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Abstract. In this paper, we present a novel generalization of the Volterra Series,
which can be viewed as a higher-order convolution, to manifold-valued functions.
A special case of the manifold-valued Volterra Series (MVVS) gives us a natural
extension of the ordinary convolution to manifold-valued functions that we call,
the manifold-valued convolution (MVC). We prove that these generalizations
preserve the equivariance properties of the Euclidean Volterra Series and the
traditional convolution operator. We present novel deep network architectures
using the MVVS and the MVC operations which are then validated via two
experiments. These include, (i) movement disorder classification from diffusion
magnetic resonance images (dMRI), and (ii) fiber orientation distribution function
(fODF) reconstruction from compressed sensed dMRIs. In both the experiments,
MVVS and MVC networks outperform the state-of-the-art.
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1 Introduction
Theory In the recent past, there has been a surge in medical imaging and computer vision
research to develop deep neural networks(DNNs) that can cope with manifold-valued
data e.g., the manifold of (n× n) symmetric positive-definite (SPD) matrices, Pn, the
special orthogonal group, SO(n), the Grassmann manifold, Gr(p, n), and the n-sphere,
Sn. At the outset, it will be useful to categorize two types of problems concerning data
in non-Euclidean spaces. These are: (i) data that are samples of functions defined on
smooth manifolds, i.e. f : M → R and (ii) data that are samples of manifold-valued
functions whose domain is Euclidean i.e., f : Zd → M where M is a Riemannian
manifold and Zd is a Euclidean sample lattice. In this paper we address the problem of
developing DNNs for the data type defined in (ii).

For methods suited to data in category (i) described above, we refer the reader to a
recent survey [5]. In the context of data described in (ii) above, authors in [15] presented
a DNN that consists of layers which explicitly utilize the structure of SPD matrices.
In [16] authors presented a DNN for classification of hand-crafted features residing in
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a Grassmann manifold. However, the above architectures do not attempt to develop a
counterpart of the classical convolutional layer in the traditional convolutional neural
network (CNN) which is viewed as one of the key components to the success of CNNs.
Besides convolutional layers, batch normalization is also a useful trick used in CNNs to
smooth the loss surface, and authors in [6] recently proposed such a technique for data in
the manifold of SPD matrices. In this paper, we focus our attention to data represented
on a grid where each grid point is associated with a value in a manifold, M , with known
geometry, i.e., f : Zd → M . The lack of a consistent framework for designing DNN
architectures for data residing in a general Riemannian manifold was partly due to
the fact that unlike for functions defined on manifolds, there was no natural analog of
the convolution operation for manifold-valued functions until recently. In [24] authors
defined the weighted Fréchet mean (wFM) [23] as an analog to the classical (Euclidean
space) convolution operation for manifold-valued data and recently, the use of wFM
operation to build a CNN for manifold-valued data was pioneered by authors of [7, 8].
Note that although their definition of wFM as a ”plug-in” operation for convolutions is
valid for any Riemannian manifold, the convexity constraints in the definition used for
wFM restricts the range of values of the wFM leading to model capacity limitations of
their network.

