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Abstract— The paper addresses the problem of massive con-
tent distribution in a network where multiple sessions coexist. In
more traditional approaches, the sessions form separate overlay
networks and operate independently from each other. In this
case, some sessions may suffer from insufficient resources (e.g.,
aggregate upload bandwidth) even though other sessions have
excessive resources. To cope with this problem, we considerthe
universal swarming approach, which allows multiple sessions
to cooperate with each other by forming a shared overlay
network. We formulate the problem of finding the optimal
resource allocation to maximize the sum of the session utilities
under the network capacity constraints. The solution turnsout
to be optimal sharing of multiple minimum-cost multicast trees.
We present a subgradient algorithm and prove that, although
the algorithm uses a single multicast tree per session at each
iteration and hence does not converge in the conventional sense,
it converges to the optimal solution in the time-average sense.
The solution involves an NP-hard subproblem of finding a
minimum-cost Steiner tree. We cope with this difficulty by
using a column generation method, which reduces the number
of Steiner-tree computations. Furthermore, we allow the use of
approximate solutions to the Steiner-tree subproblem. We show
that the approximation ratio to the overall problem turns out to
be no more than that to the Steiner-tree subproblem. Simulation
results demonstrate that universal swarming improves the
performance of resource-poor sessions with negligible impact
to resource-rich sessions.

I. I NTRODUCTION

The Internet is being applied to transfer content on a more
and more massive scale. While many content distribution
techniques have been introduced, most of the recently in-
troductions are based on theswarming technique, such as
FastReplica [1], Bullet [2], [3], Chunkcast [4], BitTorrent
[5], and CoBlitz [6]. In a swarming session, the file to be
distributed is broken into many chunks at the source node,
which are then spread out to the receivers; the receivers
will then help each other with the retrieval of the missing
chunks. By taking advantage of the resources of the receivers,
swarming dramatically improves the distribution efficiency
(e.g., average downloading rate, completion time) compared
to the traditional client-server-based approach.

The swarming technique was originally created by the
end-user communities for peer-to-peer (P2P) file sharing.
The subject of this paper is how to apply swarming to
infrastructure-based content distribution and make the distri-
bution more efficient. Compared with the dynamic end-user
file-sharing situation, infrastructure networks and content
servers are much more stable. In this setting, we will see that
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it is beneficial to view swarming as distribution over multiple
multicast trees. This view allows us to pose the question of
how to optimally distribute the content. (See [7].)

The specific problem addressed in this paper is how to
conduct content distribution more efficiently in a network
where multiple distribution sessions coexist. A distribution
session consists of a file to be distributed, one or more
sources and all the nodes who wish to receive the file, i.e., the
receivers. Different sessions may have heterogenous resource
capacities, such as the source upload bandwidth, receiver
download bandwidth, or aggregate upload bandwidth. For
instance, there may exist some sessions with excessive aggre-
gate upload bandwidth because their throughput bottleneck
is at the source upload bandwidth, the receiver download
bandwidth, or the internal network; at the same time, there
may exist some other sessions whose throughput bottleneck
is at their aggregate upload bandwidth. In the traditional
swarming approach, the sessions operate independently by
each forming a separate overlay network; this will be called
separate swarming, which does not provide the opportunity
for the resource-poor sessions to use the surplus resourcesof
the resource-rich sessions. However, if we conductuniversal
swarming, that is, we combine multiple sessions together into
a single “super session” on a shared overlay network and
allow them to share each other’s resources, the distribution
efficiency of the resource-poor sessions can improve greatly
with negligible impact on the resource-rich sessions. The
paper examines algorithms and theoretical issues related to
universal swarming.

We first need to establish the equivalence of swarming and
distribution over multiple multicast trees. More details are
discussed in [7]. Consider following the distribution paths of
each individual file chunk. With some thought, it can be seen
that the chunk is distributed over a tree rooted at the source
and covering all the receivers of the file.1 Since the chunks
travel down different trees, the distribution of each file
involves multiple multicast trees. In universal swarming,a
distribution tree not only includes all the receivers interested
in downloading the file but may also contain nodes that are
not interested in the file; the latter will be calledout-of-
session nodes. Thus, each distribution tree for a session is a
Steiner tree rooted at the source where all the receivers are
terminal nodes and the out-of-session nodes on the tree are
Steiner nodes.

