each sources sets the number of virtual packets to be
released at a constant valueλs+ǫ1 on every time slotk. Here,
ǫ1 is a sufficiently small constant such that0 < |S|ǫ1 < ǫ0.
This guarantees the stability of the source regulators, as we
will see.

In the algorithm, each linke updates a virtual queue,
denoted byqe(k).

qe(k + 1) = [qe(k) +
∑

s∈S:e∈ts(k)

(λs + ǫ1) − ce]+. (4)

[·]+ is the projection operation onto the non-negative domain.
Tree scheduling is based on the virtual queues instead of the
real queues.

B. Source Traffic Regulation

Since at each time slot, for any sources, the number of
virtual packets signaled by the source isλs + ǫ1, the number
of real packets transmitted should be no more thanλs + ǫ1.
A regulator is placed at each sources to guarantee this.

A regulator is a traffic shaping device (its use is also
considered in [17]). All the packets arriving at sources first
enter a regulator queue, and will be released to the network
later in a controlled fashion. On each time slotk, let Ds(k)
denote the number of packets released from the regulator
to the distribution treets(k), and letps(k) be the regulator
queue size at sources. The evolution of the regulator queue
is given by

ps(k + 1) = ps(k) + As(k) − Ds(k), (5)

where

Ds(k) =

{

λs + ǫ1 if ps(k) ≥ λs + ǫ1;
ps(k) otherwise.

(6)

From (5) and (6), we see that at mostλs + ǫ1 real packets
are released on each time slot, provided the regulator has
sufficient packets, and this rate is slightly higher than the
mean packet arrival rate. This guarantees the stability of the
regulator, and we will address this in more details in the
stability analysis.

C. γ-Approximation Min-Cost Tree Scheduling

We can interpret the virtual queue sizeqe as the cost of
link e. Then, the cost of a treet is

∑

e∈t qe. We propose the
γ-approximation min-cost tree schedulingscheme: On each

time slot k and for each sources, the selected treets(k)
satisfies

∑

e∈ts(k)

qe(k) ≤ γ min
t∈Ts

∑

e∈t

qe(k), (7)

whereγ ≥ 1. If there are multiple trees satisfying (7), the
tie is broken arbitrarily.

The rationale for this tree-scheduling scheme is straight-
forward. Whenγ = 1, the tree-scheduling scheme solves the
min-cost Steiner tree problem, which is NP-hard. But, the
min-cost Steiner tree problem has approximation solutions,
which we can use. In [33], a family of approximation
algorithms for the directed Steiner tree problem is proposed,
which achieves anO(log2 k) approximation ratio in quasi-
polynomial time, wherek is the number of receivers. It will
be proven in the following stability analysis that, if we are
able to find the minimum-cost Steiner tree on each time slot,
we can stabilize the network for the interior of the entire
throughput region,Λ; if we adopt theγ-approximated min-
cost tree scheduling, we can stabilize the network for the
interior of 1

γ
Λ.

D. Stability Analysis

The analysis of stability is based on the drift analysis of
Lyapunov functions.

1) Stability of the Regulators:Define a Lyapunov function
of the regulator queuesp as

L1(p) =
∑

s∈S

p2
s. (8)

Lemma 1:There exists some positive constant0 < M1 <

∞ such that for every time slotk and the regulator backlog
vectorp(k), the Lyapunov drift satisfies

E[L1(p(k + 1)) − L1(p(k))|p(k)] ≤ −ǫ1
∑

s∈S

ps(k), (9)

if
∑

s∈S ps(k) ≥ M1

ǫ1
.

2) Stability of the Virtual Queues:Define a Lyapunov
function of the virtual queue backlog vectorq as

L2(q) =
∑

e∈E

q2
e . (10)

Let t(k) = (ts(k))s∈S be the vector of the chosen
distribution trees at timek. We allow t(k) to be a random
vector. For instance, this will be the case when there are
multiple trees satisfying (7) and the tie is broken randomly.

Lemma 2: If the mean arrival rate vectorλ is strictly in-
side the region1

γ
Λ, then, there exist some positive constants

0 < M2 < ∞ and ǫ for all sample paths of{t(k)}k such
that, for every time slotk and virtual queue backlog vector
q(k), the Lyapunov drift satisfies

L2(q(k + 1)) − L2(q(k)) ≤ M2 − 2ǫ
∑

e∈E

qe(k), (11)

whereǫ = γǫ0 − |S|ǫ1 > 0.



Hence, when
∑

e∈E qe(k) ≥ M2

ǫ
, the Lyapunov function has

a negative drift under all sample paths of{t(k)}k.

L2(q(k + 1)) − L2(q(k)) ≤ −ǫ
∑

e∈E

qe(k). (12)

Corollary 3: For each linke, there exists a sufficiently
large constantMe < ∞ such thatqe(k) ≤ Me.

