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Abstract— The paper addresses the problem of massive con-

tent distribution in a network where multiple sessions coeist. In
more traditional approaches, the sessions form separate exlay
networks and operate independently from each other. In this
case, some sessions may suffer from insufficient resourcesd.,
aggregate upload bandwidth) even though other sessions hav
excessive resources. To cope with this problem, we considie
universal swarming approach, which allows multiple sessions
to cooperate with each other by forming a shared overlay
network. We formulate the problem of finding the optimal
resource allocation to maximize the sum of the session utikes
under the network capacity constraints. The solution turnsout
to be optimal sharing of multiple minimum-cost multicast trees.
We present a subgradient algorithm and prove that, although
the algorithm uses a single multicast tree per session at dac
iteration and hence does not converge in the conventional sge,
it converges to the optimal solution in the time-average sese.
The solution involves an NP-hard subproblem of finding a
minimum-cost Steiner tree. We cope with this difficulty by
using a column generation method, which reduces the number
of Steiner-tree computations. Furthermore, we allow the us of
approximate solutions to the Steiner-tree subproblem. Welsow
that the approximation ratio to the overall problem turns out to
be no more than that to the Steiner-tree subproblem. Simulaon
results demonstrate that universal swarming improves the
performance of resource-poor sessions with negligible inget
to resource-rich sessions.

I. INTRODUCTION

it is beneficial to view swarming as distribution over mukip
multicast trees. This view allows us to pose the question of
how to optimally distribute the content. (See [7].)

The specific problem addressed in this paper is how to
conduct content distribution more efficiently in a network
where multiple distribution sessions coexist. A distribat
session consists of a file to be distributed, one or more
sources and all the nodes who wish to receive the file, i.e., th
receivers. Different sessions may have heterogenousnesou
capacities, such as the source upload bandwidth, receiver
download bandwidth, or aggregate upload bandwidth. For
instance, there may exist some sessions with excessive-aggr
gate upload bandwidth because their throughput bottleneck
is at the source upload bandwidth, the receiver download
bandwidth, or the internal network; at the same time, there
may exist some other sessions whose throughput bottleneck
is at their aggregate upload bandwidth. In the traditional
swarming approach, the sessions operate independently by
each forming a separate overlay network; this will be called
separate swarming, which does not provide the opportunity
for the resource-poor sessions to use the surplus resaafrces
the resource-rich sessions. However, if we condmotersal
swarming, that is, we combine multiple sessions together into
a single “super session” on a shared overlay network and
allow them to share each other’s resources, the distributio

The Internet is being applied to transfer content on a MOK&iciency of the resource-poor sessions can improve greatl

and more massive scale. While many content distributiogth negligible impact on the resource-rich sessions. The
techniques have been introduced, most of the recently iBaner examines algorithms and theoretical issues related t
troductions are based on tlsvarming technique, such as yiversal swarming.

FastReplica [1], Bullet [2], [3], Chunkcast [4], BItToren e firgt need to establish the equivalence of swarming and
[5], and CoBlitz [6]. In a swarming session, the file t0 b&yigyinytion over multiple multicast trees. More detaile a
d'SF“b“tEd is broken into many chunks "’_lt the source npdaiscussed in [7]. Consider following the distribution patf
which are then spread out to the receivers; the receivets  , jngividual file chunk. With some thought, it can be seen

will then help _each other with the retrieval of the m'ss,'ngfhat the chunk is distributed over a tree rooted at the source
chunks. By taking advantage of the resources of the re&®iVeL covering all the receivers of the fliSince the chunks

swarming dramatically improves the distribution efficignC o 6| gown  different trees, the distribution of each file
(e.g., average downloading rate, completion time) conparg, s multiple multicast trees. In universal swarmisg,

to the traditional client-server-based approach. distribution tree not only includes all the receivers ietted
The swarming technique was originally created by the, yoynioading the file but may also contain nodes that are

end-user communities for peer-to-peer (P2P) file sharingy inerested in the file; the latter will be callemit-of-