In this paper, we propose the idea that for complete Riemannian manifolds, it is
possible to map the manifold-valued data points within a convolution window defined
over the manifold-valued image to the tangent space anchored at the FM of these points
using the Riemannian Log map. Then, perform the linear combination operation in the
tangent space (which is isomorphic to the Euclidean space) and map it back to the mani-
fold using the Riemannian Exp map. We provide the details of this operation called the
manifold-valued convolution (MVC) in the next section. To increase the expressiveness
and hence the capacity of the network, we introduce the novel concept of higher order
manifold-valued convolutions via Volterra series representation [26]. The traditional
convolution is indeed the first order term of the Volterra Series, which will be briefly
reviewed in Section 2. In [18], authors empirically showed that replacing a convolution
filter with a higher order Volterra series filter increased model accuracy. The Volterra
Series was also used recently to design DNNs for data in category (i) [3]. In this paper,
we generalize the Volterra Series for real-valued functions to manifold-valued functions
and call it the manifold-valued Volterra Series (MVVS). We show that the MVVS (MVC)
is equivariant to translation in the domain which allows for weight sharing. The MVVS
(MVC) can be used as an alternative to the wFM-based convolutions presented in [7, 8]
and we call the network based on MVVS (MVC) the MVVS (MVC)-Net. In addition to
the translation equivariance, the MVC is also equivariant to the isometry group actions
admitted by the manifold. This latter equivariance however does not hold for the MVVS.
Hence, by considering only the first-order term of the MVVS, we lose some expressive-
ness, but we gain the isometry equivariance and computational efficiency. Note that the
MVC and the wFM-based convolution are different by construction and a key difference
is that for wFM the associated weights need to be positive while such restriction is not
required by the MVC. In practice, this restriction limits the output of a wFM layer to
the convex cone of the input data points and hence greatly reduces the capacity of the
network.
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Applications To demonstrate the performance of the MVVS (MVC)-Net, we test the
proposed network on classification and reconstruction problems encountered in diffusion
magnetic resonance image (dMRI) processing. In the context of classification, we apply
MVVS and MVC networks to classify dMRI brain scans of patients with movement
disorders from controls. In the context of reconstruction, we will reconstruct the fiber
orientation distribution function (fODF) field [29] from highly undersampled dMRI data.
There is a vast body of literature on fODF reconstruction from dMRI data and we refer
the reader to a recent comprehensive survey [11] and references therein. Here, we limit
ourselves to the review of DNNs for fODF reconstruction from compressed sensed dMRI
data. Recently, authors in [27] proposed a novel deep spherical U-Net for the fODF
reconstruction but did not enforce non-negativity constraint on the reconstructed fODFs.
They represent the fODF in terms of the spherical harmonics (SH) and the reconstruction
thus involves estimating the SH coefficients. In [20,21] 3D-CNN networks were explored
for fODF reconstruction, but these networks do not guarantee the non-negativity of the
reconstructed fODFs. We choose to use the square-root parametrization of the fODF
which maps fODFs to a hypersphere. Since all operations in our network are intrinsic, the
output is automatically a valid (non-negative) fODF. In fODF reconstruction networks,
we would like to point out a distinction between inter-voxel models and intra-voxel
models. We define inter-voxel models as combining (macro-structural) features between
voxels in the brain, while intra-voxel models extract (micro-structural) features from
within each voxel. Prior work in [27] focused primarily on building intra-voxel models.
The primary novelty of the architecture we present here is a layer which acts as an
inter-voxel model. We expected and have found empirically that combining intra- and
inter-voxel models within one network significantly improves performance over using
just one of the two. Thus the empirical results presented here should be viewed as
complementary to prior work [27] on intra-voxel fODF reconstruction.
Contributions Thus, the main contributions of our work in this paper are: (i) We define
the manifold-valued Volterra Series representation for general (complete) Riemannian
manifolds and prove that the MVVS is equivariant to translation. Additionally, we prove
that the MVC, which is the first-order term of the MVVS, is equivariant to isometry
group actions admitted by the manifold. (ii) We present a DNN architecture based on
MVVS (MVC), called MVVS(MVC)-Net, for any complete Riemannian manifold. (iii)
Further, we experimentally demonstrate the performance of the MVVS (MVC)-Net on
dMRI classification and fODF reconstruction problems along with comparisons to the
state-of-the-art (SOTA). Our results demonstrate significant improvement in accuracy
and time efficiency over the SOTA.

The rest of this paper is organized as follows. In section 2, we review background
material in Riemannian geometry and the Euclidean Volterra Series. In section 3, we
present a novel generalization, the MVVS, of the Volterra Series to manifold-valued
functions and prove its equivariance properties. Then, we present a DNN architecture
based on MVVS, called the MVVS-Net. In section 4, we present the experimental results
and draw conclusions in section 5.

