
1

A Refined Performance Characterization of
Longest-Queue-First Policy in Wireless Networks

Bo Li, Cem Boyaci and Ye Xia
Computer and Information Science and Engineering Department

University of Florida
Email: {boli, cboyaci, yx1}@cise.ufl.edu

Abstract—One of the major challenges in wireless network-
ing is how to optimize the link scheduling decisions under
interference constraints. Recently, a few algorithms have been
introduced to address the problem. However, solving the problem
to optimality for general wireless interference models is known
to be NP-hard. The research community is currently focusing
on finding simpler, sub-optimal scheduling algorithms and on
characterizing the algorithm performance. In this paper, we
address the performance of a specific scheduling policy called
Longest Queue First (LQF), which has gained significant recog-
nition lately due to its simplicity and high efficiency in empirical
studies. There has been a sequence of studies characterizing the
guaranteed performance of the LQF schedule, culminating at the
construction of the σ-local pooling concept by Joo et al. [1]. In
this paper, we refine the notion of σ-local pooling and use the
refinement to capture a larger region of guaranteed performance.

Index Terms—Wireless Networks Scheduling, Longest Queue
First Policy, Stability, Local Pooling, Interference

I. INTRODUCTION

Recent years have seen a great development in wireless
networking technologies and their usage. One of the major
challenges in wireless networking is how to utilize the commu-
nication medium efficiently under interference constraints. For
different wireless technologies, different interference models
have been established. The 1-hop interference model (also
known as the node-exclusive or primary interference model),
where two links interfere only if they share a common node,
is suitable to characterize the interference in FH-CDMA and
Bluetooth networks [2]. The hop count is measured in the
interference graph in which a node represents a physical link
in the network and an edge between two nodes means the two
corresponding physical links interfere with each other. With
the same interference-graph-based terminology, the 2-hop in-
terference model can successfully capture the interference
relationship in the IEEE 802.11 network [3]. In [4] and [5],
the authors considered the more general k-hop interference
model.

The research on joint link scheduling and routing strives to
find the most efficient way to forward traffic from sources to
destinations. In [6], the authors provided an algorithm that
achieves the full capacity region of the wireless network.
However, their algorithm requires solving a global maximiza-
tion subproblem at each iteration. For the 1-hop interference
model, this subproblem reduces to finding the maximum
weighted matching in the backlog weighted network graph.

While maximum matching can be solved in O(|V |3) time with
a centralized algorithm [1], where V is the set of nodes in
the network, the running time is considered inefficient for a
network algorithm and a faster approach is desired. The same
algorithm given in [6] can also be applied to more generic
interference models; but the subproblem becomes intractable
in those cases. For instance, under general interference models
characterized by some interference graph, the subproblem is to
find the maximum weighted independent set of the interference
graph, which is NP-hard and makes the algorithm in [6]
inapplicable. In [5], the authors showed that for the k-hop
interference model where k > 1, the subproblem is also NP-
Hard.

Given the above difficulty, one of the main efforts by the
research community is to find simpler sub-optimal scheduling
algorithms that are also friendly to distributed implementation,
and to characterize their performance guarantee. Among the
proposed solutions, the Longest Queue First (LQF) algorithm
has distinguished itself due to its simplicity and high perfor-
mance in empirical studies [7]. In an effort to understand the
surprising efficiency of this simple algorithm, Dimakis and
Walrand have identified a sufficient condition for the algorithm
to achieve the entire capacity region of the network for single-
hop traffic [8]. In particular, they have shown that if the
network topology and interference structure satisfy a condition
known as local pooling, then the LQF algorithm achieves the
entire capacity region. Brzezinski et al. have extended the
definition of local pooling to the multi-hop traffic situation [9].
The same authors have also investigated classes of networks
that satisfy single-hop local pooling [10].

In a different direction of generalizing local pooling, Joo
et al. have investigated a fractional version called σ-local
pooling [1]. Specifically, suppose the network is denoted by
G, and the capacity region is denoted by Λ, i.e., the largest
rate region that can possibly be supported by the network
using some scheduling policy. They defined and studied the
properties of the largest number σ, 0 < σ ≤ 1, for which the
rate region σΛ is achievable (stabilizable) by the LQF policy.
This largest number is denoted by σ∗(G). It provides a way
to measure the performance of LQF on an arbitrary network.

In this paper, we extend the definition of σ-local pooling fur-
ther to better characterize the performance of LQF. We show
that the one-parameter characterization by σ-local pooling, al-
though attractive for its parsimony, tends to underestimate the
stability region that can be achieved by LQF. This leads to the

2

investigation of multiple-parameter characterizations. We start
by defining σ-local pooling for a link, denoted by σ∗l for link
l. We then construct a diagonal matrix Σ∗(G) = diag(σ∗l)l∈E ,
where E is the set of links. We then show that the linearly
transformed region Σ∗(G)Λ is achievable by LQF.

The relationship between the newly-defined link σ-local
pooling and the original σ-local pooling (for the whole net-
work) in [1] is intriguing. We show that σ∗(G) = minl∈E σ∗l .
In other words, the guaranteed stability region in [1] is derived
by linearly transforming the capacity region (with the σ∗(G)I
matrix, where I is the identity matrix) using the smallest
diagonal entry in Σ∗(G). As a result, using σ∗(G) can lead to
severe underestimate of the stability region of LQF. Hence,
our new local pooling concept leads to a more accurate
performance characterization for LQF.

Throughout the paper, we show that our multiple-parameter
refinement of σ-local pooling is at an appropriate level of
generality and structural richness, the study of which can pro-
vide tools for deeper understanding and operationalization of
the local pooling concept. We argue that link σ-local pooling
and the associated limiting set are fundamental concepts. We
also define set σ-local pooling (for a set of links), which
can be computed by linear programming, and show how it
is related to link σ-local pooling. The duality theory of linear
programming provides means for bounding or estimating the
values of various σ-local pooling concepts. We provide an
algorithm for estimating the local-pooling factors of links.

The rest of the paper is organized as follows. In Section II,
we provide our network model, basic definitions and notations,
and describe the link scheduling problem. In Section III, we
describe the main conclusion for performance characterization
of LQF using the new notion of link σ-local pooling. In
Section IV, we develop a fuller theory of link and set σ-local
pooling that helps to apply these new concepts. In Section
V, we provide methods to estimate or bound the link and set
σ-local pooling factors. In Section VI, we provide additional
theoretical results about σ-local pooling. In Section VII, we
give additional related work. Section VIII concludes the paper.

II. PRELIMINARIES

In our model, a wireless network is represented by a directed
graph G = (V,E, I), where V is the set of nodes, E is
the set of links and I represents the interference relation
among the links. In this work, we inherit the protocol model
for interference [11] in which two links cannot be activated
simultaneously if they interfere with each other.1 The interfer-
ence relation for the protocol model can be represented by a
symmetric 0-1 matrix of size |E| × |E| where a value 1 in an
entry indicates the existence of pairwise interference between
the two corresponding links and 0 indicates the absence of
such interference. Equivalently, the interference relation can be
represented by the interference graph (also known as conflict
graph) in which a node represents a physical link and an
edge represents the existence of interference between two
physical links (which are two nodes in the interference graph).

1This is in contrast to the physical interference model, where the link rate
depends on the power levels of the interfering links in the neighborhood.

The interference graph is denoted by GI , unless specified
otherwise.

We represent a schedule by a |E|-dimensional 0-1 vector,
where a value 1 in an entry indicates the link is active and 0
indicates otherwise. A feasible schedule corresponds to a set
of active links that is free from interfering pairs. A feasible
schedule is said to be maximal if no more links can be
activated without violating the interference constraint. Note
that a feasible schedule corresponds to an independent set in
the interference graph and a maximal schedule corresponds to
a maximal independent set.2

Let ME be the matrix whose columns are all the maximal
schedules. Occasionally, we also view ME as the set of all
maximal schedules. Let Co(ME) denote the convex hull of
the maximal schedules for the whole network.

For a subset of the links L ⊆ E, we can consider the
interference relation among the links in L: The interference
matrix is a submatrix of the original one with only those rows
and columns corresponding to the links in L; the interference
graph is the node-induced subgraph of the original interference
graph. With this, we can talk about feasibility and maximality
of schedules restricted to L, which are those defined with
respect to the interference submatrix or subgraph. Similarly,
we define ML to be the matrix (set) of maximal schedules
restricted to L, where each column of ML is |L|-dimensional
0-1 vector. Let Co(ML) denote the convex hull of these
maximal schedules.

We assume a time-slotted system, where each slot is of a
unit length. We assume the traffic arrival processes to different
links are independent on each other. For simplicity, we assume
that each arrival process to a link is IID over time. This
assumption can be relaxed provided the resulting queueing
process is Markovian. (See [8] [12] for the reasons.) For each
link l ∈ E, the average arrival rate is denoted by λl. We as-
sume single-hop traffic: The traffic is transmitted over only one
link and leaves the network after the transmission. Extension
to the multi-hop traffic situation needs ideas from [9], but will
not be further considered in this paper.

The capacity region Λ of a network is defined to be the set
of all arrival rate vectors λ = (λ1, λ2, . . . , λ|E|)′ that can be
supported by a time sharing of the feasible schedules. It is
easy to see that

Λ = {λ | 0 ≤ λ ≤ µ for some µ ∈ Co(ME)}. (1)

In the above, λ ≤ µ means λ is component-wise less than or
equal to µ. We also need the notion of the capacity region
for a set of links L ⊆ E. This region is defined analogously
by replacing Co(ME) with Co(ML) in (1) and is denoted by
ΛL. We define the interior of Λ as follows, which is denoted
by Λo.3

Λo ={λ |0 ≤ λ < µ for some µ ∈ Co(ME)}. (2)

2An implicity assumption is that all active links transmit at the same
constant rate. As discussed in [8], the main local pooling-related results are
extensible to the case where an active link may transmit at different rates.
However, we do not explore this extension in the paper.