The subject of this paper is how to apply swarming tQueqon nodes. Thus, each distribution tree for a session is a

infrastructure-based content distribution and make tb&idi  gqiner tree rooted at the source where all the receivers are

bution more efficient. Compared with the dynamic end-Us§gmina| nodes and the out-of-session nodes on the tree are
file-sharing situation, infrastructure networks and cobte giainer nodes.

servers are much more stable. In this setting, we will sele tha |\ s 1ha tree-based model, the optimal distribution prob-
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1For ease of discussion, we assume that each file has a singleeso
This is without loss of generality.



lem can be formulated as finding an optimal rate allocation [I. PROBLEM DESCRIPTION
on the multiple multicast trees so that it achieves the ogitim
performance objective. A version of this problem was ad- Let the network be represented by a directed graph
dressed in [7] in the context of separate swarming. The ratéV, ), whereV is the set of nodes anfl is the set of links.
allocation problem in universal swarming, which this papeFor each linke € E, let ¢, be its capacity, where, > 0.
concerns, is substantially more difficult. The main reasoA multicast session is associated with a file and consists
is that, by the optimality condition, an optimal solutionof the source node and all the receivers of the file. Let
typically uses only the minimum-cost trees to distribute thdenote a session or the source of a session interchangeably.
file chunks. Hence, an optimal universal swarming algo a sessions, the data traffic is routed along multiple
rithm usually involves an NP-hard subproblem of findingnulticast trees, each rooted at the sowa@nd covering all
a minimum-cost (min-cost) Steiner tree. How to cope withhe receivers. A multicast tree isSeiner tree; it may contain
this issue is one of the main themes in this paper. nodes not in the session, which are called Steiner nodes. Let
) ) the set of all allowed multicast trees for sessiome denoted

We present two solution approaches, which can be us%9 T,. Throughout the paper, we assuriie contains all
in combination. First, we introduce into our rate-allooati possible multicast trees unless specified otherwise SLiee
algorithm a coIl_Jmn generation methqd, whlch_ can reduGfe set of all multicast sessions, and Tet= U,csT. Then,
the number of times the min-cost Steiner-tree is computeg: js the collection of all multicast trees for all sessions.
Second, we allow the use of approximate solutions to thghe mylticast trees can be indexed in an arbitrary order as
Ste!ner-tree subprobl_em._Some approximate solutlons_eto ﬂi‘l,tQ, .- ,t)r), where| -| is the cardinality of a set. Though
Steiner-tree problem in directed graphs can be found in [8]|T| is finite, it is usually very large. Let, be the flow rate

[10]. Importantly, we show that the approximation ratio t0yf sessions € S andy, be the flow rate of a multicast tree
the overall rate-allocation problem turns out to be no morg \ye haver, = ,cr
. teTs '

than that to the Steiner-tree subproblem. Each sessios € S is associated with a utility function

The overall rate-allocation algorithm that we will present/s(%s),0 < ms < z; < M,. The assumption on the utility
is a subgradient algorithm. It has the characteristic of afunctions is, for every € .5,
signing positive rate to a single multicast tree per sesaton o Al: U, is well-defined (real-valued), non-decreasing,
each iteration; the rate assigned to the tree is computetibas  strictly concave onm,, M,], and twice continuously
on the link prices at the iteration. We can show that even (differentiable on(m., M,).
though the assigned rates in each iteration usually ex¢eed t . . . . .
capacities of some links, the time-average rates satigy th The p“’b'em is 10 find the Opt'm‘?‘l resource (|:e., Session
link capacity constraints, and eventually the rate alloceto rate and multicast-tree rate) allocation to maximize thm su

each session converges to the optimum (provided the SteingF session u.tilities under the capac;ity .constraints ansises
tree subproblem is solved optimally.) It is worth pointingt o rate constraints. We call the optimization problem the erast

that other optimization algorithms may also be used her%rOblem (MP), which is as follows.
instead of the subgradient algorithm.

