CAP6516: Medical Image Analysis

Texts and Other Material: There is NO text book for this class. Hoever, there are several references and they are:

- 1. Digital Image Processing, by Rosenfeld and Kak (Vol. 1); Publisher: Academic Press.
- 2. The Fourier Transform and its Applications, by Bracewell, McGraw Hill.
- 3. Level-set Methods, by J. A. Sethian, Cambridge University Press.
- 4. Geometric Partial Differential Equations, G. Sapiro, Cambridge University Press.
- 5. Mathematical Problems in Image Processing, G. Aubert and P. Kornprobst, Springer Verlag.
- 6. Numerical Solution of PDEs in Science and Engineering Lapidus and Pinder, McGraw Hill.
- 7. Other Material: Papers from the following journals, IEEE TPAMI, IEEE TMI, CVGIP, IJCV, JMIV, and IEEE TIP; Some of these material will be handed out in class.

Instructors: Prof. Baba Vemuri.

Office hours: Grading:

1. Homeworks:10%

2. Programs: 20

3. One Midterm: 20%

4. Presentations: 20

5. Project: 30%

Syllabus

Medical image formation, reconstruction mathematics (Fourier slice theorem, Abel, Hankel and Radon transforms), PDE-based denoising, multi-dimensional splines, active 2D/3D models and segmentation, segmentation via bayesian estimation, basic differential geometry of curves and surfaces, Image matching/registration with application to multi-modal co-registration.

Tentative schedule of lectures

- 1. Image data acquisition: CT, MR, ultrasound.
- 2. Fourier, Abel, Hankel transffrms, sampling theorem.
- 3. CT reconstruction mathematics, backprojection.
- 4. Discrete and Fast Fourier Transforms.
- 5. Image Restoration via diffusion filtering.
- 6. Active Models and Image Segmentation
- 7. Clustering and Bayesian Segmentation methods.
- 8. . Differential geometry of curves & surfaces.
- 9. Advanced applications of the geometry of surfaces: characteristic surface curves, points and regions.
- 10. Matching and Image Registration