With the tree-based model, the optimal distribution prob-

1For ease of discussion, we assume that each file has a single source.
This is without loss of generality.



lem can be formulated as finding an optimal rate allocation
on the multiple multicast trees so that it achieves the optimal
performance objective. A version of this problem was ad-
dressed in [7] in the context of separate swarming. The rate-
allocation problem in universal swarming, which this paper
concerns, is substantially more difficult. The main reason
is that, by the optimality condition, an optimal solution
typically uses only the minimum-cost trees to distribute the
file chunks. Hence, an optimal universal swarming algo-
rithm usually involves an NP-hard subproblem of finding
a minimum-cost (min-cost) Steiner tree. How to cope with
this issue is one of the main themes in this paper.

We present two solution approaches, which can be used
in combination. First, we introduce into our rate-allocation
algorithm a column generation method, which can reduce
the number of times the min-cost Steiner-tree is computed.
Second, we allow the use of approximate solutions to the
Steiner-tree subproblem. Some approximate solutions to the
Steiner-tree problem in directed graphs can be found in [8]–
[10]. Importantly, we show that the approximation ratio to
the overall rate-allocation problem turns out to be no more
than that to the Steiner-tree subproblem.

The overall rate-allocation algorithm that we will present
is a subgradient algorithm. It has the characteristic of as-
signing positive rate to a single multicast tree per sessionat
each iteration; the rate assigned to the tree is computed based
on the link prices at the iteration. We can show that even
though the assigned rates in each iteration usually exceed the
capacities of some links, the time-average rates satisfy the
link capacity constraints, and eventually the rate allocation to
each session converges to the optimum (provided the Steiner-
tree subproblem is solved optimally.) It is worth pointing out
that other optimization algorithms may also be used here
instead of the subgradient algorithm.

We now briefly discuss additional related work. A heuristic
centralized algorithm for the multicast tree packing problem
is proposed in [11]. Jansen et. al. present a centralized
approximation algorithm for the multicast congestion control
problem in [12]. [13]–[15] apply the network coding tech-
nique to achieve the multicast capacity; part of their solution
techniques is similar to ours. A survey of optimization
problems in multicast routing can be found in [16]. [17]–[19]
model and analyze the peer-assisted file distribution system.
The multipath routing problem has been studied in [20]–[23].

The paper is organized as follows. The formal problem
description is given in Section II. The subgradient algorithm
and its convergence results are given in Section III. In Section
IV, we present the column generation approach, combine it
with the subgradient algorithm, and study the performance
bound when approximation algorithms are applied to the
min-cost tree subproblem. For brevity, the proofs are omitted,
which can be found in an extended version of this paper
[24]. We show some simulation results about our approach
in Section V. The conclusion is drawn in Section VI.

II. PROBLEM DESCRIPTION

Let the network be represented by a directed graphG =
(V, E), whereV is the set of nodes andE is the set of links.
For each linke ∈ E, let ce be its capacity, wherece > 0.
A multicast session is associated with a file and consists
of the source node and all the receivers of the file. Lets

denote a session or the source of a session interchangeably.
In a sessions, the data traffic is routed along multiple
multicast trees, each rooted at the sources and covering all
the receivers. A multicast tree is aSteiner tree; it may contain
nodes not in the session, which are called Steiner nodes. Let
the set of all allowed multicast trees for sessions be denoted
by Ts. Throughout the paper, we assumeTs contains all
possible multicast trees unless specified otherwise. LetS be
the set of all multicast sessions, and letT = ∪s∈STs. Then,
T is the collection of all multicast trees for all sessions.
The multicast trees can be indexed in an arbitrary order as
t1, t2, · · · , t|T |, where| · | is the cardinality of a set. Though
|T | is finite, it is usually very large. Letxs be the flow rate
of sessions ∈ S andyt be the flow rate of a multicast tree
t. We havexs =

∑

t∈Ts
yt.