MP: max f(z,y) = > ,cqUs(zs) (1)
We now briefly discuss additional related work. A heuristic st Ts = 1o Uir Vs e S
centralized algorithm for the multicast tree packing peoil 5 < . VeeE ()
is proposed in [11]. Jansen et. al. present a centralized teTwect Yt = Ces
approximation algorithm for the multicast congestion coht ms <z < M, Vs e S
problem in [12]. [13]-[15] apply the network coding tech- yr > 0, vteT.

nigue to achieve the multicast capacity; part of their sotut
techniques is similar to ours. A survey of optimizationWe make an assumption about the MP, which is almost
problems in multicast routing can be found in [16]. [17]-]19 always satisfied in practice.

model and analyze the peer-assisted file distribution syste

The multipath routing problem has been studied in [20]-[23] * A2: There exists a feasible solutigf,7) such that

ms < Ts < M, for every sessior € S, f(z,y) > —oo
The paper is organized as follows. The formal problem  and (2) holds with strict inequality 4tr, 7).

description is given in Section II. The subgradient aldomit Note thatf(z, y) is strictly concave om, but linear ony.

and its convergence results are given in Section Ill. IniBect Let )\, be the Lagrangian multiplier associated with the
IV, we present the column generation approach, Combine&)nstraint (2). The Lagrangian function of (1) is

with the subgradient algorithm, and study the performance

bound when approximation algorithms are applied to the

min-cost tree subproblem. For brevity, the proofs are @ujtt L(z,y.0) =D Us(wa) + ) Aelce = D )

which can be found in an extended version of this paper
[24]. We show some simulation results about our approach =3 Usl@a) = D Y A)+ D> Acte. (3)
in Section V. The conclusion is drawn in Section VI. s€S teTs  e€t e€l

ses ecE teT:ect



The dual function is Remark: Algorithm 1 is a distributed algorithm. In order to
compute the tree cost, each liakkan independently compute

0(\) = max  L(z,y,) (4) its dual cost)\. based on the local aggregate rate passing
St x5 =D e Y, VSES through the link. Then, the tree cost can be accumulated by
ms < x5 < My, VseS the sources based on the link cost values along the tree.
_yt >6 VieT We will address the issue of finding the min-cost tree in
- Section IV, which is an NP-hard problem. Other than that,
Now the dual problem of (1) is the subgradient algorithm can be completely decentralized
Dual: min 6()\) (5) B. Convergence Results
st. \A>0. Let A* = {A > 0: 6(\) = miny>o0(\)} be the set of
B optimal dual variables. Lefz*,y*, \*) denote one of the
I1l. ADISTRIBUTED ALGORITHM optimal primal-dual solutions. Note that is unique, but/*

In this section, we illustrate how the problem MP in (1)2"d A" may notbe. . )
can be solved by a distributed subgradient algorithm. In Theorem 1 Letd(}, A”) = miny.ex- [[A = A[|. Forany
Section 1V, we will combine this algorithm with a column ¢ > U, under either the step size rule | or II, there exist a
generation method and derive a family of algorithms, ~ Sequence of step siz¢s(k)} and a sufficiently largexo <

oo such that, with any initial\(0) > 0, for all & > K,
A. Subgradient Algorithm d(A(k), A*) <e and||z(k) — z*|| < € [27].

The dual problem (5) can be solved by a standard subgra—We now d_|s.cuss the convergence of the tree rate vector
dient method as in Algorithm 1, wher& (k) is a positive y(.k)' The d|ff|cu!ty Of. proving the convergence Q’f(@
scalar step size|;], and []* denote the projection onto arises from the linearity of the Lagrangian function in (3)
the non-negativé gomain gﬁd on the interval[of,, M.] on the vectory, and there is no standard result about the

. : ) convergence ofj(k). In fact, the tree rate vectay(k) does
respectively [25] [26]. There are two step size rules: not converge in the normal sense [28]. From the update (10),