2 Preliminary
In this section, we review some basic material from Riemannian geometry that is
necessary in our work and the Volterra Series expansion of nonlinear functions. We
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briefly review how the Volterra Series is utilized in the deep learning literature as a
higher order alternative to the convolution in CNNs.
Riemannian Geometry Let (M, g) be a d-dimensional complete Riemannian mani-
fold. The tangent space at p ∈ M is denoted TpM , which is a d-dimensional vector
space. For p ∈ M and v ∈ TpM , the geodesic emanating from p with initial di-
rection v is denoted by γv(t) where γv(0) = p and γ′v = v. The Exponential map
Expp : D(p) ⊂ TpM → M is defined by Expp(v) = γv(1) where D(p) = {v ∈
TpM : γv(1) is defined and γv(t) is a minimizing geodesic for 0 < t < 1}. The expo-
nential map is a diffeomorphism from D(p) to its image, and its inverse is denoted
Logp = Exp−1

p . These two maps will be of fundamental importance for the construction
of the MVVS which will be discussed subsequently.

The Riemannian metric g induces a distance between any two points p ∈M and q ∈
M given by dg(p, q) = inf{

∫ 1

0

√
g(γ′p,q(t), γ

′
p,q(t))dt : for all γp,q}. Let x1, . . . , xn ∈

M . The Fréchet mean (FM) of x1, . . . , xn is x̄ = argminm∈M
∑n
i=1 d

2
g(xi,m). This is

a generalization of the mean of points in a vector space. For the existence and uniqueness
of the FM we refer the reader to [1]. Very briefly, the FM is unique if x1, . . . , xN lie in a
open ball of radius rcvx, where rcvx is the convexity radius of M [13]. This is often the
case in practice and in all our experiments presented subsequently.

For a Riemannian manifold, a metric-preserving diffeomorphism is an isometry. For
a smooth map f : M → M , a desired property would be the isometry equivariance,
i.e. φ ◦ f = f ◦ φ where φ is an isometry map. Another similar concept is the isometry
invariance, i.e. f ◦ φ = f .
Volterra Series As is well-known, the traditional convolution is linear shift-invariant.
A non-linear shift-invariant system can be approximated by the Volterra Series [26],
which is given by h(x) =

∑N
n=1

∫
· · ·
∫
g(τ1, . . . , τn)

∏n
i=1 f(x − τi)dτi, where g is

the Volterra kernel. For the case of N = 1, h(x) =
∫
g(τ)f(x− τ)dτ = (g ? f)(x) is

the usual convolution.

3 Manifold-Valued Volterra Series and Convolution

P
A

O

z1

z2
z3

x1x2 x3

(a) Log map all of the data in
the window onto the tangent
space, i.e. xi = LogA(zi).

x

y

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

x1

x2

x3

y =
∑

i wixi

(b) Perform a weighted sum in
the tangent space TAM to get

y =
∑

i wixi

P
A

O

y

ExpA(y)

(c) Project the resulting vector
down using the Riemannian

exponential map, i.e. the output
is ExpA(y).

Fig. 1: Manifold-valued convolution operation within a window.
We now present a novel extension of the Volterra series to manifold-valued functions.

We show the first order approximation of the proposed MVVS gives a natural extension
of the convolution operation to manifold-valued functions. Further, we show that this
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MVC is equivariant to the isometry group action admitted by the manifold and discuss
how to use the MVVS/MVC as basic building blocks to design efficient networks for
different tasks.

3.1 Manifold-Valued Volterra Series

For manifold-valued data, we can define an analog of the traditional Volterra series.
Let � be the Hadamard product, i.e. x1 � x2 = [x11x21, . . . , x1nx2n] and

⊙k
i=1 xi =[∏k

i=1 xi1, . . . ,
∏k
i=1 xin

]
. Hadamard product depends on the tangent vector represen-

tation and we use the coordinates induced by the Log maps, which are given for the
sphere and SPD manifold in Section 3.3. Then the MVVS is defined as follows.

Definition 1. Let (M, g) be a complete Riemannian manifold and f : Zd → M be a
function defined on Zd. Let {w(j) : (Zd)j → R} be a collection of kernels. Then

MV V S(f, w(1), . . . , w(N))(y) :=

Expm(y)

(
N∑

j=1

∑
z1,...,zj

w(j)(z1 − y, . . . , zj − y)

j⊙
i=1

Logm(y)f(zi)

)

for y ∈ Zd where m(y) = FM(f(z)) where z ranges over the support of the Volterra
masks w(j) centered at y.