Each sessions ∈ S is associated with a utility function
Us(xs), 0 ≤ ms ≤ xs ≤ Ms. The assumption on the utility
functions is, for everys ∈ S,

• A1: Us is well-defined (real-valued), non-decreasing,
strictly concave on[ms, Ms], and twice continuously
differentiable on(ms, Ms).

The problem is to find the optimal resource (i.e., session
rate and multicast-tree rate) allocation to maximize the sum
of session utilities under the capacity constraints and session
rate constraints. We call the optimization problem the master
problem (MP), which is as follows.

MP: max f(x, y) =
∑

s∈S Us(xs) (1)

s.t. xs =
∑

t∈Ts

yt, ∀s ∈ S
∑

t∈T :e∈t yt ≤ ce, ∀e ∈ E (2)

ms ≤ xs ≤ Ms, ∀s ∈ S

yt ≥ 0, ∀t ∈ T.

We make an assumption about the MP, which is almost
always satisfied in practice.

• A2: There exists a feasible solution(x̄, ȳ) such that
ms ≤ x̄s ≤ Ms for every sessions ∈ S, f(x̄, ȳ) > −∞
and (2) holds with strict inequality at(x̄, ȳ).

Note thatf(x, y) is strictly concave onx, but linear ony.
Let λe be the Lagrangian multiplier associated with the

constraint (2). The Lagrangian function of (1) is

L(x, y, λ) =
∑

s∈S

Us(xs) +
∑

e∈E

λe(ce −
∑

t∈T :e∈t

yt)

=
∑

s∈S

(Us(xs) −
∑

t∈Ts

yt

∑

e∈t

λe) +
∑

e∈E

λece. (3)



The dual function is

θ(λ) = max L(x, y, λ) (4)

s.t. xs =
∑

t∈Ts
yt, ∀s ∈ S

ms ≤ xs ≤ Ms, ∀s ∈ S

yt ≥ 0, ∀t ∈ T.

Now the dual problem of (1) is

Dual: min θ(λ) (5)

s.t. λ ≥ 0.

III. A D ISTRIBUTED ALGORITHM

In this section, we illustrate how the problem MP in (1)
can be solved by a distributed subgradient algorithm. In
Section IV, we will combine this algorithm with a column
generation method and derive a family of algorithms.

A. Subgradient Algorithm

The dual problem (5) can be solved by a standard subgra-
dient method as in Algorithm 1, whereδe(k) is a positive
scalar step size,[·]+ and [·]Ms

ms
denote the projection onto

the non-negative domain and on the interval of[ms, Ms],
respectively [25] [26]. There are two step size rules:

• Rule I (Constant step size):δe(k) = δ > 0, for all time
k ≥ K for some finiteK.

• Rule II (Diminishing step size):δe(k) ≤ δe(k − 1) for
all time k ≥ K, for some finiteK; limk→∞ δe(k) = 0;
and limk→∞

∑k
u=0 δe(u) = ∞.

At the update (9) and (10) in Algorithm 1, we need to
compute a min-cost Steiner tree. Under any fixed dual cost
vector λ ≥ 0 and for any sessions ∈ S, let us denote a
min-cost Steiner tree by

t(s, λ) = argmint∈Ts
{
∑

e∈t

λe}, (6)

where a tie is broken arbitrarily. Because (6) is an optimiza-
tion problem over all allowed trees, we call (6) aglobal
min-cost tree problem, and the achieved minimum cost the
global minimum tree cost. We denote this global minimum
tree cost under a fixedλ ≥ 0 by

γ(s, λ) =
∑

e∈t(s,λ)

λe. (7)

Algorithm 1 Subgradient Algorithm

λe(k + 1) = [λe(k) − δe(k)(ce −
∑

t∈T :e∈t

yt(k))]+, ∀e ∈ E

(8)

xs(k + 1) = [(U ′
s)

−1(γ(s, λ(k + 1)))]Ms

ms
, ∀s ∈ S (9)

yt(k + 1) =

{

xs(k + 1) if t = t(s, λ(k + 1));
0 otherwise,

∀t ∈ T.