« Rule | (Constant step size). (k) = J > 0, for all ime  \ye see that each source only uses one tree (i.e., assigns
k > K for some finitek’. a positive rate) each time and shifts flow from one tree
« Rule Il (Diminishing step size)s.(k) < d.(k — 1) for {4 another from time to time. We further notice that, by
all ime k > K,kfor some finiteX’; limy,—oc 0c (k) = 0, pushing the session flow onto only one tree at a time, the link
andlimy oo 32, de (1) = oc. capacity constraints are often violated. This means that th
At the update (9) and (10) in Algorithm 1, we need torate allocation on each time slot may not even be feasible.
compute a min-cost Steiner tree. Under any fixed dual cosi Theorem 2, we will show that the tree rate converges in
vector A > 0 and for any sessiog € S, let us denote a the time-average sense.

min-cost Steiner tree by Let H denote the|E| x |T| link-tree incidence matrix
) where[H].; = 1if e € t; otherwise[H].; = 0. Let A denote
t(s,\) = argm'r}e:rs{z Acts ®)  the |S| x |T'| session-tree incidence matrix whers, = 1

ect if ¢t € Ts; otherwise,[A]s; = 0. For an arbitraryk,, where

where a tie is broken arbitrarily. Because (6) is an optimizas, > 0, let us define a sequenég(k)}x>x,, Where

tion problem over all allowed trees, we call (6)ghobal &

min-cost tree problem, and the achieved minimum cost the g(k) = 2 u—kq y(“)' (11)
global minimum tree cost. We denote this global minimum k—ko+1

tree cost under a fixed > 0 by For anye > 0, let us define)*(e) = {y > 0 : Hy <
¢, ||[Ay — 2*|] < €}. Whene =0, Y*(e) = YV* = {y >0 :
(s A) = Z Ae: (7) Hg <ec, Ay H: x*}} which is the set (012 optimal tr{ee rates.
ect(s:A) Theorem 2: For anye > 0, with any initial A(0) > 0,
every limit point of the sequencigj(k)} is in the sety* (e).
Remark: By Theorem 2, the time average of the tree rate
vectors,y(k), converges to the optimal set. Theorem 2 holds
under both the step size rule | and Il

Algorithm 1 Subgradient Algorithm

ek +1) = (k) = 0.(k)(ce — 3 we(k))]s,Ve € E

teT:ect IV. COLUMN GENERATION METHOD WITH IMPERFECT
(8) GLOBAL MIN-COSTTREE SCHEDULING
_ n\—1 Mg . L. .
zs(k+1) = [(U) ™ (v(s, Ak +1)]m2, Vs €5 ) In Section I, we develop a distributed algorithm to solve
(h+1) = xs(k+1) if t =t(s,\(k+1)); VieT the master problem (1), if the min-cost Steiner tree sub-
Yt 10 otherwise " problem (6) can be solved precisely in a distributed fashion

(10) However, the subproblem (6) is NP-hard [29]. The column
generation method can be introduced to reduce the number




of times that the min-cost Steiner tree subproblem is indoke From Lemma 3, a sufficient condition for optimality is

We also consider applying imperfect tree scheduling, whicthat the local minimum tree cost is equal to the global

are approximate or heuristic, sub-optimal solutions to theninimum tree cost (i.e.y(s, \(@) = (9 (s, \(@))), which

Steiner tree subproblem. This column generation methaohpliesh(y(s, A(9))) = h,(v(9 (s, A\(9)))). We state the rule

with approximation was first proposed in [30] to solve theof introducing a new column in the following.

problem of wireless link scheduling. Fact 4: Any tree achieving a cost less than the local

. minimum tree cost could enter the subgét) in the RMP.