3This definition of interior shouldn’t be confused with the usual definition
of interior of a set in mathematical analysis, which is an open set.

3

The interior of ΛL is similarly defined and is denoted by Λo
L.

Tassiulas and Ephremides have shown that the interior of
the capacity region can be stabilized by using the maximum
weighted schedule (MWS) in each time slot where the weights
are the queue sizes at the links [6]. In other words, for any
arrival process whose average rate vector λ is in Λo, the
resulting queueing process is stable if the MWS is used. Here,
stability means the queueing process is a positive recurrent
Markov process.

However, finding the MWS is a difficult problem. For the
queue length vector at time t, Q(t), the problem is to find the
schedule m∗(t) such that

m∗(t) ∈ argmaxm∈ME
Q(t)′m. (3)

Hence, the problem is to find the maximum weighted inde-
pendent set in the interference graph, which is NP-hard for
the family of all graphs. Even under the more restricted k-hop
interference model, the problem is still NP-hard for k ≥ 2 [4]
[5]. Under the 1-hop interference model, the problem becomes
finding the maximum weighted matching, which can be solved
in O(|V |3). However, the complexity is still very high.

The LQF schedule can be viewed as an approximation to the
MWS. LQF operates as follows at each time slot t. The link
with the largest backlog is activated and all links interfering
with it are discarded. Next, the same procedure is applied to
the remaining links: The link with the largest backlog among
the remaining links is found and activated and the interfering
links are discarded. The procedure is applied recursively until
all links are either activated or discarded. The LQF algorithm
requires sorting the backlog values; however, this can be
done reasonably efficiently in a distributed manner. Further
improvement has been made by Joo [13], whose local greedy
scheduling does not require global sorting of the queues. His
algorithm is to have the links with the local maximum queue
sizes in their neighborhoods to transmit data, subject to the
interference constraints. He showed that the local scheduling
algorithm achieves the same stability region as LQF. Hence,
from the MWS to LQF, a globally optimized decision is
replaced by distributed, local decisions.
Notations: The following notations are used. Given a vector
u, let u′ denote the transpose of u. For two vectors u and
v, u′v means the inner product of the two; u ≤ v means
u is component-wise less than or equal to v; the meanings
of u ≥ v, u < v or u > v are also component-wise. The
symbols ≯ and � are the negations of > and ≥, respectively.
For instance, by u ≯ v, we mean that u is not component-wise
greater than v; that is, there exists a component k such that
uk ≤ vk. For a vector λ ∈ R|E| and for a set of links L ⊆ E,
we denote the |L|-dimensional vector [λ]L as the restriction
of λ to those dimensions associated to L.

III. σ-LOCAL POOLING AND THE PERFORMANCE OF LQF

In this section, we introduce our main notion of link σ-
local pooling and relate it to the original σ-local pooling (for
the network graph) by Joo et al. [1]. We will call the latter
network σ-local pooling. We show how to capture a larger
stability region of LQF using this new notion of link σ-local

pooling. By stability region, we mean a rate region in Λ for
which LQF leads to a stable queueing process. We start by
reviewing the σ-local pooling related results in [1].

A. Review of Network σ-Local Pooling by Joo et al.

Joo et al. investigated a single-parameter performance char-
acterization of a scheduling policy [1]. In this case, the
scheduling policy is LQF. They defined the efficiency ratio
γ∗(G) of a scheduling policy as follows

Definition 1: The efficiency ratio γ∗(G) of a scheduling
policy for a given network graph G is:

γ∗(G) := sup{γ|The network is stable for all arrival rate
vectors λ ∈ γΛo}.

Joo et al. showed that γ∗(G) is equal to the σ-local pooling
factor for the network G, i.e.,

γ∗(G) = σ∗(G). (4)

σ∗(G) depends only on the topological and interference struc-
tures of the network and is defined as follows.

Definition 2: The local pooling factor σ∗(G) of a network
graph G = (V,E, I) is:

σ∗(G) := sup{σ|σµ � ν for all L ⊆ E and all
µ, ν ∈ Co(ML)} (5)

:= inf{σ|σµ ≥ ν for some L ⊆ E and some
µ, ν ∈ Co(ML)}. (6)

B. Motivation of Defining Link σ-Local Pooling

Note that, in the case of γ∗(G) < 1, γ∗(G)Λ shrinks
all dimensions of the capacity region by the same scaling
factor to ensure stability. This can be overly conservative in
that some links may be required to reduce the arrival rates
more than necessary. This means that using a single factor to
characterize the performance will underestimate the achievable
rates of these links. Since links are all different in terms of
the interference constraints they face, the reduction factors
should be non-uniform across the links. Consider the network
examples in Fig. 1 under the 1-hop interference model. The
interference graph for the 6-cycle network is still a 6-cycle,
which has been well studied in [8], [1], [10]. It has been shown
that for the 6-cycle, γ∗(G) = σ∗(G) = 2/3. This is also the
case for the 8-link network, although the interference graph is
slightly more complicated.

1

4

1

4

62

3 5 3

2 6

7

8

5

Fig. 1. Two networks with different performance behavior from the link
perspective. Left: uniform; Right: heterogeneous.

However, for link 8 of the 8-link network on the right, there
is no need to reduce its arrival rate by 2/3 to achieve stability.

4

To see this, for any arrival rate vector inside the capacity
region, we have λ7 + λ8 < 1. Under 1-hop interference,
exactly one link from link 7 and link 8 must be activated
in any maximal schedule, provided queue 8 (i.e., the queue of
link 8) is not empty. Hence, the total queue length of the two
must decrease when queue 8 is non-empty. The decrease will
continue until queue 8 becomes empty. The time taken by this
is bounded by the time taken for queue 7 to drift down to the
size of queue 8, if queue 7 starts to be larger than queue 8,
plus the time taken for both queues to drift down to zero from
that point. Hence, if queue 7 is stable, then queue 8 is also
stable.

The reason why links have different performance efficiency
is that the efficiency ratio is related with the structure of certain
“bottleneck” subgraph containing the link in question. The
characterization of efficiency is determined by this subgraph
but not by the whole graph in general. For different links, such
subgraphs are different. For instance, for link 2 in the 8-link
network in Fig. 1, the subgraph is the six cycle, which leads
to its efficiency ratio to be 2/3. For link 8, the subgraph is
link 8 itself, which leads its efficiency ratio to be 1. We will
later identify this kind of subgraphs more explicitly.

C. Definitions of Link σ-Local Pooling

The above discussion motivates us to come up with a per-
formance characterization for each link individually. We next
extend the concept of network σ-local pooling in Definition 2
to link σ-local pooling. This characterization is obtained from
the topology and interference structure of a sub-network graph
containing link l in question.

Definition 3: Given a network graph G = (V,E, I), the
local pooling factor of a link l ∈ E, denoted by σ∗l , is

σ∗l := sup{σ|σµ ≯ ν for all L ⊆ E such that l ∈ L,

and all µ, ν ∈ Co(ML)} (7)
:= inf{σ|σµ > ν for some L ⊆ E such that l ∈ L,

and some µ, ν ∈ Co(ML)}. (8)

Compared with Definition 2, the subset L in Definition 3
is required to contain link l. Moreover, in (8), the inequality
is strict as opposed to the non-strict inequality in (6). This in
turn leads to the difference (≯ as opposed to �) between the
two supremum-based definitions. We will show later that the
strict inequality is a tighter condition for the stability proof.
However, the σ∗l value is unchanged whether the strict or non-
strict inequality is used.

The following lemma relates the original network σ-local
pooling with the new link σ-local pooling. The proof is
obvious after we replace the strict inequality with a non-strict
inequality in (8).

Lemma 1: For a network graph G = (V, E, I), the follow-
ing holds.

σ∗(G) = min
l∈E

σ∗l . (9)

D. Link-Based Performance Guarantee of LQF

Lemma 1 makes it clear that the original network σ-local
pooling factor in [1] is equal to the smallest of the σ-local

pooling factors for the links. In [1], the LQF performance is
bounded by the lowest link σ-local pooling factor. In contrast,
we can show the following improved performance bound for
LQF, which takes into account all σ∗l . Let Σ∗(G) be the |E|×
|E| diagonal matrix whose diagonal entries are σ∗l for l ∈ E.
That is, Σ∗(G) = diag(σ∗l)l∈E . The next theorem is one of
the main results in the paper.

Therorem 2: Given a network graph G = (V,E, I), if an
arrival rate vector λ satisfies λ ∈ Σ∗(G)Λo, then, the network
is stable under the LQF policy.

Proof: We will consider the fluid limit of the queue
process, denoted by {ql(t)}t≥0, for all l ∈ E. (See [12]
[8] [1] for more details on this approach.) Consider a fixed
time instance t. Let L be the set of those longest queues
(with equal length) whose time derivatives at t, q̇l(t), are the
largest (also identical) under the given LQF policy (that is, an
instance of the LQF policy that is being used.). The queues
in L will remain the longest with identical length in the next
infinitesimally small time interval.

Let l ∈ argmaxk∈Lσ∗k. Since λ ∈ Σ∗(G)Λo, there exists
µ ∈ Co(ME) such that λ < Σ∗(G)µ. This implies [λ]L <
Σ∗L[µ]L, where Σ∗L denotes the restriction of Σ∗(G) to L,
i.e., the diagonal submatrix of Σ∗(G) with only the rows and
columns corresponding to the set L. Hence, [λ]L < σ∗l [µ]L.

It is easy to see that [µ]L ∈ ΛL. Hence, there exists µL ∈
Co(ML) such that [µ]L ≤ µL. Then, [λ]L < σ∗l µL. Given λ,
let us suppose the way of picking such a µL is well-defined.
Let εL = mink∈L(σ∗l µL(k)− λ(k)).4 We have εL > 0.

