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ABSTRACT

Diffusion MRI (dMRI) has shown significant promise in cap-
turing subtle changes in neural microstructure caused by neu-
rodegenerative disorders. In this paper, we propose a novel
end-to-end compound architecture for processing raw dMRI
data. It consists of a 3D convolutional kernel network (CKN)
that extracts macro-architectural features across voxels and a
gauge equivariant Volterra network (GEVNet) on the sphere
that extracts micro-architectural features from within voxels.
The use of higher order convolutions enables our architecture
to model spatially extended nonlinear interactions across the
applied diffusion-sensitizing magnetic field gradients. The
compound network is globally equivariant to 3D translations
and locally equivariant to 3D rotations. We demonstrate the
efficacy of our model on the classification of neurodegenera-
tive disorders.

Index Terms— diffusion MRI, gauge equivariance, neu-
rodegenerative diseases, higher order convolutions

1. INTRODUCTION

Alzheimer’s disease (AD), Dementia with Lewy bodies
(DLB), and Parkinson’s disease (PD) are the most common
causes of neurodegenerative dementia, but effective diagnosis
and differentiation between the three remains a major chal-
lenge. As many as two out of every three cases of DLB are
either missed entirely or misdiagnosed, most commonly as
AD [1]. To the best of our knowledge, no end-to-end deep
networks have been reported in the literature specifically for
discriminating between AD, DLB, and PD.

Diffusion MRI is a non-invasive imaging modality that
can capture variations in neural microstructure. Recent deep
learning works have demonstrated the utility of dMRI in the
analysis of Parkinson’s disease, e.g. [2]. However, most of
these methods do not apply directly to raw dMRI data but
instead apply to derived representations such as diffusion ten-
sors and fiber orientation distribution functions.
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A raw dMRI signal (single-shell acquisition) is modeled
as a function f : R3 × S2 → R, i.e. there exists a 3D vol-
ume fg : R3 → R for every diffusion-sensitizing magnetic
gradient direction (or b-vector) g ∈ S2. While traditional con-
volutional neural networks (CNNs) can be artificially adapted
to exploit raw dMRI data, doing so requires ignoring the un-
derlying geometry and thus loses potentially valuable infor-
mation. A more effective approach is to embrace the tenets
of geometric deep learning (GDL), a subfield that generalizes
convolutions to non-Euclidean settings such as the sphere S2.

Several GDL-inspired works acting on raw diffusion data
exist in the literature [3, 4, 5]. In this work, however, we are
interested in extending the success of higher order convolu-
tions in dMRI witnessed in [2, 6]. We do this by developing a
higher order analogue of the gauge equivariant (GE) convolu-
tion introduced in [7], an extremely general convolution oper-
ation that is valid on arbitrary Riemannian manifolds. Despite
their theoretical generality, GE convolutions exhibit practical
benefits over Fourier-theoretic group convolutions, as they de-
couple the spatial resolution from the feature map bandwidth.

The key contributions of this work are: (1) a higher order
generalization of the GE convolution, (2) an implementation
on S2, dubbed the GEVNet, and (3) experimental verifica-
tion of the utility of a novel compound architecture, CKN2 +
GEVNet, for classifying neurodegenerative diseases.

2. BACKGROUND

2.1. First Order Gauge Equivariant Convolutions

We now briefly review the theory of GE convolutions and re-
fer the reader to [7, 8] for a more detailed treatment.