A. Column Generation Method The tree achieving the global minimum tree cost is one
The main idea of column generation is to start with gossible candidate and is often preferred [30].

subset of the tree sét and bring in new trees only when _ _

needed. Consider a subset Bf containing only a small D- Column Generation by Imperfect Global Tree scheduling

number of trees, i.eT@ = {t; € T : Vi = 1,--- ,q}. The min-cost Steiner tree subproblem (6) is NP-hard,

We make sure thal(? contains at least one tree for eachwhich makes the step of column generation very difficult. We

sources. DenoteT!? the subset of trees ifi(9) that are now consider approximation algorithms to this subproblem.

rooted at source, i.e., TV = {t:teT@NT,}. We can We may solve it approximately, and this is referred as

formulate a restricted master problem (RMP) by repladihg imperfect global tree scheduling.?

with 7(@ in the MP (1), and this will be called thg"-RMP. Suppose we are able to solve (6) with an approximation
The value ofq is usually small and the trees in the setratiop > 1, i.e.,

T can be examined one-by-one. The Lagrangian function,

the dual function, and the dual problem of #f&-RMP can V(5 A) < 7(5,2) < (s, ), (14)
be formulated similarly as in (3), (4), and (5), where the selthere~,(s, \) is the cost of the tree given by the approxi-
T is replaced by the séf(®), mate solution.

The ¢""-RMP is more restricted than the MP. Thus, any 1) A p-Approximation Approach: We develop a col-
optimal solution to the;""-RMP is feasible to the MP and umn generation method with imperfect global min-cost tree
serves as a lower bound of the optimal value of the MP. Bycheduling as follows. Later, we will show a guaranteed
gradually introducing more trees (columns) irfd? and performance bound of this approach. Algorithm 2 in fact
expanding the subs@t(@, we will improve the lower bound describes a whole class of algorithms representing differ-
of the MP [31]-[33]. ent performance, convergence speed and complex tradeoffs.
B. Apply the Subgradient Algorithm to the RMP Morel detailed comments.about the property of this class of

algorithms can be found in [30].
The distributed subgradient algorithm can be used to solve

the ¢""-RMP. Here, we define the following problem of Ajgorithm 2 Column Generation with Imperfect Global Tree
finding the min-cost tre€?) (s, A) under the link cost vector scheduling

A > 0. P X :
= . « Initialize: Start with a collection of"(?) trees. (Assume
H0(s,A) = argmin ., DAk (12) AssumptionA2 holds for theg!”-RMP.)
ect o Step 1: Run the subgradient algorithm (8)-(10) for
The optimization is taken over th|é;(‘”| currently known several (a finite number) times on th&-RMP.
trees. The problem in (12) is called thacal min-cost tree o Step2: For each source, solve the global min-cost
problem, and the achieved minimum cost is called tbeal tree problem (6with an approximation ratio p under
minimum tree cost. We denote this local minimum cost under the current dual cost.
A>0 by — If the tree corresponding to thegoproximate solu-
7D (s,) = Z Ae- (13) tion of (6) is already in the current collection of
ect(@) (s,)) trees, do nothing;

— Otherwise, introduce this tree into the current col-
lection of trees, and increageby 1.

Go to Stepl.

If there is more than one tree achieving the local minimum
cost, the tie is broken arbitrarily.

C. Introduce One More Tree (Column)

Now the question is how to check whether the optimum 2) Convergence with Imperfect Global Tree Scheduling:
of the ¢'"-RMP is optimal for the MP, and if not, how Theorem 5: There exists a, 1 < ¢ < |T|, such tﬁat

to introduce a new COIUQ”) (Er(e)e)ﬁ.(lt) turns out there is aqqrithm 2 converges to one optimal primal-dual solution
easy way to do both. Letr'®), ), /) denote one of the ot this particularg’-RMP, ie., (z(9, A(®). Furthermore,

optimal primal_—éjl)Ja_I(s)oIL_JEic))ns_ of thgth—RMP. _ after Algorithm 2 converges t6z(?, A\(@)), ~,(s, \(@)) =
Lemma 3: (29,359, \\9) is optimal to the MP if and ~(9) (5, X)) for any sources € S.

only if he(v(s,79)) = hs(y@(s,5)), for all s € S,

where 2Note that the local min-cost tree problem (12) can be easilyesl
1 M 1 M precisely since the number of extreme points (i.e., catelit@es) of"(4)
hs(w) = Us([(UD ™ w)]me) = [(UD) ™ (w)]me - w, w > 0. is usually small, and hence, enumerable.

me me



. TABLE |
3) Performance Bound under Imperfect Tree Scheduling:
COMPARISON OF RATE ALLOCATION BETWEEN SEPARATE SWARMING

Theorem 5 says that the column generation method with
imperfect global tree scheduling converges to a sub-optimu
of the MP. We will prove that the performance of this sub-
optimum is bounded. We make the assumptidi3sand A4.