For such fixed λ and µL, consider any arbitrary νL ∈
Co(ML). We must have σ∗l µL ≯ νL by the definition of
link σ-local pooling. Hence, there exists a link k ∈ L
such that σ∗l µL(k) ≤ νL(k). For such a k, since λ(k) <
σ∗l µL(k) ≤ νL(k), we have νL(k) − λ(k) ≥ εL. Hence,
maxk∈L(νL(k) − λ(k)) ≥ εL. Note that εL is independent
of νL.

Note that the service rate vector, when restricted to L, must
belong to the set Co(ML). Roughly, this is because L contains
all the queues that are among the longest and remain longest
in the near future, and hence, every LQF schedule being used
must be a maximal schedule when restricted to L. (See [12]
[8] for a more rigorous argument for this.)

Now imagine νL is the service rate vector at the current time
t. We have just shown that, for some k ∈ L, νL(k)− λ(k) is
at least εL. Hence, the queue at link k decreases at a rate no
less than εL. Since the queues in the set L change at the same
rate, they all decrease at a rate no less than εL. Hence, each
of the longest queues decreases its size at a rate no less than
εL. Let ε = min{εL|L ⊆ E}. Since the number of possible
subsets of E is finite, we have ε > 0. Hence, at any time
instance, each of the longest queues decreases at a positive
rate no less than ε. By [12], this is sufficient to conclude that
the original queueing process is a positive recurrent Markov
process, which means the queues are stable by definition.

To summarize, Joo et al. showed in [1] that the re-
gion σ∗(G)Λo is stable under LQF. Our Theorem 2 shows

4Given a vector ν, we write its component corresponding to link k by νk

or ν(k) interchangeably.

5

that the region Σ∗(G)Λo, which contains σ∗(G)Λo, is
stable under LQF. For the example of the 8-link net-
work in Fig. 1, σ∗(G) = 2/3 whereas Σ∗(G) =
diag(2/3, 2/3, 2/3, 2/3, 2/3, 2/3, 1, 1).5

IV. THEORY OF LINK σ-LOCAL POOLING

In this section, we show some important properties of the
newly defined concept of link σ-local pooling and the related
concept of limiting set. In general, these concepts are difficult
to work with since their definitions involve combinatorial
enumerations. Our objective is to provide tools for using
or applying these concepts. As will be shown, some of the
theories developed in this section can help to estimate the
link σ-local pooling factors. We will also argue that link σ-
local pooling and limiting set are fundamental concepts. The
understanding of them may help to reveal deeper structures
and key insights about wireless link scheduling.

A. σ-Local Pooling of a Set

In order to develop the intended theory, it is convenient to
first define set σ-local pooling. This concept can be used as
a building block for performance characterization of the LQF
policy for a set of links in the network graph. Since links in
a wireless network may exert influence on each other, it is
natural to study a set of links as a whole.

Suppose L ⊆ E and L is non-empty. For convenience, let

ΘL ={σ | σµL ≯ νL, for all µL, νL ∈ Co(ML) }. (10)

The compliment of ΘL is

Θc
L ={σ | σµL > νL, for some µL, νL ∈ Co(ML) }. (11)

Definition 4: Given a non-empty set L ⊆ E, we say L has
a set σ-local pooling factor σ∗L if the following holds.

σ∗L := sup{σ | σ ∈ ΘL} (12)
:= inf{σ | σ ∈ Θc

L}. (13)

Note that, unlike the definition of network σ-local pooling in
Definition 2, the definition of set σ-local pooling for a set L
does not involve subsets of L.

The following are some elementary facts. Since 0 /∈
Co(ML), by (11), σ∗L > 0. By considering µL = νL in (10),
we see that σ∗L ≤ 1. If σ ∈ Θc

L, then (σ−ε)µL > νL for small
enough ε > 0, where L, µL and νL are as in the definition of
Θc

L. Hence, Θc
L is an open set on R. In fact, Θc

L = (σ∗L,∞);
ΘL = [0, σ∗L].

The following lemma says that σ∗L can be found by a well-
defined optimization problem where the constraint region is
a closed set. The constraint region can be thought as being
compact when taking into account the fact that σ∗L is bounded
from above by 1. The fact in the lemma needs to be explicitly
stated since the infimum-based definition in (13) is not over a
closed set in variables (σ, µL, νL).

5This may not be obvious now, but can be shown easily by applying the
theory to be developed subsequently.

Lemma 3: For any non-empty L ⊆ E, σ∗L is the optimal
value of the following optimization problem.

(I) min
σ,µL,νL

σ (14)

subject to σµL ≥ νL (15)
µL, νL ∈ Co(ML). (16)

Proof: By (11) and (13), σ∗L is the optimal value of the
following problem.

(II) inf
σ,µL,νL

σ (17)

subject to σµL > νL (18)
µL, νL ∈ Co(ML). (19)

Let the constraint sets of the optimization problem (I) and (II)
be denoted by S1 and S2 (S2 = Θc

L), respectively, both of
which lie in R × R|L| × R|L|. We will show that S1 is the
closure of S2. For this, we need to show that every point in
S1\S2 is a limit point of S2. Let a point (σ, µL, νL) ∈ S1\S2,
which is characterized by σµL ≥ νL with σµk = νk for some
k ∈ L. If µL > 0, we only need to increase σ by a little bit to
find a point in S2. To handle the general case where µk = 0 for
some k ∈ L, note that νk = 0. Since ML includes all maximal
vectors, there exists ωL ∈ Co(ML) such that ωL > 0. Then,
a vector µ̂L = (1 − ε1)µL + ε1ωL, where 0 < ε1 ≤ 1, has
the property that µ̂L > 0. Note that µ̂L ∈ Co(ML). We can
choose ε1 small enough and choose ε2 > 0 accordingly such
that (σ+ε2)µ̂L > νL and also (σ+ε2, µ̂L, νL) is in the ε-open
ball around (σ, µL, νL). Hence, S1 is the closure of S2.

Next, (σ, µL, νL) 7→ σ is a continuous function on R ×
R|L| ×R|L|. Hence, the two problems have the same optimal
value and the optimum is attained for problem (I).

Since the optimization problem (I) has a continuous objec-
tive function and the constraint set is closed, the optimum is
attained in its constraint set. The optimization problem (II) is
not attained. The following lemma makes this more precise.

Lemma 4: For any non-empty set L ∈ E, the optimum
solution to the optimization problem (I) satisfies σ∗Lµ∗L ≥ ν∗L
with σ∗Lµk = νk for some k ∈ L, where µ∗L, ν∗L ∈ Co(ML)
and σ∗L is the σ-local pooling factor for set L. Furthermore,
such k is not unique.

Proof: Suppose we have σ∗Lµ∗L > ν∗L. Then, (σ∗L−ε)µ∗L ≥
ν∗L for small enough ε > 0, and σ∗L cannot be optimal.

We next show such k is not unique; in other words, there
are at least two components achieving equality in an optimal
solution. The proof is by contradiction. Suppose there is only
one k such that σ∗Lµ∗k = ν∗k , and σ∗Lµ∗i > ν∗i for all i 6= k, i ∈
L. Consider two cases. The first case is σ∗Lµ∗k = ν∗k > 0.
Note that there is a vector ν̂ ∈ Co(ML) such that ν̂k = 0.
By choosing a small enough ε > 0, we can obtain a new
vector ν̃ = (1− ε)ν∗ + εν̂ such that σ∗Lµ∗i > ν̃i for all i ∈ L.
Consider the second case where σ∗Lµ∗k = ν∗k = 0. Note that
there must be a vector µ̂ ∈ Co(ML) such that µ̂k > 0. By
choosing a small enough ε > 0, we can obtain a new vector
µ̃ = (1 − ε)µ∗ + εµ̂ such that σ∗Lµ̃i > ν∗i for all i ∈ L. In
either case, the conclusion contradicts the definition of σ∗L (or
equivalently, the first part of this lemma).

6

The optimization characterization of σ∗L is useful since one
can apply the duality theory to derive important results and
insights. The problem (I) has an alternative form, which is a
linear program. From the linear program, we can obtain the
following dual problem. Suppose ML has c(L) columns. Let
en be the vector (1, 1, . . . , 1)′ with n 1’s.

Lemma 5: σ∗L is the optimal value of the following opti-
mization problem.

(Dual) max
x≥0,w

w

subject to x′ML ≤ e′c(L)

x′ML ≥ we′c(L).

Proof: The problem (Dual) is the dual problem of a linear
version of the problem (I). First, rewrite the problem (I).

min
α,β,σ

σ

subject to σMLα ≥ MLβ

α′ec(L) = 1
β′ec(L) = 1
α, β ≥ 0.

Let γ = σα. The problem can be written as,

min
γ,β,σ

σ (20)

subject to MLγ ≥ MLβ (21)
γ′ec(L) = σ (22)
β′ec(L) = 1 (23)
γ, β ≥ 0. (24)

Let x, y, z to be dual variables associated with (21), (22)
and (23), respectively. Then, the dual problem is

max
x≥0,z

− z

subject to x′ML + ze′c(L) ≥ 0

ye′c(L) − x′ML ≥ 0

y = 1.

Let w = −z, we get the optimization problem in the lemma.

Remark 1: From Lemma 5, a set L ⊆ E is σ∗L-local
pooling if and only if σ∗L is the largest number for which
σ∗Le′c(L) ≤ x′ML ≤ e′c(L) holds for some x ≥ 0. In the
special case of σ∗L = 1, we see that L is local pooling if
and only if there exists some x ≥ 0 such that x′ML = e′c(L),
or equivalently, there exists some nonzero x ≥ 0 such that
the components of the vector x′ML are all identical. The
latter statement coincides with the original definition of local
pooling in [8].
Remark 2: The optimization problem (20)-(24) can be rewrit-

ten as follows.

min
γ,β

c(L)∑

i=1

γi

subject to MLγ ≥ MLβ

β′ec(L) = 1
γ, β ≥ 0.