(10)

Remark: Algorithm 1 is a distributed algorithm. In order to
compute the tree cost, each linke can independently compute
its dual costλe based on the local aggregate rate passing
through the link. Then, the tree cost can be accumulated by
the sources based on the link cost values along the tree.
We will address the issue of finding the min-cost tree in
Section IV, which is an NP-hard problem. Other than that,
the subgradient algorithm can be completely decentralized.

B. Convergence Results

Let Λ∗ = {λ ≥ 0 : θ(λ) = minλ≥0 θ(λ)} be the set of
optimal dual variables. Let(x∗, y∗, λ∗) denote one of the
optimal primal-dual solutions. Note thatx∗ is unique, buty∗

andλ∗ may not be.
Theorem 1: Let d(λ, Λ∗) = minλ∗∈Λ∗ ||λ− λ∗||. For any

ǫ > 0, under either the step size rule I or II, there exist a
sequence of step sizes{δ(k)} and a sufficiently largeK0 <

∞ such that, with any initialλ(0) ≥ 0, for all k ≥ K0,
d(λ(k), Λ∗) < ǫ and ||x(k) − x∗|| < ǫ [27].

We now discuss the convergence of the tree rate vector
y(k). The difficulty of proving the convergence ofy(k)
arises from the linearity of the Lagrangian function in (3)
on the vectory, and there is no standard result about the
convergence ofy(k). In fact, the tree rate vectory(k) does
not converge in the normal sense [28]. From the update (10),
we see that each source only uses one tree (i.e., assigns
a positive rate) each time and shifts flow from one tree
to another from time to time. We further notice that, by
pushing the session flow onto only one tree at a time, the link
capacity constraints are often violated. This means that the
rate allocation on each time slot may not even be feasible.
In Theorem 2, we will show that the tree rate converges in
the time-average sense.

Let H denote the|E| × |T | link-tree incidence matrix
where[H ]et = 1 if e ∈ t; otherwise,[H ]et = 0. Let A denote
the |S| × |T | session-tree incidence matrix where[A]st = 1
if t ∈ Ts; otherwise,[A]st = 0. For an arbitraryk0, where
k0 ≥ 0, let us define a sequence{ȳ(k)}k≥k0 , where

ȳ(k) =

∑k
u=k0

y(u)

k − k0 + 1
. (11)

For any ǫ > 0, let us defineY∗(ǫ) = {y ≥ 0 : Hy ≤
c, ||Ay − x∗|| ≤ ǫ}. When ǫ = 0, Y∗(ǫ) = Y∗ = {y ≥ 0 :
Hy ≤ c, Ay = x∗}, which is the set of optimal tree rates.

Theorem 2: For any ǫ > 0, with any initial λ(0) ≥ 0,
every limit point of the sequence{ȳ(k)} is in the setY∗(ǫ).
Remark: By Theorem 2, the time average of the tree rate
vectors,ȳ(k), converges to the optimal set. Theorem 2 holds
under both the step size rule I and II.

IV. COLUMN GENERATION METHOD WITH IMPERFECT

GLOBAL M IN-COST TREE SCHEDULING

In Section III, we develop a distributed algorithm to solve
the master problem (1), if the min-cost Steiner tree sub-
problem (6) can be solved precisely in a distributed fashion.
However, the subproblem (6) is NP-hard [29]. The column
generation method can be introduced to reduce the number



of times that the min-cost Steiner tree subproblem is invoked.
We also consider applying imperfect tree scheduling, which
are approximate or heuristic, sub-optimal solutions to the
Steiner tree subproblem. This column generation method
with approximation was first proposed in [30] to solve the
problem of wireless link scheduling.

A. Column Generation Method

The main idea of column generation is to start with a
subset of the tree setT and bring in new trees only when
needed. Consider a subset ofT containing only a small
number of trees, i.e.,T (q) = {ti ∈ T : ∀i = 1, · · · , q}.
We make sure thatT (q) contains at least one tree for each
sources. DenoteT

(q)
s the subset of trees inT (q) that are

rooted at sources, i.e., T (q)
s = {t : t ∈ T (q) ∩ Ts}. We can

formulate a restricted master problem (RMP) by replacingT

with T (q) in the MP (1), and this will be called theqth-RMP.
The value ofq is usually small and the trees in the set

T (q) can be examined one-by-one. The Lagrangian function,
the dual function, and the dual problem of theqth-RMP can
be formulated similarly as in (3), (4), and (5), where the set
T is replaced by the setT (q).