AND UNIVERSAL SWARMING

Test cases Link bandwidth Rate allocation

o A3: For any source € S, m,s > 0 is sufficiently small | Profile Session us | u; | d; || Separate| Universal
; . s - Large RRS | 640 | 360 | 360 360 3295
such that, if the column_generatlon me;;;))d _V\(/;t)h imper- Al Small RPS | 640 | 36 | 360 100 3507
fect global tree scheduling converges( ;A on . Large RRS | 280 | 360 | 360 380 280
the ¢*"-RMP, thenz? > m,. Small RPS | 280 | 36 | 360 | 64 280
. _ 77! Large RR 4 7 170.
o A4 Us(ms) —ms - Ug(ms) 2 0,Vs € . . A3 | smallRPs | 640 | 20 | 360 || 84 360
Theorem 6 (Bound of Imperfect Global Tree Scheduling): g1 | Medium RRS| 640 | 360 | 360 360 205.6
Under the additional assumptions and A4, if the column Medium RPS | 640 | 36 | 360 | 48.8 201.4
eneration method with imperfect global tree scheduling B2 Medium RRS | 280 | 360 | 360 280 2038
9 C p g 9 Medium RPS| 280 | 36 | 360 | 416 199.9
converges tqz(9, \(@) on theq"*-RMP, we have g3 | Medium RRS|[ 640 | 200 | 360 || 2128 | 1256
o ) s Medium RPS| 640 | 20 | 360 32.8 123.2
gl (\(@)y < U.(2¥) < 0(oX D) < pplO ()@Y (15 Small RRS | 640 | 360 | 360 360 353
(W) = S; s(@5) = 6(pAT) < pH (N, (15) €1 | Llarge RPS | 640 | 36 | 360 | 43.1 50.6
: : h Small RRS | 280 | 360 | 360 280 283
Since tr(1qe) strong duality holds on thg -RMP, c2 Large RPS | 280 | 36 | 360 39.1 512
Sees Us(@”) = 01D (X)), we have the following. c3 | SmalRRS | 640 | 200 | 360 | 264 263.8
Corollary 7 (p-Approximation Solution to the MP): Large RPS | 640 | 20 | 360 || 27.1 27.1

Under the additional assumptions3 and A4, we have

7(a) * 7(a)
S;US(% )< SGZ;US(IS) = pS;US(IS ) (16) A2, B2 andC2, the bottleneck of the RRS is at the upload
) ) . ) link of its source; and in profiled3, B3 andC3, the RRS is
If p = 1.0, (16) holds with equality, then Algorithm 2 is the potienecked by its aggregate upload bandwidth. In alls;ase
column generation method with perfect global min-cost tregye RPS is bottlenecked at its aggregate upload bandwidth.
scheduling, and it converges to one optimum of MP. Note that if the bottleneck of the RPS is at its source upload

~ Corollary 7 says that the column generation method withink or the receiver download links, then there is no way to
imperfect global tree scheduling converges to a sub-optimujmprove its session rate.

of the MP and achieves an approximation ratio no more than |n each test case, we compare the rate allocation results of
the approximate solution to the global min-cost tree pnwble the separate swarming with that of the universal swarming.