Let M be a 2-dimensional Riemannian manifold with
structure group SO(2), the group of 2D rotations. In the GE
setting, feature maps become tensor fields on M (e.g. vector
fields). A feature map is coordinatized w.r.t. a gauge, a local
choice of coordinate frame. A GE convolution maps an input
feature map fin of type ρin to an output feature map fout of
type ρout, where ρin and ρout are group representations that
encode the transformation behavior of the tensor components
under a change of gauge. Let fin be a feature map of type
ρin and K : R2 → Rdout×din a matrix-valued filter where din



and dout are the dimensions of the input and output tensors,
respectively. Letting qv := expp wpv (exp denotes the Rie-
mannian exponential map and wp a gauge), the GE convolved
feature map fout = K ⋆ fin is given pointwise w.r.t. wp by

fout(p) :=

∫
R2

K(v)ρin(tp←qv )fin(qv) dv, (1)

where tp←qv denotes the SO(2)-valued gauge transformation
taking the frame on qv (after parallel transport to p) to the
frame on p. Eqn. 1 is equivariant to a change of gauge at p if
and only if K is SO(2)-steerable, i.e. K satisfies

K(t−1v) = ρout(t
−1)K(v)ρin(t) (2)

for all t ∈ SO(2) and v ∈ R2. A critical result of [8]
shows that, in the case where M = S2, GE convolutions with
SO(2)-steerable filters are equivariant to rotations ϕ ∈ SO(3).

2.2. The Volterra Series

The traditional convolution operator admits a natural gener-
alization called the Volterra series (or expansion) [9], which
in practice is truncated at some specified order. For example,
given a 1D signal f : R → R, its second order Volterra ex-
pansion is given by V 2[f ] = h(0)+h(1) ⋆ f +h(2) ⋆ f , where
h(0) is a constant, h(1)⋆f is the usual (first order) convolution,
and

(h(2) ⋆ f)(x) =

∫ ∫
h(2)(τ1, τ2)f(x− τ1)f(x− τ2) dτ1dτ2.

(3)
Each h(k) is a learnable filter taking k arguments. The in-
tuition behind Eqn. 3 is that the second order term is aggre-
gating all pairwise interactions between neighbors within the
filter support. In general, the higher order terms for k > 1
can model spatially extended nonlinear interactions across a
receptive field, a task that pointwise nonlinearities such as the
ReLU are less suited for.

3. METHODOLOGY

3.1. Second Order Gauge Equivariant Convolutions

Here we propose a higher order analogue of the first order GE
convolution seen in Eqn. 1, inspired by the Volterra expansion
defined in Eqn. 3. We will only be concerned with second
order expansions for the remainder of this work. We omit
all proofs due to space constraints. Let M be as defined in
section 2.1.

Definition 3.1. A second order filter K(2) of type (ρout, ρin)
is a smooth map

K(2) : R2 ×R2 → Rdout×d2
in . (4)

Definition 3.2. A second order filter K(2) of type (ρout, ρin)
is said to be SO(2)-steerable if and only if it satisfies a second
order steerability constraint given by

K(2)(t−1v1, t
−1v2) = ρout(t

−1)K(2)(v1, v2)ρ
⊗2
in (t) (5)

for all t ∈ SO(2) and v1, v2 ∈ R2. Here, ρ⊗2in is the tensor
product representation given by ρ⊗2in (t) = ρin(t)⊗ ρin(t).

Definition 3.3. Let K(1) be a first order SO(2)-steerable filter
(see Eqn. 2) and let K(2) be a second order SO(2)-steerable
filter, both of type (ρout, ρin). Letting qv := expp wpv, the
second order GE expansion of a feature map fin is given by
V 2

GE[fin] := K(1) ⋆ fin + K(2) ⋆ fin, where K(1) ⋆ fin is the
first order GE convolution in Eqn. 1 and

(K(2) ⋆ f in)(p) :=

∫
R2

∫
R2

K(2)(v1, v2)

ρin(tp←qv1
)fin(qv1)⊗ ρin(tp←qv2

)fin(qv2) dv1dv2.

(6)
Note how Eqn. 6 reduces to the second order Volterra ex-

pansion in Eqn. 3 in the case of scalar-valued feature maps
on a Euclidean space (save the zeroth order bias term h(0)).
We now present a theorem on the equivariance of the operator
V 2

GE. Such a result is necessary because (a) we would like for
V 2

GE[fin] to be independent of the coordinatization of fin and
(b) we want V 2

GE to further enjoy SO(3)-equivariance in the
case where M = S2 (see the last sentence of section 2.1).