The qth-RMP is more restricted than the MP. Thus, any
optimal solution to theqth-RMP is feasible to the MP and
serves as a lower bound of the optimal value of the MP. By
gradually introducing more trees (columns) intoT (q) and
expanding the subsetT (q), we will improve the lower bound
of the MP [31]–[33].

B. Apply the Subgradient Algorithm to the RMP

The distributed subgradient algorithm can be used to solve
the qth-RMP. Here, we define the following problem of
finding the min-cost treet(q)(s, λ) under the link cost vector
λ ≥ 0.

t(q)(s, λ) = argmin
t∈T

(q)
s

{
∑

e∈t

λe}, (12)

The optimization is taken over the|T (q)
s | currently known

trees. The problem in (12) is called thelocal min-cost tree
problem, and the achieved minimum cost is called thelocal
minimum tree cost. We denote this local minimum cost under
λ ≥ 0 by

γ(q)(s, λ) =
∑

e∈t(q)(s,λ)

λe. (13)

If there is more than one tree achieving the local minimum
cost, the tie is broken arbitrarily.

C. Introduce One More Tree (Column)

Now the question is how to check whether the optimum
of the qth-RMP is optimal for the MP, and if not, how
to introduce a new column (tree). It turns out there is an
easy way to do both. Let(x̄(q), ȳ(q), λ̄(q)) denote one of the
optimal primal-dual solutions of theqth-RMP.

Lemma 3: (x̄(q), ȳ(q), λ̄(q)) is optimal to the MP if and
only if hs(γ(s, ȳ(q))) = hs(γ

(q)(s, ȳ(q))), for all s ∈ S,
where

hs(w) = Us([(U
′
s)

−1(w)]Ms

ms
) − [(U ′

s)
−1(w)]Ms

ms
· w, w ≥ 0.

From Lemma 3, a sufficient condition for optimality is
that the local minimum tree cost is equal to the global
minimum tree cost (i.e.,γ(s, λ̄(q)) = γ(q)(s, λ̄(q))), which
implieshs(γ(s, λ̄(q))) = hs(γ

(q)(s, λ̄(q)))). We state the rule
of introducing a new column in the following.

Fact 4: Any tree achieving a cost less than the local
minimum tree cost could enter the subsetT (q) in the RMP.
The tree achieving the global minimum tree cost is one
possible candidate and is often preferred [30].

D. Column Generation by Imperfect Global Tree scheduling

The min-cost Steiner tree subproblem (6) is NP-hard,
which makes the step of column generation very difficult. We
now consider approximation algorithms to this subproblem.
We may solve it approximately, and this is referred as
imperfect global tree scheduling.2

Suppose we are able to solve (6) with an approximation
ratio ρ ≥ 1, i.e.,

γ(s, λ) ≤ γρ(s, λ) ≤ ργ(s, λ), (14)

whereγρ(s, λ) is the cost of the tree given by the approxi-
mate solution.

1) A ρ-Approximation Approach: We develop a col-
umn generation method with imperfect global min-cost tree
scheduling as follows. Later, we will show a guaranteed
performance bound of this approach. Algorithm 2 in fact
describes a whole class of algorithms representing differ-
ent performance, convergence speed and complex tradeoffs.
More detailed comments about the property of this class of
algorithms can be found in [30].

Algorithm 2 Column Generation with Imperfect Global Tree
Scheduling

• Initialize: Start with a collection ofT (q) trees. (Assume
AssumptionA2 holds for theqth-RMP.)

• Step 1: Run the subgradient algorithm (8)-(10) for
several (a finite number) times on theqth-RMP.

• Step 2: For each sources, solve the global min-cost
tree problem (6)with an approximation ratio ρ under
the current dual costλ.

– If the tree corresponding to theapproximate solu-
tion of (6) is already in the current collection of
trees, do nothing;

– Otherwise, introduce this tree into the current col-
lection of trees, and increaseq by 1.