Remark: Possible utility fUBCti?fﬁ includelUs(zs) = For the separate swarming, we use the subgradient algorithm
wsIn(zs + e) and Us(zs) = 52,77, where0 < 3 <1  wijth a minimum spanning tree solution for the subproblem.
andw;, > 0. This is possible since the sessions are separated from each

other and the overlay network for each session contains no

) ] o ) ) Steiner nodes. On the other hand, for the universal swarming
In this section, we give illustrative examples showing thgye yse the algorithm by Charikat. al with tree level2, as

effect_ of universal swarming and thg perform_ance Of_o%roposed in [8], for getting an approximate minimum-cost
algorithms. We show that the subgradient algorithm aclsieve,ee solution.
the optimum in the time-average sense. _ Table | summarizes the simulation results for our test
We test our algorithms in various scenarios by varying thgzsed | et us, u;, andd; be the source upload bandwidth,
sizes of the resource-rich and resource-poor sessiondend fnd each receiver’s upload and download bandwidth, re-
locations of bandwidth bottleneck. We have nine test casgpectively. The simulation results show that the subgradie
(profiles) where we assume the internal network has larggqgorithm always achieves the optimal rate allocation in
capacity so that it cannot be the bottleneck; therefore, t%parate swarminyMoreover, with the universal swarming,
bottleneck lies on the access links. In each of the profilghe RPS can obtain the excessive resource of the RRS at
Al, A2 and A3, there is a large resource-rich session (RRmal| expense of the RRS. When the small RPS is combined
and a small resource-poor session (RPS); in each of thgih the large RRS, its session rate improves significantly

profiles B1, B2 and B3, there is an RRS and an equal-yhjle the large RRS loses a bit of its session rate. When the
sized RPS; and in each of the profileés, C2 andC3, there
is a small RRS and a large RPS. Each large session containdn the simulation, we usé&’;(zs) = In(zs + ¢) as the utility function,

90 receivers: each small session contaifisreceivers: and and run the subgradient algorithm for 10000 iterations s the reach
’ ! convergence for all the cases. The step size rule and thal isiep size

each medium session contaiitsreceivers. Each session hasysed in each profile is slightly different from each otheislhard to apply
a single source. We also vary the bottleneck of the sessioths same step size rule for all the profiles and reach cormeegeithin
so that we can examine how intersession cooperation affec¢f{00 iterations. . .

. . . In the separate swarming cases, the optimal rate of eaclosess be
the rate allocation in each case. In profilés, B1 andC1,  gasily computed asin{us, miny ;< 1 d;, (us+3 <, < u:)/L} where

the bottleneck of the RRS is at the download links; in profile. is the number of receivers [19].

V. ILLUSTRATIVE EXAMPLES



session sizes of the RRS and RPS are the same, the resulfirog M.-I. Hsieh, E. H.-K. Wu, and M.-F. Tsai, “FasterDSP: asfer

session rates tend to be equalized, which is a desirablk.resu
When the large RPS is combined with the small RRS, itﬁ_l]
session rate still improves slightly with negligible impaa
the small RRS; this is also desirable since the RRS should
. . N - [12]
not give up its resource if it is not sufficiently abundant.
Finally, the experimental results have shown that the
proposed algorithm converges as expected. The details are
; . [13]
omitted for brevity.

VI. CONCLUSION (14]

This paper studies the universal swarming technique for
content distribution, which allows multiple sessions tdphe 15
each other to speed up the overall distribution performance
For the relatively static infrastructure-based conterstrdi
bution, we can model universal swarming as distributioE16
over multiple multicast trees. That is, the data of eac
session is distributed by a set of multicast trees rooted at
the source and spanning all the receivers. Each multicas(!
tree is in general a Steiner tree containing out-of-session
nodes. The question is how to optimally allocate rates to
the multicast trees to maximize the sum of all sessiond'®!
utilities. A distributed subgradient algorithm is devedop
Due to the partial linearity of the problem, there is nd19]
standard convergence result for the algorithm and the al-
gorithm does not converge in the normal sense. We proys)
that the subgradient algorithm converges in the time-@eera
sense. Furthermore, the subgradient algorithm involves
NP-hard subproblem of finding a min-cost Steiner tree. V\feﬂ
adopt a column generation method with imperfect min-cost
tree scheduling. If the imperfect min-cost tree has boundét!!
performance, then our overall utility optimization alghm
converges to a sub-optimum with bounded performance. [23]
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