Remark: The chosen deterministic arrival rates of the
virtual packets guarantee that the virtual queues are bounded.
This is an important fact for proving the stability of the real
queues. If the sources signal random arrival rates for the
virtual packets, the virtual queues can be stable but are not
guaranteed to be bounded.

3) Stability of the Real Queues:For convenience, let us
assume each real packet remembers its distribution tree. This
way, the nodes on the tree know when to duplicate the packet.
Moreover, each packet at any link also has an unambiguous
hop count, which is the hop count on its tree path from the
source to the current link. With this setup, we can assume
the following queueing discipline for the real queues.

AS 2: At each linke, a packet with a smaller hop count
has priority over any packet with a larger hop count.

First, we will show some properties of the real packet
arrival rates to the intermediate links. Define an indicator
function I(e, t), wheree is a link andt is a tree.

I(e, t) =

{

1 if e ∈ t;
0 otherwise.

Lemma 4:For any link e ∈ E, there exists a constant
0 < Me < ∞ such that for anyk0 andk with k0 ≤ k,

k
∑

u=k0

∑

s∈S

Ds(u)I(e, ts(u)) ≤ (k − k0 + 1)ce + Me. (13)

Let Qe(k) denote the real queue backlog of linke at time
slot k. We can show by induction that under the prioritized
queueing strategy in AS 2, the real queue backlogs are
bounded. The proof is adapted from [16].

Theorem 5:Under the additional assumption AS 2, if the
mean arrival rate vectorλ is strictly inside the region1

γ
Λ,

the real queue backlogs are bounded. I.e., there exists some
constant0 < M ′ < ∞ such that

Qe(k) ≤ M ′, ∀k, ∀e ∈ E. (14)
Theorem 6:Under the additional assumption AS 2, if the

mean arrival rate vectorλ is strictly inside the region1
γ
Λ, the

γ-approximation min-cost tree scheduling scheme stabilizes
the network. Furthermore, whenγ = 1, if the mean arrival
rate vectorλ is strictly inside the throughput regionΛ, the
min-cost tree scheduling scheme stabilizes the network.

IV. RANDOMIZED TREE SCHEDULING

Part of Theorem 6 states that the entire interior of the
throughput regionΛ can be stabilized, provided one can
solve the hard min-cost Steiner tree problem. If approxi-
mation algorithms are used for the Steiner tree problem,
Theorem 6 claims that a reduced rate region is stabilizable.
In this section, we will continue to cope with the hard Steiner
tree problem. Instead of approximation algorithms, we will

consider an algorithm that randomly samples the trees at each
time slot. Selecting trees by random sampling is attractive
in practice since the algorithms for doing this tend to be
simple and fast. Some practical systems such as BitTorrent
[5] already use variants of random sampling.

Our main concern is whether the tree-sampling approach
has any performance guarantee with respect to stability. We
conjecture it does. We will show important steps that may
eventually lead to the conclusion that, in contrast to the case
with approximation algorithms, the entire interior ofΛ is
stabilizable. The theoretical development about the algorithm
is in part based on [19].

A. Signaling

In this algorithm, the sources still signal the links about
the incoming traffic, but they are not regulated. Specifically,
the number of virtual packets released by sources on every
time slotk is As(k) instead ofλs + ǫ1. For eache ∈ E, the
evolution of the virtual queue,qe(k), is

qe(k + 1) = [qe(k) +
∑

s∈S:e∈ts(k)

As(k)− (ce − ǫ2)]+, (15)

where0 < ǫ2 < ǫ0. From (15), the virtual queue dynamic is
conservative since it does not use the full service capacity.
We will later see the reason in the stability analysis.

B. Randomized Tree Scheduling

Denote the min-cost tree for sources by τs(q) with respect
to the link cost vectorq. We have,

∑

e∈τs(q)

qe = min
t∈Ts

∑

e∈t

qe. (16)

If multiple min-cost trees exist, the tie is broken arbitrarily.
In this scheme, the sources use some randomized algo-

rithm to select trees, with the requirement that the algorithm
can find the min-cost trees with a positive probability. More
specifically, lett̂(k) = (t̂s(k))s∈S be the trees selected by
the randomized algorithm on time slotk. The following
condition is satisfied for someδ > 0,

P{
∑

e∈t̂s(k)

qe(k) =
∑

e∈τs(k)

qe(k), ∀s ∈ S} ≥ δ. (17)

We further require that the randomized tree-selection al-
gorithm always chooses a tree with a lower cost than the
previously selected tree, with respect to the current link cost
vector. Recall thatts(k) is the scheduled tree at timek. We
require that for any sources ∈ S,

ts(k) (18)

=

{

t̂s(k) if
∑

e∈t̂s(k) qe(k) ≤
∑

e∈ts(k−1) qe(k);

ts(k − 1) otherwise.