Go to Step1.

2) Convergence with Imperfect Global Tree Scheduling:
Theorem 5: There exists aq, 1 ≤ q ≤ |T |, such that

Algorithm 2 converges to one optimal primal-dual solution
of this particularqth-RMP, i.e., (x̄(q), λ̄(q)). Furthermore,
after Algorithm 2 converges to(x̄(q), λ̄(q)), γρ(s, λ̄

(q)) =
γ(q)(s, λ̄(q)) for any sources ∈ S.

2Note that the local min-cost tree problem (12) can be easily solved
precisely since the number of extreme points (i.e., candidate trees) ofT (q)

is usually small, and hence, enumerable.



3) Performance Bound under Imperfect Tree Scheduling:
Theorem 5 says that the column generation method with
imperfect global tree scheduling converges to a sub-optimum
of the MP. We will prove that the performance of this sub-
optimum is bounded. We make the assumptionsA3 andA4.

• A3: For any sources ∈ S, ms ≥ 0 is sufficiently small
such that, if the column generation method with imper-
fect global tree scheduling converges to(x̄(q), λ̄(q)) on
the qth-RMP, thenx̄

(q)
s > ms.

• A4: Us(ms) − ms · U
′
s(ms) ≥ 0, ∀s ∈ S.

Theorem 6 (Bound of Imperfect Global Tree Scheduling):
Under the additional assumptionsA3 andA4, if the column
generation method with imperfect global tree scheduling
converges to(x̄(q), λ̄(q)) on theqth-RMP, we have

θ(q)(λ̄(q)) ≤
∑

s∈S

Us(x
∗
s) ≤ θ(ρλ̄(q)) ≤ ρθ(q)(λ̄(q)). (15)

Since the strong duality holds on theqth-RMP,
∑

s∈S Us(x̄
(q)
s ) = θ(q)(λ̄(q)), we have the following.

Corollary 7 (ρ-Approximation Solution to the MP):
Under the additional assumptionsA3 andA4, we have

∑

s∈S

Us(x̄
(q)
s ) ≤

∑

s∈S

Us(x
∗
s) ≤ ρ

∑

s∈S

Us(x̄
(q)
s ). (16)

If ρ = 1.0, (16) holds with equality, then Algorithm 2 is the
column generation method with perfect global min-cost tree
scheduling, and it converges to one optimum of MP.

Corollary 7 says that the column generation method with
imperfect global tree scheduling converges to a sub-optimum
of the MP and achieves an approximation ratio no more than
the approximate solution to the global min-cost tree problem.
Remark: Possible utility functions includeUs(xs) =
ws ln(xs + e) and Us(xs) = ws

1−β
x1−β

s , where0 < β < 1
andws > 0.

V. I LLUSTRATIVE EXAMPLES

In this section, we give illustrative examples showing the
effect of universal swarming and the performance of our
algorithms. We show that the subgradient algorithm achieves
the optimum in the time-average sense.

We test our algorithms in various scenarios by varying the
sizes of the resource-rich and resource-poor sessions and the
locations of bandwidth bottleneck. We have nine test cases
(profiles) where we assume the internal network has large
capacity so that it cannot be the bottleneck; therefore, the
bottleneck lies on the access links. In each of the profiles
A1, A2 andA3, there is a large resource-rich session (RRS)
and a small resource-poor session (RPS); in each of the
profiles B1, B2 and B3, there is an RRS and an equal-
sized RPS; and in each of the profilesC1, C2 andC3, there
is a small RRS and a large RPS. Each large session contains
90 receivers; each small session contains10 receivers; and
each medium session contains50 receivers. Each session has
a single source. We also vary the bottleneck of the sessions
so that we can examine how intersession cooperation affects
the rate allocation in each case. In profilesA1, B1 andC1,
the bottleneck of the RRS is at the download links; in profile

TABLE I

COMPARISON OF RATE ALLOCATION BETWEEN SEPARATE SWARMING

AND UNIVERSAL SWARMING

Test cases Link bandwidth Rate allocation
Profile Session us ui di Separate Universal