Consider an optimal solution (γ∗, β∗) and σ∗ =
∑c(L)

i=1 γ∗i .
We can interpret ν∗L = MLβ∗ as achieving the service rates
ν∗L by time sharing of the maximal schedules with the time
shares β∗i . Then, MLγ∗ is an alternative way of time sharing
the maximal schedules that achieves at least link rates ν∗L,
but with the least amount of time, σ∗. That is, γ∗ is the most
compact schedule in terms of time. Therefore, σ∗ is the largest
degree (smallest number) at which any time-sharing schedule
(i.e., one in Co(ML)) can be packed.

B. Relation between Set and Link σ-Local Pooling

The development of set σ-local pooling serves as a basis for
better understanding of link σ-local pooling. The performance
limitation of a link is related to all subsets of links containing
the link itself. Therefore, some of the results about set σ-
local pooling can be applied here. The performance of the
links is generally not uniform due to the fact that each link is
associated with a different collection of subsets.

Lemma 6: For a link l ∈ E, σ∗l is the smallest σ∗L for all
L ⊆ E that contains l, i.e.,

σ∗l = min
{L⊆E | l∈L}

σ∗L (25)

Proof: The proof is by definition of σ∗l and σ∗L.
We have the following lemma indicating the relationship
between the local pooling factor for sets and the local pooling
factor for links.

Corollary 7: Let L ⊆ E be an arbitrary non-empty set. For
all l ∈ L, σ∗L ≥ σ∗l .

C. Limiting Set

We next study the situation where the set σ-local pooling
factor is equal to the link σ-local pooling factor for a link in
the set. When equality holds, we see that the efficiency ratio,
i.e., the link σ-local pooling factor, is limited by the set.

Loosely speaking, a limiting set for a link l is a subset of
the links, L ⊆ E with l ∈ L, that “achieves” σ∗l (for instance,
see the infimum definition of σ∗l in (8)). The significance of a
limiting set is that it is the set of links whose interference
with l prevents σ∗l from becoming larger, hence, the term
limiting. Therefore, it is the limiting set for a link, instead
of the complete network, that represents structural constraints
for the link. While the network can be large, the limiting set
for a link may contain a much smaller number of links. Hence,
finding the limiting set and understanding its properties have
both theoretical and practical significance.

Definition 5: For any link l ∈ E, a set L ⊆ E is called
a limiting set for link l if l ∈ L and there exist µL, νL ∈
Co(ML) such that σ∗l µL ≥ νL.

7

Lemma 8: For any link l, a limiting set for l exists.
Proof: The proof is omitted for brevity.

Note that the limiting set for a link is not necessarily unique.
Lemma 9: A set L ⊆ E containing link l is a limiting set

for l if and only if σ∗L = σ∗l .
Proof: Suppose L is a limiting set for l. Then, there exist

µL, νL ∈ Co(ML) such that σ∗l µL ≥ νL. By Lemma 3, σ∗L ≤
σ∗l . Combining this with Corollary 7, we have σ∗L = σ∗l .

Conversely, suppose σ∗L = σ∗l . Then, by Lemma 3, there
exist µL, νL ∈ Co(ML) such that σ∗l µL ≥ νL. By the
definition, L is a limiting set for l.

Corollary 10: Given a non-empty set of links L ⊆ E, if
σ∗L = maxl∈L σ∗l , then L is a limiting set for each link in the
set argmaxl∈Lσ∗l .

For a link l with σ∗l = 1, any set L containing l is a limiting
set for l, since we can choose µL = νL in Definition 5. Hence,
when σ∗l = 1, the notion of limiting set is trivial, and the
corresponding limiting sets are called trivial. Only when σ∗l <
1, the notion is consequential.

Lemma 11: Consider a link l ∈ E with σ∗l < 1, and let
L be a limiting set for l. In the interference graph GI , every
node (link in the network graph G) in L has a (interference)
degree of at least 2 with respect to L. Hence, the subgraph of
GI induced by L contains at least one cycle.

Proof: The proof is by contradiction. Consider the inter-
ference graph, GI . Suppose in the limiting set L for l, some
node in L, say p, has a degree either 0 or 1 in L. Then, we
can construct a vector x as follows. When p has a degree 0 in
L, the entry of x corresponding to p is set to 1 and all other
entries are set to 0; when p’s degree in L is 1, let the entries
corresponding to p and p’s only neighbor in L be equal to
1, and set all other entries to 0. Then, the problem (Dual) in
Lemma 5 has the optimal value 1, which implies σ∗L = 1. By
Corollary 7, σ∗l ≥ σ∗L = 1. Hence, we have σ∗l = 1, which
contradicts the assumption of the current lemma. Therefore,
every node in the limiting set L should have a degree at least
2 in L. Then, there must exist a cycle in the subgraph of GI

induced by the node set L.
Lemma 11 gives a necessary condition for any non-trivial

limiting set. When we want to find a link σ-local pooling
factor or the limiting set for a link, we can apply this lemma
to reach conclusions or prune the search space. For instance,
in the 8-link network of Fig. 1, link 8 has σ∗8 = 1, since in
the interference graph, the node corresponding to link 8 has
a degree 1. More generally, any link that interferes with no
more than one other link must have a link σ-local pooling
factor equal to 1.

Lemma 12: For any link l ∈ E, one of its limiting sets
induces a connected subgraph in the interference graph for
the network.

Proof: Let GI denote the interference graph. Suppose L
is an arbitrary limiting set for l. If L induces a connected
subgraph of GI , then there is nothing to prove. Otherwise, let
L′ ⊆ L with l ∈ L′ be the largest subset of L that contains l
and induces a connected subgraph of GI . We now only need
to show that L′ is also a limiting set for l.

Since L is a limiting set for link l, by Lemma 9, we must
have σ∗l = σ∗L. From Lemma 3, we know there are two vectors

µ, ν ∈ Co(ML) such that σ∗Lµ ≥ ν. Since L′ is the largest
subset of L containing l that induces a connected subgraph of
GI , any (physical) link in L′ does not interfere with any link
in L \ L′. Thus, [µ]L′ , [ν]L′ ∈ Co(ML′) and σ∗l [µ]L′ ≥ [ν]L′ .
Therefore, by Lemma 3, σ∗l ≥ σ∗L′ . Also, since l ∈ L′, we
have σ∗l ≤ σ∗L′ by Corollary 7. Hence, σ∗l = σ∗L′ . According
to Lemma 9, L′ is a limiting set for l.
Remark: Lemma 12 shows that for any link l in the graph,
only those subsets of the links (containing l) that induce
connected subgraphs of the interference graph may further
limit link l’s performance under LQF. When we calculate the
local pooling factor for link l, we only need to inspect these
subsets.

D. Performance Guarantees of LQF - A Revisit
With the development of set σ-local pooling, we can state

the following sufficient condition for stability under LQF.
Therorem 13: Given a network graph G = (V, E, I), sup-

pose the arrival rate vector λ satisfies the condition that, for
every non-empty L ⊆ E, [λ]L ∈ σ∗LΛo

L. Then, the network is
stable under the LQF policy.

Proof: Since the proof is similar to that for Theorem 2,
we will be brief and omit some arguments, which can be found
in the proof for Theorem 2. We will consider the fluid limit
of the queue process, denoted by {ql(t)}t≥0, for all l ∈ E.
Consider a fixed time instance t. Let L be the set of those
longest queues (with equal length) whose time derivatives at
t, q̇l(t), are the largest (also identical) under the particular
LQF policy being used.

By the assumption of the theorem, there exists µL ∈
Co(ML) such that [λ]L < σ∗LµL. For this µL and any other
νL ∈ Co(ML), σ∗LµL ≯ νL by the definition of σ∗L. Hence,
there exists a link k ∈ L such that σ∗Lµk ≤ νk. Then, λk < νk.
If νL is the service rate vector (in the fluid limit) for the queues
in L, the queue at link k decreases at the rate νk−λk. Since all
queues in the set L change at the same rate, they all decrease
at the rate νk − λk, which is positive.

With the relationship between set and link σ-local pooling,
we can show Theorem 2 is implied by Theorem 13. Hence,
the condition of Theorem 13 for stability under LQF is more
general than that of Theorem 2. This shows one of the utilities
provided by our theoretical development of set and link σ-local
pooling.

Proof: (Alternative Proof of Theorem 2) Consider any
link set L ⊆ E. Let l ∈ argmaxk∈Lσ∗k. Since λ ∈ Σ∗(G)Λo,
there exists µ ∈ Co(ME) such that λ < Σ∗(G)µ. This implies
[λ]L < Σ∗L[µ]L, where Σ∗L denotes the restriction of Σ∗(G)
to L, i.e., the diagonal submatrix of Σ∗(G) with only the
rows and columns corresponding to the set L. Hence, [λ]L <
σ∗l [µ]L ≤ σ∗L[µ]L, where we have used Corollary 7 in the
second inequality. It is easy to see that there exists µ̂L ∈
Co(ML) such that [µ]L ≤ µ̂L. Hence, [λ]L ∈ σ∗LΛo

L. By
Theorem 13, the queues are stable under LQF.

V. ESTIMATING Σ∗(G) MATRIX

A. Estimating σ-Local Pooling Factor for Set
In Section IV-A, we introduced a linear programming for-

mulation (LP), (20)-(24), for calculating the σ-local pooling

8

factor for a set of links. Although linear programs can be
solved in polynomial time in terms of the problem size, our
formulation contains exponentially many decision variables
and is computationally intractable for large networks. This
section concentrates on providing methods to estimate σ∗L.
We find defining the problem on the interference graph to
be simpler. Accordingly, the following observations are made
primarily on the interference graph. Recall that a node in
the interference graph corresponds to a link in the original
network. As a result, a maximal schedule corresponds to a
maximal independent set in the interference graph. Unless
mentioned otherwise, the interference graph in this subsection
refers to the subgraph of GI induced by the set L.