Theorem 3.4. V 2
GE is gauge equivariant. That is, if fin(p) is

coordinatized with respect to w̃p = wp ◦ t, where t ∈ SO(2),
then V 2

GE[fin](p) transforms as ρout(t
−1)V 2

GE[fin](p) when
coordinatized with respect to wp.

The main difficulty of applying Eqn. 6 in practice is con-
structing filters that satisfy the steerability constraints in Eqns.
2 and 5. However, since our implementation in section 3.2
will only rely on zeroth and first order tensors (i.e. scalars
and tangent vectors), we can make do with the following suf-
ficient condition for second order SO(2)-steerability.

Proposition 3.5. Let K(1)
01 be a first order SO(2)-steerable

filter of type (ρ0, ρ1) and K
(1)
11 a first order SO(2)-steerable

filter of type (ρ1, ρ1), where ρ0 is the trivial representation
(i.e. ρ0(t) = 1) and ρ1 is the standard representation map-
ping t ∈ SO(2) to the usual 2 × 2 rotation matrix. Then, a
second order filter of the form

K
(2)
11 (v1, v2) := K

(1)
11 (v1)⊗K

(1)
01 (v2) (7)

is SO(2)-steerable (i.e. satisfies Eqn. 5) of type (ρ1, ρ1).

The previous proposition enables us to construct sec-
ond order SO(2)-steerable basis filters using the first order
SO(2)-steerable solutions to Eqn. 2 derived in [10]. Note
that the proposition can be modified to incorporate second
order SO(2)-steerable filters of types (ρ0, ρ1), (ρ1, ρ0), and
(ρ0, ρ0). We then learn a linear combination of the generated
second order basis filters.



Fig. 1. A schematic of the CKN2 + GEVNet model. Letting GEVConv(cρin

in , cρout

out ) denote a GEVNet convolution layer
taking in cin feature maps of type ρin and outputting cout feature maps of type ρout, our implemented GEVNet is of the form
GEVConv(8ρ0 , 8ρ0⊕ρ1) → GEVConv(8ρ0⊕ρ1 , 12ρ0⊕ρ1) → GEVConv(12ρ0⊕ρ1 , 12ρ0).

3.2. The GEVNet

The GEVNet is an instantiation of Eqn. 6 on M = S2. It
computes second order GE convolutions with hidden feature
maps of type ρ0 ⊕ ρ1, where ρ0 and ρ1 are as in Prop. 3.5.
Due to memory constraints, we assume that pairwise tensor
products only occur across features of the same order. Ex-
plicitly, if f(q1) = s1 ⊕ r1 and f(q2) = s2 ⊕ r2, where si
is a scalar and ri is a tangent vector, then we stipulate that
f(q1)⊗ f(q2) := (s1 ⊗ s2)⊕ (r1 ⊗ r2) , i.e. we assume

vanishing cross terms. The second order GE convolutions are
interleaved with regular nonlinearities as described in [11].

4. EXPERIMENTS

4.1. Dataset and Preprocessing

Our dMRI data pool consisted of a cohort of 112 AD, 85
DLB, and 436 PD patient brain scans. The scans were eddy
current and motion corrected using FSL [12]. Since the data
were pooled from different MR scanners possessing distinct
acquisition parameters (see URLs provided in section 7), the
scans underwent a retrospective harmonization using [13].
Next, the scans were affinely registered to a common MNI
template and downsampled to a voxel size of 2 mm3. Finally,
the image intensities at each voxel were interpolated and re-
sampled (constrained by antipodal symmetry of the diffusion
signal) onto a Healpix grid with 192 grid points. For each
classification problem (see 4.3), we mitigate class imbalance
in the training set by augmenting the deficient class using
mixup [14] after uniformly sampling a 20% test set.