There are many possible randomized selection algorithms
that satisfy (17) and (18). For instance, one algorithm might
be to modify the current tree by randomly adding or deleting
edges subject to the tree requirement. The selection of the
edges can be biased toward lower-cost ones for addition and
higher-cost ones for deletion. In this paper, we will not dwell



on finding specific algorithms but will focus on the stability
issue of the whole algorithm class.

C. Stability Analysis

We will show that, if the mean arrival rate vectorλ
strictly inside the throughput regionΛ, the randomized tree-
scheduling scheme is able to stabilize all the virtual queues;
with additional assumptions, the cumulative arrival of thereal
packets by any time slot is strictly less than the accumulation
of the link service rate for every link.

1) Stability of the Virtual Queues:The virtual queue sizes
q(k) are considered as the link costs. Lett(k) be the vector
of chosen trees. Define a Lyapunov function ofx = (q, t):

L(x) = L1(x) + L2(x),

where

L1(x) =
∑

e∈E

q2
e , L2(x) = (

∑

s∈S

λs(
∑

e∈ts

qe −
∑

e∈τs(q)

qe))
2.

The proof for the following lemma parallels the develop-
ment in [19], although the details are different and technical.

Lemma 7: If the arrival rate vectorλ is strictly inside
the throughput regionΛ, there exist some positive constants
M < ∞ andǫ such that, ifL(x(k)) ≥ M ,

E[L(x(k + 1)) − L(x(k))|x(k)] ≤ −ǫ
√

L1(x(k)). (19)
Theorem 8:If the mean arrival rate vectorλ is strictly in-

side the throughput regionΛ, the randomized tree scheduling
scheme stabilizes the virtual queues.

2) Stability of the Real Queues:We have partial re-
sults about the stability of the real queues under additional
conditions. We assume the following assumption in this
subsection.

AS 3: The processes{As(k)}k for different s are inde-
pendent from each other. For eachs ∈ S, {As(k)}k is IID.
At every timek, there is a nonzero probability that no packet
arrives at the sources, i.e., P{As(k) = 0, ∀s ∈ S} > 0.

We will show that for any linke, its average traffic
intensity (load),ρe, satisfiesρe < 1, whereρe is the ratio of
the average packet arrival rate and link rate. First, stronger
stability conclusions can be said about the virtual queues.

Theorem 9:Suppose the mean arrival rate vectorλ is
strictly inside the throughput regionΛ, and assumptions AS
1 and AS 3 hold.

• The process{q(k), t(k)}∞k=0 is an aperiodic and irre-
ducible Markov chain with a stationary distribution.
Moreover, letq̂ be the virtual queues under the station-
ary distribution. Then,E[q̂e] < ∞.

• The strong law of large numbers holds: For each initial
condition, and for alle ∈ E,

lim
k→∞

∑k

u=0 qe(u)

k + 1
= E[q̂e], almost surely. (20)

• The mean ergodic theorem holds: For each initial con-
dition, and for alle ∈ E,

lim
k→∞

E[qe(k)] = E[q̂e]. (21)

Theorem 10:For any linke ∈ E,

lim sup
k→∞

1

k + 1

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u)) ≤ ce − ǫ2, (22)

lim sup
k→∞

E[
1

k + 1

k
∑

u=0

∑

s∈S

As(u)I(e, ts(u))] ≤ ce − ǫ2. (23)

Let ae(k) denote the number of packet arrivals at the real
queue of linke on any time slotk.

Corollary 11: For any link e ∈ E, the average traffic
intensity (or load)ρe < 1, whereρe is defined as

ρe = lim sup
k→∞

∑k

u=0 ae(u)

(k + 1)ce

.

Remark: The service rate of the virtual queue of linke,
which is ce − ǫ2, guaranteesρe < 1.

Under the randomized tree scheduling scheme, the virtual
queues are stable and the real traffic intensityρe < 1 for
any link e. But, we do not know whether the real queues are
stable or not [13]. We expect that in practice, they are almost
always stable. We suspect that under more assumptions on
the traffic arrival process and the queueing discipline for the
real queues, the real queues can be proven to be stable.

V. CONCLUSIONS

We study the problem of how to schedule the distribution
of the packets under the dynamic arrival scenario. In order
to take advantage of the universal swarming technique, the
packets are distributed along multiple multicast trees. To
achieve the throughput region, we encounter a min-cost
Steiner tree problem, which is NP-hard. Multi-hop traffic
is another difficulty for finding stable universal swarming
algorithms. We propose aγ-approximation min-cost tree
scheduling algorithm with network signaling and source
regulators. It guarantees network stability in a reduced
throughput region, where the reduction ratio is no more than
the approximation ratio of the algorithm for the min-cost tree
problem. We further develop a randomized tree-scheduling
algorithm with network signaling. It achieves the throughput
region and stabilizes the virtual queues. Moreover, the av-
erage traffic intensity at each link is strictly less than one.
However, whether or not the real queues are stable remains
an open question.
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