Consider the dual problem in Lemma 5. We observe that
the dual LP is a weight assignment problem on the nodes
in the interference graph. Consider a fixed set L ⊆ E. Let
{s1, s2, s3, . . . , st} represent all the maximal schedules with
respect to set L, i.e., each si is the ith column of the matrix
ML. Consequently, the dual problem can be rewritten as
follows.

max
x≥0,w

w (26)

subject to max
i

x′si ≤ 1 (27)

min
i

x′si ≥ w. (28)

Entries of the x vector in the dual problem can be interpreted
as the weights assigned to the nodes in the interference graph.
We define the weight of a schedule to be the sum of the
weights of all active nodes in the schedule. The dual problem
strives to balance the weights of the maximal schedules.
It is easy to see that, in an optimal solution to the dual
problem, denoted by (w∗, x∗), equality is achieved in both
(27) and (28) by some schedules. Otherwise, the objective
value can be further improved. Hence, in an optimal solution,
the weight of any maximum-weight schedule is forced to 1.
This can be interpreted as normalizing the weight assignment
according to the maximum-weight schedule. The weight of
any minimum-weight schedule is w∗. With some thought, the
weight assignment problem can be reformulated as finding
node weights to maximize the ratio between the minimum
and the maximum schedule weights. That is,6

σ∗L = w∗ = max
x≥0

mini x′si

maxi x′si
. (29)

The new formulation in (29) provides a simple way to derive
a lower bound for σ∗L, which is by assigning some particular
weights to the nodes in the interference graph and calculating
the ratio between the minimum and the maximum schedule
weights. Next, we will use this idea to derive lower-bounds
on σ∗L. We denote the component sum of a vector s by ||s||1,
which is the 1-norm of s. Then, we have the following.

Lemma 14: For a non-empty set L ⊆ E, suppose the
maximal schedules are ML = (s1, s2, s3, . . . , st) where si

is a vector corresponding to the ith maximal schedule with

6We assume the convention 0
0

= 0 so that x = 0 is not optimal.

respect to L. Then,

σ∗L ≥
mini ||si||1
maxi ||si||1 . (30)

Proof: In (29), we assign identical weights to all nodes
in L, i.e, xj = 1 for all j ∈ L.
Remark: A similar result was also given in [14] and [15].

For an interference graph that forms a single cycle, the lower
bound in Lemma 14 is in fact achieved.

Lemma 15: Suppose the interference graph corresponding
to L forms a cycle. Then,

σ∗L =
mini ||si||1
maxi ||si||1 . (31)

Proof: See Corollary 23 later.
Next, we give a lower bound of σ∗L for interference graphs

that are cycles.
Lemma 16: Suppose the interference graph corresponding

to L forms a cycle. Then, we have σ∗L ≥ 2/3.
Proof: In any maximal schedule for a cycle interference

graph, there must be at least one node active among any three
consecutive nodes. So, for any schedule si, ||si||1 ≥ |L|/3.
On the other hand, since any two consecutive nodes cannot be
activated simultaneously, there are at most |L|/2 active nodes
in si. Therefore, ||si||1 ≤ |L|/2. By applying Lemma 15, we
have σ∗L ≥ 2/3.

Based on the proof of Lemma 16, as the number of nodes
in the cycle increases, σ∗L eventually approaches 2/3. Hence,
only cycles with a small number of nodes (but greater than 6)
can have σ∗L significantly different from 2/3.

The bounding approach in Lemma 14 works well for cycles.
However, the following example illustrates that this approach
can produce arbitrarily small lower bounds for some network
topologies. Consider the interference graph in Fig. 2 with 9
nodes, which is an instance of the star graph Sk for k = 9.
If we assign identical weights to all nodes in the graph and
compute the ratio in Lemma 14, we will end up getting
the ratio between the largest and smallest cardinality of the
maximal schedules, which is 1/8. As k → ∞, the ratio
approaches 0. However, σ∗L of the network is 1 by Lemma
11, since the star interference graph contains no cycles.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

1

8

7

64

3

2

5

1

8

7

64

3

2

5

9 9

Fig. 2. A 9-node interference graph under equal node-weight assignment.
Left: the minimum-weight schedule; Right: the maximum-weight schedules.

To improve the lower bound, we extend our weight assign-
ment approach to subsets of L. For a set L′ ⊆ L, let ||[si]L′ ||1
represent the 1-norm of the vector [si]L′ , which is si restricted
to the set L′.

9

Lemma 17: For a non-empty set L ⊆ E, suppose the
maximal schedules are ML = (s1, s2, s3, . . . , st) where si

is a vector corresponding to the ith maximal schedule with
respect to L. Then,

σ∗L ≥ max
L′⊆L

mini ||[si]L′ ||1
maxi ||[si]L′ ||1 . (32)

Proof: Assign xj = 1 for all nodes j ∈ L′ and xj = 0
otherwise.

Regardless of the weight assignment scheme on nodes,
enumerating all the maximal schedules is intractable for large
sets. As a result, it is difficult to find the schedules with
the maximum or the minimum weights. This observation
motivates us to find a simpler way to lower-bound σ∗L. The
following lemma states that it is possible to derive a lower
bound for σ∗L using the interference degree. The interference
degree of a node is defined as the maximum number of nodes
that can be scheduled simultaneously in the node’s single-
hop neighborhood, where the hop count is measured in the
interference graph [1]. Since the interference graph here is
restricted to L, the interference degree of a node i ∈ L is
denoted by dL(i).

Lemma 18: Let d∗ = mini∈L dL(i). Then, we have σ∗L ≥
1/d∗.

Proof: Let l∗ ∈ argmini∈LdL(i). Let L′ ⊆ L be the set
of neighbors of l∗ in the interference graph (restricted to L),
i.e., the largest subset such that each l ∈ L′ interferes with l∗.
Here, we use the convention that l∗ ∈ L′.

The maximum number of nodes in L′ that can be activated
simultaneously is d∗. There is at least one node that must be
activated in L′ for any maximal schedule. By applying Lemma
17, we have σ∗L ≥ 1/d∗.
Remark: Lemma 17 can be used to derive Proposition 3
in [1].

B. Estimating σ-Local Pooling Factor for Link

By Lemma 9, the σ-local pooling factor for a link is equal
to the σ-local pooling factor for its limiting set; by Lemma
12, there is a connected limiting set in the interference graph.
In this part, we concentrate on deriving lower bounds for link
performance based on these facts.

We present an algorithm (Algorithm 1), which provides a
lower bound for the local pooling factor for each link based on
its interference degree. Unlike the algorithm in [1], which aims
at finding a single performance bound for the whole graph, our
algorithm finds a separate performance bound for each link.

Therorem 19: Given G = (V,E, I), let (σl)l∈E be the
values returned by Algorithm 1. Then, σ∗l ≥ σl for each l.

Proof: Consider the first round where L1 contains all
links. Suppose there is a link l satisfying dL1(l) ≤ d. Then, if
the link has a limiting set L, we have dL(l) ≤ d since L ⊆ L1.
By applying Lemma 9 and Lemma 18, σ∗l = σ∗L ≥ 1/dL(l) ≥
1/d = σl.

For any later round, when a link l is chosen to be removed,
there are two possibilities: (1) Link l’s limiting set L contains a
previously removed link; or (2) link l’s limiting set L does not
contain any previously removed link. If case (1) is true, we can

Algorithm 1 σ-Local Pooling for Each Link
1: INPUT: A graph G = (V, E, I)
2: OUTPUT: σ-local pooling factors for all links, (σl)l∈E

3: Initialization: L1 ← E, d ← 1
4: for all 1 ≤ i ≤ |E| do
5: Choose a link l from Li with the minimum interference

degree restricted to Li.
6: if dLi(l) ≤ d then
7: σl = 1/d
8: Li+1 ← Li \ l
9: i ← i + 1

10: else
11: d ← d + 1
12: end if
13: end for
14: Return (σl)l∈E .

assume L contains a previous removed link k. By Corollary 7,
σ∗l = σ∗L ≥ σ∗k. Due to the monotonicity of d, dk ≤ dl where
dk is the d value when k is removed and dl is the d value
when l is removed. Hence, σ∗l = σ∗L ≥ σ∗k ≥ 1/dk ≥ 1/dl.
Since σl = 1/dl, we have σ∗l ≥ σl. In case (2), since the
limiting set L for l does not contain any previously removed
links, we must have L ⊆ Li, and hence, dL(l) ≤ dLi(l). Thus,
σ∗l = σ∗L ≥ 1/dLi(l) ≥ 1/dl = σl. Therefore, in either case,
σ∗l ≥ σl holds.
Remark: Algorithm 1 can be further compared with the
similar algorithm in [1]. Both algorithms generate a sequence
of links l1, l2, . . . , l|E| as they progress (but not the same
sequence in general). Our algorithm produces a sequence of
values {dli}1≤i≤|E|, where dli is the d value before link li is
removed from the graph. The algorithm in [1] also implicitly
generates a sequence of values {d̂li}1≤i≤|E|. In the end, our
algorithm returns (σli)1≤i≤|E|, where each σli is a lower
bound of σ∗li and σli = 1/dli for each li. The algorithm in [1]
returns 1/de as a lower bound of σ∗(G), where de = maxi d̂li .
The following fact can be shown.

Lemma 20: Every σl returned by Algorithm 1 is greater
than or equal to the returned value 1/de by the algorithm
of [1].