A1
Large RRS 640 360 360 360 329.5
Small RPS 640 36 360 100 359.7

A2
Large RRS 280 360 360 280 280
Small RPS 280 36 360 64 280

A3 Large RRS 640 200 360 207 170.2
Small RPS 640 20 360 84 360

B1 Medium RRS 640 360 360 360 205.6
Medium RPS 640 36 360 48.8 201.4

B2 Medium RRS 280 360 360 280 203.8
Medium RPS 280 36 360 41.6 199.9

B3
Medium RRS 640 200 360 212.8 125.6
Medium RPS 640 20 360 32.8 123.2

C1 Small RRS 640 360 360 360 353
Large RPS 640 36 360 43.1 50.6

C2 Small RRS 280 360 360 280 283
Large RPS 280 36 360 39.1 51.2

C3 Small RRS 640 200 360 264 263.8
Large RPS 640 20 360 27.1 27.1

A2, B2 andC2, the bottleneck of the RRS is at the upload
link of its source; and in profileA3, B3 andC3, the RRS is
bottlenecked by its aggregate upload bandwidth. In all cases,
the RPS is bottlenecked at its aggregate upload bandwidth.
Note that if the bottleneck of the RPS is at its source upload
link or the receiver download links, then there is no way to
improve its session rate.

In each test case, we compare the rate allocation results of
the separate swarming with that of the universal swarming.
For the separate swarming, we use the subgradient algorithm
with a minimum spanning tree solution for the subproblem.
This is possible since the sessions are separated from each
other and the overlay network for each session contains no
Steiner nodes. On the other hand, for the universal swarming,
we use the algorithm by Charikaret. al with tree level2, as
proposed in [8], for getting an approximate minimum-cost
tree solution.

Table I summarizes the simulation results for our test
cases.3 Let us, ui, anddi be the source upload bandwidth,
and each receiver’s upload and download bandwidth, re-
spectively. The simulation results show that the subgradient
algorithm always achieves the optimal rate allocation in
separate swarming.4 Moreover, with the universal swarming,
the RPS can obtain the excessive resource of the RRS at
small expense of the RRS. When the small RPS is combined
with the large RRS, its session rate improves significantly
while the large RRS loses a bit of its session rate. When the

3In the simulation, we useUs(xs) = ln(xs + e) as the utility function,
and run the subgradient algorithm for 10000 iterations so that we reach
convergence for all the cases. The step size rule and the initial step size
used in each profile is slightly different from each other. Itis hard to apply
the same step size rule for all the profiles and reach convergence within
10000 iterations.

4In the separate swarming cases, the optimal rate of each session can be
easily computed asmin{us, min1≤i≤L di, (us+

P

1≤i≤L ui)/L} where
L is the number of receivers [19].



session sizes of the RRS and RPS are the same, the resulting
session rates tend to be equalized, which is a desirable result.
When the large RPS is combined with the small RRS, its
session rate still improves slightly with negligible impact on
the small RRS; this is also desirable since the RRS should
not give up its resource if it is not sufficiently abundant.

Finally, the experimental results have shown that the
proposed algorithm converges as expected. The details are
omitted for brevity.

VI. CONCLUSION

This paper studies the universal swarming technique for
content distribution, which allows multiple sessions to help
each other to speed up the overall distribution performance.
For the relatively static infrastructure-based content distri-
bution, we can model universal swarming as distribution
over multiple multicast trees. That is, the data of each
session is distributed by a set of multicast trees rooted at
the source and spanning all the receivers. Each multicast
tree is in general a Steiner tree containing out-of-session
nodes. The question is how to optimally allocate rates to
the multicast trees to maximize the sum of all sessions’
utilities. A distributed subgradient algorithm is developed.
Due to the partial linearity of the problem, there is no
standard convergence result for the algorithm and the al-
gorithm does not converge in the normal sense. We prove
that the subgradient algorithm converges in the time-average
sense. Furthermore, the subgradient algorithm involves an
NP-hard subproblem of finding a min-cost Steiner tree. We
adopt a column generation method with imperfect min-cost
tree scheduling. If the imperfect min-cost tree has bounded
performance, then our overall utility optimization algorithm
converges to a sub-optimum with bounded performance.
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