4.2. Network Architecture

Our proposed architecture for processing raw dMRI scans
consists of a macro-architectural module that extracts features
across voxels, followed by a micro-architectural module that
extracts features from within voxels. The macro-architectural
module is a convolutional kernel network (CKN) [15] on R3.
The details of the CKN are outside the scope of our present
work, but it suffices to understand it as an approximation to a

standard CNN that can be easily modified to efficiently com-
pute higher order convolutions on R3. This is done by mod-
ifying the degree of a polynomial RKHS kernel, e.g. a linear
kernel approximates first order convolutions while a quadratic
kernel approximates second order convolutions. The micro-
architectural module is a spherical CNN.

A single dMRI scan is an array of shape 192 × 1 × 77 ×
95 × 77, corresponding to 192 b-vectors, one input channel,
and three spatial dimensions. Recall there is a 3D volume
for each b-vector. Since the b-vectors populate the batch di-
mension, the CKN computes inter-voxel features for each 3D
volume in isolation. The resulting feature map has shape
192×8×5×6×5. At this point, we swap the spatial dimen-
sions with the batch dimension, since now the b-vectors be-
come precisely the grid positions on S2. The spherical CNN’s
output is pooled over R3 and S2 to produce a final feature
vector. See Fig. 1 for a schematic. Although this two-part ar-
chitecture is not invariant to the joint action of SE(3), there is
evidence [5] to suggest that this is an unnecessary requirement
since all scans are registered prior to downstream processing.

4.3. Ablation Study

We test the effect of higher order convolutions on three neu-
rodegenerative disease classification problems (Table 1). We
ablate on the order of the inter-voxel convolution (CKN) by
varying the degree of a polynomial kernel, and on the order
of the intra-voxel convolution (spherical CNN) by exchanging
a second order GEVNet with a first order DeepSphere (DS)
[16]. The notation CKN1 and CKN2 refer to a CKN with lin-
ear and quadratic kernels, respectively. We also include two
baselines: a lone CKN2 that ignores b-vector geometry, and a
lone GEVNet that ignores diffusion across voxels.

We control for parameter counts to eliminate their possi-
bility as a confound. Each CKN has a fixed architecture con-
sisting of 3164 learnable parameters. Both the GEVNet and
the DS consist of three convolution layers, with the GEVNet
having 12424 parameters and the DS having 13696 parame-
ters. All other optimization-related hyperparameters are kept
the same across classification tasks. For a fixed choice of



Table 1. Test accuracies (%) on three neuroimaging classifi-
cation problems, averaged over five runs.

Architecture AD v. DLB AD v. PD DLB v. PD
CKN2 86.76 90.32 98.06
GEVNet 77.08 72.36 81.12
CKN1 + DS 86.76 79.16 89.24
CKN1 + GEVNet 90.34 86.30 93.30
CKN2 + DS 89.82 95.07 98.46
CKN2 + GEVNet 92.86 98.36 98.27

Table 2. Extra performance metrics for the CKN2 + GEVNet.
Metric (%) AD v. DLB AD v. PD DLB v. PD
Sensitivity 91.30 98.18 98.82
Specificity 95.00 98.41 98.16

CKN, we find that an accompanying GEVNet outperforms (or
is highly comparable to) its DS counterpart by a significant
margin. This is noteworthy given that the GEVNet is at an
over 1k parameter disadvantage against the DS. Conversely,
for a fixed choice of spherical CNN, we find that replacing the
accompanying CKN’s linear kernel with a quadratic kernel
yields a boost in performance. We see that CKN2 + GEVNet
is the overall best classifier, as it performs second order con-
volutions both across and within voxels. Additional support-
ing metrics for this classifier are provided in Table 2.

5. CONCLUSION

In this paper, we generalized the first order GE convolution
to its higher order analogue. Our resulting implementation
on S2, the GEVNet, was applied as part of a compound ar-
chitecture for the classification of neurodegenerative disor-
ders. Our experiments demonstrate the importance of con-
sidering higher order convolutions in settings exhibiting spa-
tially extended nonlinear interactions (e.g. diffusion of wa-
ter molecules in section 4.3) which are difficult to capture by
solely relying on pointwise nonlinearities.
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