Proof: The proof is by contradiction. Suppose there exists
a link p with σp < 1/de. According to Algorithm 1, σp =
1/dp, where dp is the d value before p is removed from the
graph. Then, 1/dp = σp < 1/de, which implies that dp > de

or dp−1 ≥ de. In Algorithm 1, d is increased by 1 only when
in some round i, there is no link l in Li such that dLi(l) ≤ d.
Hence, there exists a round i such that every link l in Li

satisfies that dLi(l) > dp − 1 ≥ de.
Now, consider the algorithm of [1] and consider any se-

quence of link removals in that algorithm. Suppose k is the
first link removed from set Li by that algorithm. Assume that
just before removing k, the remaining set of links is L̃. Then
Li ⊆ L̃. This implies that dLi(k) ≤ dL̃(k) ≤ de. This leads
to a contradiction, because dLi(k) > dp − 1 ≥ de. Therefore,
the lemma holds.
Example: Consider the interference graph in Fig. 3, which

10

contains a 6-cycle connected with a tree. For this graph,
Algorithm 1 works as follows.
1. Initially, d = 1 and L1 = E.
2. Every leaf node, say l, satisfies dL1(l) ≤ d = 1. Pick one
leaf node l1 and assign σl1 = 1/d = 1. Then, remove l1 from
L1 to get L2.
3. Continue to remove leaf nodes from the tree until only the
cycle is left. Suppose this takes k − 1 steps. Then, the node
set of the cycle is Lk. For a cycle, we cannot find any node l
with dLk

(l) ≤ d = 1. Hence, we increase d to 2.
4. Find node lk in the cycle with dLk

(lk) ≤ d = 2. Assign
σlk = 1/d = 1/2. Then, remove lk from Lk to get Lk+1.
5. From now on, we can always find a node li from the
remaining graph Li, satisfying dLi(li) ≤ d = 2. We obtain
σli = 1/2 for all remaining nodes.

For the same graph, the algorithm of [1] can obtain a lower
bound for σ∗(G) no greater than 1/2 for the following reason.
Since there is a six-cycle in the graph, we know σ∗(G) ≤ 2/3;
but, 1/2 is the best value the algorithm can obtain other than
1. Let σ(G) denote the lower bound returned by the algorithm
(σ(G) = 1/de). Comparing the two algorithms, we see that
σl ≥ σ(G) for all l. Moreover, our algorithm obtains the
exact σ∗l for every node l on the tree; the algorithm of [1]
underestimates the performance of those nodes on the tree
by using a lower bound of σ∗p for a node p in the cycle.
Imagine the tree has many nodes. We see that a small part
of the network can limit the performance characterization of
the entire network.

3 6

4 5

7

8

9

10

11

12

13

16

15

14

2 1

Fig. 3. An interference graph with a six cycle connected with a tree.

VI. ADDITIONAL THEORETICAL RESULTS

This section presents some theoretical results about σ-local
pooling that can be useful for further research on this subject.

A. Optimality of Equal Weight Assignment for Set σ-Local
Pooling in Special Classes of Graphs

In this section, we study the set σ-local pooling factor for
some special classes of graphs. We use the word schedule to
mean a maximal independent set of a graph.
Remark: In this section, unless mentioned other wise, all
the graphs are understood as interference graphs or induced
subgraphs of interference graphs for networks.

Given an interference graph (or induced subgraph) G =
(V, E), the set σ-local pooling factor is really a property of
the graph itself. For clarity and simplicity, we will denote this
factor by σ∗G in this section (which should not be confused
with σ∗(G) introduced earlier). Let w : V → R+ be a weight
assignment on the nodes. For a schedule s, we use χw(s) to
denote the total weight of the schedule s under w.

1) Weight-Balanced Graphs:
Definition 6: In a graph G = (V,E), let w be an arbitrary

weight assignment on the nodes. We say the graph is weight-
balanced, if the following inequalities hold:

w̄|M | ≤ χw(M) (33)
χw(m) ≤ w̄|m|, (34)

where m and M are schedules with the minimum and maxi-
mum weight, respectively, and w̄ is the average weight of all
the nodes in G.

Lemma 21: A cycle graph is weight-balanced.
Proof: Let G = (V, E) be a cycle graph. Let us index

the nodes sequentially around the cycle from 1 to |V |. Given a
schedule s, we let si denote the ith rotation of s, for 0 ≤ i ≤
|V |−1. That is, if we denote a schedule by the set of selected
nodes, then si = {j|j = (k + i) mod |V |, where k ∈ s}
(assuming we equate node 0 with node |V |). Note that s0 = s.

Note that each rotation si of s is a schedule as well. Let
w = (w1, w2, . . . , w|V |) be an arbitrary weight vector (weight
assignment). By summing the weights of all these rotations,
we get,

|V |−1∑

i=0

χw(si) =
|V |∑

i=1

wi|s|. (35)

Let M be a schedule with the maximum weight. It follows
that χw(si) ≤ χw(M). Thus, we have the following.

|V |∑

i=1

wi|s| ≤ |V |χw(M)

w̄|s| ≤ χw(M),

where w̄ is the average node weight. This proves (33). The
proof for (34) follows a similar argument.

We will consider computing the set σ-local pooling factor
σ∗G according to (29), which we re-write next using the new
notations. Let MG be the set of schedules for the graph G.

σ∗G = max
x≥0

mins∈MG χx(s)
maxs∈MG χx(s)

. (36)

The following lemma shows a special property if the graph
G is weight-balanced.

Lemma 22: If the graph G is weight-balanced, then an
equal weight assignment is optimal with respect to the op-
timization problem (36).

Proof: We consider two cases. First, consider the case
where σ∗G = 1. Suppose w is an optimal weight assignment.
The inequalities (33) and (34) hold under w. Since σ∗G = 1, all
schedules have the same weight. Hence, if m and M are sched-
ules with the minimum and maximum weight, respectively, we
get χw(M) = χw(m). Then, w̄|M | ≤ w̄|m| must hold. Using
this inequality and the fact that any schedule can be considered
as either a maximum-weight schedule or a minimum-weight
schedule, we conclude that all schedules must have the same
cardinality. Therefore, assigning equal weight to every node
achieves σ∗G = 1.

Consider the second case where σ∗G < 1. Suppose there
are n nodes in G and they are indexed from 1 to n. Take an

11

arbitrary optimal weight assignment and suppose the average
of the node weights is c, where c is some constant. For any
weight vector x = {x1, x2, ..., xn}, let φ(x) = maxn

i=1 xi −
minn

i=1 xi, and let the average of x be denoted by x̄.
Among all the optimal weight assignments with the av-

erage node weight equal to c, we pick one that mini-
mizes φ and denote this assignment by x∗. That is, x∗ ∈
arg min{φ(x) | x is optimal and x̄ = c}, with ties broken
arbitrarily.

Notice that if φ(x∗) = 0, the lemma holds. Next, we assume
φ(x∗) > 0 and we will show this leads to a contradiction. In
particular, we will show it is always possible to construct a new
optimal weight vector y with the same average node weight,
c, such that φ(x∗) > φ(y) > 0.

We define y = {yi|yi = x∗i − ε(x∗i − c)}. Note that, for any
ε, ȳ = 1

n

∑
yi = 1

n

∑
x∗i = c. Also, there exists ε1 > 0 such

that for all ε on (0, ε1], we have φ(x∗) > φ(y) > 0. We will
show that we can choose small enough ε on (0, ε1] such that
y is also an optimal weight assignment.

Since σ∗G < 1, the maximum schedule weight is strictly
greater than the minimum schedule weight under x∗. As a
result, there is a gap between the maximum schedule weight
and the second largest weight of all schedule weights. Further-
more, under the weight vector y, the weight of each schedule
is a linear function of ε. Hence, if we choose small enough
ε on (0, ε1], we can make sure that some maximum-weight
schedule under the weight assignment x∗ remains a maximum-
weight schedule under y. More precisely, there exists ε2 on
(0, ε1] such that, for all ε ∈ (0, ε2], there exists a schedule M
(independent of ε) that has the maximum weight under both
x∗ and y.

For a weight-balanced graph, we next show the maximum
schedule weight is not increased when the weight assignment
changes from x∗ to y.

χy(M) =
∑

i∈M

yi

=
∑

i∈M

(x∗i − ε(x∗i − c))

= χx∗(M)− ε(χx∗(M)− |M |c).
By the definition of a weight-balanced graph, χx∗(M) −
|M |c ≥ 0. Thus, we conclude χy(M) ≤ χx∗(M).

Similarly, there exists ε3 on (0, ε1] such that, for all ε ∈
(0, ε3], there exists a schedule m (independent of ε) that has
the minimum weight under both x∗ and y; and furthermore,
χy(m) ≥ χx∗(m). By choosing ε on (0, min(ε2, ε3)], we
get σ∗G = χx∗(m)/χx∗(M) ≤ χy(m)/χy(M). Hence, y is
also an optimal weight assignment for the problem in (36).
Considering φ(x∗) > φ(y) > 0 and the assumption that
x∗ ∈ arg min{φ(x) | x is optimal and x̄ = c}, we have
reached a contradiction.

Lemma 22 implies that the inequality in Lemma 17 can
be changed to equality in a weight-balanced graph. The next
corollary follows immediately from Lemma 21 and 22.

Corollary 23: If the graph G is a cycle, then the optimal
σ∗G is achieved by assigning identical weights to the nodes.

2) Vertex-Transitive Graphs: We next consider another
class of graphs for which an equal weight assignment is
optimal for (36). We first need to introduce some definitions
(see [16]). We consider undirected graphs with no loops and
no more than one edge between any two different nodes, i.e.,
the simple graphs.

Definition 7: An isomorphism from a graph G = (VG, EG)
to a graph H = (VH , EH) is a bijection f : VG → VH such
that (u, v) ∈ EG if and only if (f(u), f(v)) ∈ EH .

Definition 8: An automorphism of a graph G is an isomor-
phism from G to G.

Definition 9: A graph G = (V, E) is vertex-transitive if for
every pair u, v ∈ V there is an automorphism that maps u to
v.

Lemma 24: If a graph G is vertex-transitive, then the
optimization problem (36) is achieved by an equal weight
assignment on the nodes.

Proof: As in the proof of Lemma 22, we assume the
nodes in G are indexed from 1 to n; for any weight vector x,
we define φ(x) = maxn

i=1 xi−minn
i=1 xi. Note that φ(x) = 0

if and only if the node weights are all identical. Let x̄ denote
the average node weight.

We restrict our attention to those weight assignments whose
average node weight is equal to c, where c is some con-
stant, e.g., c = 1. This “normalization” is without loss of
generality. Among all the optimal weight assignments that
have the average node weight equal to c, we pick one that
minimizes φ and denote this assignment by x∗. That is,
x∗ ∈ arg min{φ(x) | x is optimal and x̄ = c}. Suppose
φ(x∗) > 0.

Let a = mini x∗i and b = maxi x∗i . Let Sa = {i|x∗i =
a} and Sb = {i|x∗i = b}. We observe that Sa, Sb 6= ∅ and
φ(x∗) = b− a > 0. Now, we pick a node u ∈ Sb and a node
v ∈ Sa. By the definition of vertex-transitivity, there is an
automorphism f that maps u to v. We construct a new weight
vector x′ by x′i = 1/2(x∗i + x∗f(i)) for all i. Note that the
weight vector y with yi = x∗f(i) for all i is also optimal. Since
x′ is a convex combination of two optimal solutions, x′ is also
optimal. Also, the new weight vector x′ has the same average
weight as x∗. Notice that maxi x′i ≤ b, mini x′i ≥ a and
φ(x′) ≤ φ(x). Since x∗u > x∗v , it follows that x′v > x∗v = a.
Hence, the set of nodes whose weight is equal to a has fewer
elements under x′, and we again call this set Sa. If Sa is
empty, then φ(x′) < φ(x∗), which is a contradiction. For a
similar reason, the set of nodes whose weight is equal to b
has fewer elements under x′ and we call this set Sb. If Sb is
empty, then φ(x′) < φ(x∗), which is a contradiction.

If neither Sa nor Sb is empty, we can repeat the above
procedure to construct a new weight vector from x′ and update
Sa and Sb. Eventually, either Sa or Sb first becomes empty
under some new weight vector, say x̂. Then φ(x̂) < φ(x∗),
which is a contradiction.

Remark: A similar result was found independently in [14]
[17]. It is easy to show that cycles are vertex-transitive.
Therefore, Lemma 24 also implies Corollary 23.

12

B. Graphs with Arbitrarily Small Set σ-Local Pooling Factors

We will prove that set σ-local pooling factors can be arbi-
trarily small using a special class of graphs, the hypercubes.
A similar result was found independently in [14] [17] using
a different class of graphs. The hypercube graph Qn is a
regular graph with 2n vertices. The hypercube graph Qn can
be constructed by labeling the 2n vertices 0, 1, 2, . . . , 2n − 1
and connecting two vertices whenever the Hamming distance
of the binary representations of the labels is equal to 1. The
vertex set of Qn is denoted by VQn

.
Lemma 25: A maximum cardinality independent set of Qn

has at least 2n−1 elements.
Proof: We will inductively construct an independent set

of the desired cardinality. The induction hypothesis is: Qn has
a maximal independent set, Z ⊆ VQn , such that VQn −Z is a
maximal independent set as well. For n = 1, the statement
holds (for n = 0, the statement would hold with proper
definitions). It is known that Qn+1 can be constructed by using
two hypercubes Qn and connecting corresponding vertices
together. Take Q1

n and Q2
n, two copies of Qn, to construct

Qn+1. We will show Qn+1 has a maximal independent set Z,
whose complement, VQn+1 −Z, is a maximal independent set
as well. By the induction hypothesis, Q1

n can be partitioned
into two maximal independent sets , Z1 and VQ1

n
−Z1. Let Z2

be the maximal independent set of Q2
n corresponding to Z1.

Now, observe Z = Z1∪(VQ2
n
−Z2) is a maximal independent

set and its complement VQn+1 −Z = VQn+1 − (Z1 ∪ (VQ2
n
−

Z2)) = Z2 ∪ (VQ1
n
− Z1) is a maximal independent set as

well. Thus the result follows.
We conclude that Qn can be partitioned into two maximal

independent sets and one of them must have at least 2n−1

elements.
Lemma 26: A minimum cardinality maximal independent

set of Qn has at most 2n/(n +1) elements when n = 2k − 1,
where k ∈ Z+.

Proof: In [18], it is shown whenever n is in the form
n = 2k − 1 for some positive integer k, Qn has a perfect
dominating set. In perfect domination, every vertex can only
be dominated by a single node. Since every node in Qn has
degree n, there are at most 2n/(n + 1) elements in a perfect
dominating set. Note that an independent dominating set is a
maximal independent set.

Lemma 27: Let an = 2n − 1, then σ∗Qan
≤ 21−n.

Proof: A hypercube is vertex-transitive. By Lemma 24,
σ∗Qan

can be derived under an equal weight assignment on the
vertices. Let MQan

be set of all maximal independent sets of
Qan . By Lemma 25, maxm∈MQan

|m| ≥ 2an−1. By Lemma
26, minm∈MQan

|m| ≤ 2an/(an + 1). Since

σ∗Qan
=

minm∈MQan
|m|

maxm∈MQan
|m| ≤

2an/(an + 1)
2an−1

= 21−n,

the lemma holds.
Corollary 28: Let an = 2n − 1. Then, limn→∞ σ∗Qan

= 0.

C. Computational Complexity of Calculating σ∗G
Again, consider the interference graph (or subgraph) G =

(V, E). By Lemma 5, the set σ-local pooling factor, σ∗G, is the

optimal value of the following optimization problem.

max w (37)
subject to x′MG ≤ e′ (38)

x′MG ≥ we′ (39)
x,w ≥ 0. (40)

Here, MG is a matrix where the columns are all the maximal
independent sets of G, and e = (1, 1, . . . , 1)′ of an appropriate
dimension. We will investigate the computational complexity
of calculating σ∗G by solving the above optimization problem.

A separation oracle for the above linear program is a
procedure to test whether a given vector is in the convex
region defined by the constraints (38) - (40), and if not, find a
violating constraint. Let SEPORC(G) denote such a separation
oracle. We will first show SEPORC(G) is NP-hard by giving a
reduction from the minimum cardinality maximal independent
set problem to SEPORC(G).

Lemma 29: SEPORC(G) is NP-hard.
Proof: The decision version of the minimum cardinal-

ity maximal independent set (MCMIS, also known as the
minimum independent dominating set) problem asks whether
there is a maximal independent set of size K or less, where
1 ≤ K ≤ |V |. It is known that this problem is NP-complete
(page 190, [19]). We will provide a Turing reduction from the
MCMIS problem to SEPORC(G). Given a vector x ∈ Q|V |
and w ∈ Q, SEPORC(G) can decide the membership of (x,w)
in the convex region defined by the constraints (38) - (40).
Using this separation oracle, we will create a solver for the
MCMIS problem (thus providing a Turing reduction). We set
xi = 1

|V | for i = 1, . . . , |V | and set w = (K + 1)/|V |. The
vector (x,w) always satisfies constraint (38). Hence, feeding
(x,w) to SEPORC(G) will tell us whether (x, w) satisfies
constraint (39) or not. If yes, an MCMIS is at least of the
size |V |w = K + 1; if no, the MCMIS has less than or equal
to K elements.
Remark: In the proof, only the feasibility aspect of the
separation oracle is used. The proof really says the feasibility
problem is NP-hard. But, SEPORC(G) is at least as hard as
the feasibility problem.

Lemma 30: Computing σ∗G by solving the optimization
problem (37) - (40) is NP-hard.

Proof: In [20], the authors have established that the
complexity of the separation oracle and that of the original
optimization problem are polynomially equivalent. Combine
this fact with Lemma 29.
Remark: The statement of Lemma 30 should not be under-
stood as “finding σ∗G is NP-hard”. It means that solving the
optimization problem (37) - (40) is NP-hard, which involves
finding both an optimal solution and the optimal value.

D. Special Structures That Preserve σ∗(G)
In a graph, we will call a node r a super-node if it is

connected to all other nodes. A super-node in an interference
graph corresponds to a link in the network that interferes with
all other links. Suppose we start with an interference graph
G = (V, E). We will investigate the effect of inserting a super-
node to G. We will show that the local pooling factor (for

13

graphs) is not altered by the insertion. We denote the graph
after the insertion of the super-node by G′ = (V ′, E′). With
slight abuse of notation, we denote the graph local pooling
factors by σ∗(G) and σ∗(G′) for G and G′, respectively
(instead of the notation that uses the network graph). Given
a subset T ⊆ V , we denote the set σ-local pooling factor
corresponding T by σ∗T .

Lemma 31: σ∗(G) = σ∗(G′).
Proof: We will consider computing the set σ-local pool-

ing factor σ∗T , T ⊆ V , according to (29), which we re-write
next using some new notations. Let MT be the set of maximum
independent sets for the interference subgraph associated with
T . Given a weight assignment x on the nodes and a set of
nodes s and, let χx(s) be the total weight of the set s. We
know that

σ∗T = max
x≥0

mins∈MT
χx(s)

maxs∈MT
χx(s)

. (41)

Also note (by combining Lemma 1 and Lemma 6)

σ∗(G) = min
T⊆V

σ∗T . (42)

Let the super-node be denoted by r. Then, V ′ = V ∪ r.
Consider the case where T ′ ⊆ V ′ and r ∈ T ′. Let T =
T ′ − {r}. We will show σ∗T ≤ σ∗T ′ . Let x be an optimal
weight assignment on the nodes in T that achieves σ∗T . Let
a be an arbitrary value on [mins∈MT χx(s),maxs∈MT χx(s)],
and assign the weight a to node r. The vector y = (x′, a)′

is a weight assignment on the nodes in T ′. Next, note that
MT ′ = MT ∪ {s}. Hence,

min
s∈MT ′

χy(s) = min(min
s∈MT

χx(s), a) = min
s∈MT

χx(s),

and

max
s∈MT ′

χy(s) = max(max
s∈MT

χx(s), a) = max
s∈MT

χx(s).

As a result,

σ∗T ′ ≥
mins∈MT ′ χy(s)
maxs∈MT ′ χy(s)

=
mins∈MT χx(s)
maxs∈MT χx(s)

= σ∗T . (43)

Next,

σ∗(G′) = min
T ′⊆V ′

σ∗T ′

= min(min
T ′⊆V ′,r∈T ′

σ∗T ′ , min
T ′⊆V ′,r /∈T ′

σ∗T ′)

= min(min
T ′⊆V ′,r∈T ′

σ∗T ′ , σ
∗(G)). (44)

By (43) and the one-to-one correspondence between T ′ and
T through T ′ = T ∪{r}, where T ′ ⊆ V ′, r ∈ T ′ and T ⊆ V ,
we get

min
T ′⊆V ′,r∈T ′

σ∗T ′ ≥ min
T⊆V

σ∗T = σ∗(G). (45)

Combining (44) and (45), we have

σ∗(G′) = σ∗(G).

VII. ADDITIONAL RELATED WORK

In this section, we cover some additional related work. The
references cited by [1] are mostly related, but are not all
repeated here. In [2], Lin et al. provided a distributed algorithm
using schedules that correspond to maximal matchings (in
the interference graph) for the 1-hop interference model. In
each such schedule, no more links can be added to it without
violating the interference constraint. They showed that the
algorithm can achieve a stability region Λ/2 under the 1-hop
model. For more general interference models, they showed
that if one can find an approximation algorithm with the
approximation ratio γ for a maximum weighted independent
set subproblem, then one can achieve a stability region γΛ.

In [3], the authors considered the 2-hop interference model
that can successfully capture the IEEE 802.11 network and
provided an algorithm to find an upper-bound for the network
capacity. In [4] [5], the 2-hop interference is generalized to
k-hop interference and the problem of finding a maximum-
weight schedule was shown to be NP-Hard, for k ≥ 2. The
authors of [21] [7] provided lower bounds on the performance
of the maximal matching algorithms for the cases of arbitrary
and geometric graphs. More specifically, for geometric graphs,
[21] showed that the efficiency ratio γ∗(G) ≥ 1/8 in the 2-hop
interference model; [5] showed γ∗(G) ≥ 1/49 in the k-hop
interference model where k ≥ 2.

In addition to [13], several other papers also introduced al-
gorithms of local scheduling that have performance guarantee.
Lin and Rasool [22] introduced random scheduling schemes
under the 1-hop and 2-hop interference models. There is a
slight loss of efficiency in their schemes compared with what
is achievable by the so-called distributed greedy scheduling
algorithm by Wu et al. [23], which is also a local greedy
algorithm. Joo and Shroff [24] and Gupta et al. [25] both
discovered related random scheduling schemes that improve
upon Lin and Rasool’s schemes.

VIII. CONCLUSION

In this paper, we provide a refined framework on per-
formance characterization of the LQF policy, based on the
idea of local pooling introduced in [8] [1]. In particular, we
introduce the concept of link σ-local pooling, which allows
heterogeneous characterization of individual link performance,
as opposed to treating all links the same. We define the Σ∗(G)
diagonal matrix, which contains the link σ-local pooling
factors in the diagonal entries, as a generalization of the
network σ-local pooling, σ∗(G), in [1]. The matrix Σ∗(G)
provides a refined performance characterization for LQF . We
show that our performance characterization captures a larger
region of stability than previous results.

We then introduce a set of theory that helps to apply the
new idea of link σ-local pooling. The core of this theory
involves the concepts of σ-local pooling for a set of links
and the limiting set for a link. We show how these concepts
are related to link σ-local pooling, and how to calculate or
bound both set and link σ-local pooling factors. Based on the
developed theory, we derive new estimation methods for set
and link σ-local pooling factors.

14

There are still open issues that may be addressed by
further research. The following are three examples. First,
the computational complexity of calculating Σ∗(G) or σ∗L is
still unknown. Second, in light of the newly discovered fact
that Joo’s local greedy scheduling also achieves the stability
region σ∗(G)Λo [13], it would be interesting to investigate
whether the enlarged stability region of LQF, Σ∗(G)Λo, can
be preserved by similar local greedy algorithms. Third, there
are other, possibly nonlinear, transformations of the capacity
region Λ to φ(Λ) where LQF stabilizes the network. Further
investigation on these transformations may have important
theoretical and practical values.

REFERENCES

[1] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the greedy maximal scheduling algorithm in multi-hop wireless
networks,” in Proceedings of IEEE INFOCOM, 2008.

[2] X. Lin, N. B. Shroff, and R. Srikant, “The impact of imperfect
scheduling on cross-layer rate control in wireless networks,” IEEE/ACM
Transaction on Networking, vol. 14, no. 2, pp. 302–315, April 2006.

[3] H. Balakrishnan, C. Barrett, V. Kumar, M. Marathe, and S. Thite,
“The distance-2 matching problem and its relationship to the MAC-
layer capacity of ad hoc networks,” IEEE Journal On Selected Areas In
Communications, vol. 22, no. 6, pp. 1069–1079, 2004.

[4] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “Maximum weighted
matching with interference constraints,” in PERCOMW ’06: Proceedings
of the 4th annual IEEE international conference on Pervasive Computing
and Communications Workshops, 2006.

[5] G. Sharma, R. R. Mazumdar, and N. B. Shroff, “On the complexity
of scheduling in wireless networks,” in Proccedings of ACM MobiCom,
2006, pp. 227–238.

[6] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, Dec 1992.

[7] G. Sharma, N. B. Shroff, and R. R. Mazumdar, “Joint congestion
control and distributed scheduling for throughput guarantees in wireless
networks,” in Proceedings of IEEE INFOCOM, 2007, pp. 2072–2080.

[8] A. Dimakis and J. Walrand, “Sufficient conditions for stability of
longest-queue-first scheduling: Second-order properties using fluid lim-
its,” Advances in Applied Probability, vol. 38, pp. 505–521, 2006.

[9] A. Brzezinski, G. Zussman, and E. Modiano, “Local pooling conditions
for joint routing and scheduling,” in Information Theory and Applica-
tions Workshop, 2008, pp. 499–506.

[10] ——, “Enabling distributed throughput maximization in wireless mesh
networks: a partitioning approach,” in Proceedings of ACM MobiCom,
2006, pp. 26–37.

[11] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Transactions on Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[12] J. G. Dai, “On positive harris recurrence of multiclass queueing net-
works: A unified approach via fluid limit models,” Annals of Applied
Probability, vol. 5, pp. 49–77, 1995.

[13] C. Joo, “A local greedy scheduling scheme with provable performance
guarantee,” in Proceedings of MobiHoc, 2008, pp. 111–120.

[14] B. Birand, M. Chudnovsky, B. Ries, P. Seymour, G. Zussman, and
Y. Zwols, “Analyzing the performance of greedy maximal scheduling
via local pooling and graph theory,” in Proceedings of IEEE INFOCOM,
March 2010.

[15] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput
efficiency of greedy maximal scheduling in wireless networks,” in
Proceedings of MobiHoc, 2009.

[16] D. West, Introduction to Graph Theory. Prentice Hall, 2001.
[17] B. Birand, M. Chudnovsky, B. Ries, P. Seymour, G. Zussman, and

Y. Zwols, “Analyzing the performance of greedy maximal scheduling
via local pooling and graph theory,” Columbia University, Tech. Rep.,
July 2009.

[18] M. Livingston and Q. F. Stout, “Perfect dominating sets,” Congressus
Numerantium, vol. 79, pp. 187–203, 1990.

[19] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, USA: W. H. Freeman
& Co., 1979.

[20] M. Grötschel, L. Lovàsz, and A. Schrijver, “The ellipsoid method and
its consequences in combinatorial optimization,” Combinatorica, vol. 1,
pp. 169–197, 1981.

[21] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in Proceedings of 43d Annual
Allerton Conference on Communication, Control and Computing, 2005,
pp. 28–30.

[22] X. Lin and S. B. Rasool, “Constant-time distributed scheduling policies
for ad hoc wireless networks,” in Proceedings of the IEEE CDC, 2006.

[23] X. Wu, R. Srikant, and J. R. Perkings, “Scheduling efficiency of
distributed greedy scheduling algorithms in wireless networks,” in Pro-
ceedings of IEEE INFOCOM, 2006.

[24] C. Joo and N. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” in Proceedings of IEEE
INFOCOM, 2007.

[25] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed schedul-
ing algorithms for wireless networks,” in Proceedings of IEEE INFO-
COM, May 2007.

Bo Li is a PhD student at the Computer and
Information Science and Engineering department at
the University of Florida, starting in August 2006.
He has an MS degree and a BA degree from the
Huazhong University of Science and Technology,
China, in 2006 and 2004, respectively. His research
interests are in the computer networking area, in-
cluding link scheduling for wireless networks and
network resource allocation. He is also interested
in probability theory, stochastic processes and graph
theory.

Cem Boyaci is a PhD student at the Computer and
Information Science and Engineering department
at the University of Florida. He has a BS degree
from Bilkent University, Ankara, Turkey in 2005.
His current research interests include complexity
and performance characterization of scheduling al-
gorithms in wireless computer networks.

Ye Xia is an associate professor at the Computer and
Information Science and Engineering department at
the University of Florida, starting in August 2003.
He has a PhD degree from the University of Califor-
nia, Berkeley, in 2003, an MS degree in 1995 from
Columbia University, and a BA degree in 1993 from
Harvard University, all in Electrical Engineering.
Between June 1994 and August 1996, he was a
member of the technical staff at Bell Laboratories,
Lucent Technologies in New Jersey. His research
interests are in the computer networking area, in-

cluding performance evaluation of network protocols and algorithms, wireless
network link scheduling, network resource allocation, and content distribution
algorithms on overlay networks. He is also interested in probability theory,
stochastic processes and queueing theory.