Note that the FM is computed locally in each window centered at the point y. The most
prominent feature of the convolution in Euclidean spaces is translation equivariance (in
the domain), which allows weight sharing. Similar to the equivariance to translations (in
the domain) of the Volterra series in Euclidean space, the following theorem states that
MVVS possesses a similar property.

Theorem 1 (Equivariance to Translation). Let h = MVVS(f, w(1), . . . , w(N)), then
ht = MVVS(ft, w

(1), . . . , w(N)) for all t ∈ Zd, where, ft(z) = f(z − t) and ht(y) =
h(y − t).

The proof follows trivially from the definition of the MVVS through a change of variables
and hence we will skip it here. For N = 1, we write the MVVS as MVC(f, w)(y) =
Expm

(∑
z∈Zd w(z − y)Logmf(z)

)
which gives us a natural generalization of convo-

lution to manifold-valued functions. An illustration of the MVC operations are depicted
in Figure 1. In this work, we also consider the second-order MVVS as a more expressive
alternative to the MVC. In the situation with only finite observations at the grid points
z1, . . . , zn ∈ Zd, i.e. we have xi = f(zi), w(1)

i = w(1)(zi), and w(2)
i = w(2)(zi) for

i = 1, . . . , n, we write MVC({xi}ni=1, {wi}ni=1) = Expm
(∑n

i=1 wiLogmxi
)

and

MV V S({xi}ni=1, {w
(1)
i }

n
i=1, {w

(2)
i,j }1≤i,j≤n) =

Expx̄

(
n∑

i=1

w
(1)
i Logx̄xi +

∑
i,j

w
(2)
i,j Logx̄xi � Logx̄xj

)
.

The MVC and the MVVS can be used to generalize CNN and its variants to manifold-
valued data. Due to the symmetry of the Hadamard product, we can assume w(2)

i,j = 0
for i > j to reduce the number of parameters.
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Besides the translation equivariance in the domain, the Euclidean convolution is
also equivariant to the translation in the range. The translation equivariance in the range
leads to, for example, the invariance to changes in brightness by a constant. For the case
of MVC, the range (of the input function) is however the manifold M and hence the
analogous result would be the equivariance to isometry group action admitted by the
manifold. The following theorem states that the proposed MVC is equivariant to the
isometry group action admitted by the manifold M . From the proof, it is also obvious
that this equivariance is not satisfied by the MVVS for N > 1.

Theorem 2. The MVC is equivariant to the isometry group action admitted by M , i.e.
φ ◦MVC(f, w) = MVC(φ ◦ f, w) where φ : M →M is an isometry.

Proof. The proof relies on the fact that the exponential map commutes with the isometry,
i.e., φ ◦ Expp = Expφ(p) ◦ dφp [19, Prop. 5.9]. Therefore, when the inverse of Expp
exists, Logφ(p) = dφp ◦ Logp ◦ φ−1. By the invariance of the intrinsic distance metric,
the FM is equivariant to the isometry. Since the MVC is a composition of the exponential
map, the log map, and the FM, it is equivariant to the isometry group action.

3.2 Manifold-Valued Deep Network Based on MVVS/MVC

The key components of a CNN are the convolutional layers, the non-linear activation
function, and the full-connected (FC) layer. To build an analogous manifold-valued deep
network, we need equivalent operations in the context of manifold-valued inputs. We
propose to replace the convolution by the MVVS. For the non-linear activation function,
the most widely used one is ReLU and we suggest a similar operation called the tangent
ReLU (tReLU), which is defined as follows. For x1, . . . , xn ∈ M , tReLU(xi) =
Expx̄(ReLU(Logx̄(xi))) where x̄ is the FM of x1, . . . , xn and ReLU(x) = max(x, 0)
is applied component-wise to its argument. Note that a similar operation was proposed
by [9] but they restricted it to the hyperbolic spaces while ours is valid for general
complete Riemannian manifolds. Finally, to design a deep network that is invariant to
isometry group actions, we need the FC layers to be invariant to the isometry (since the
MVC layers are equivariant to the isometry by Theorem 2). In this work, we consider
the invariant FC layer proposed in [8] which is constructed by first transforming xi to
di = dg(xi, x̄) and then feeding the di’s to the usual FC layers. Replacing the MVC
with the MVVS, we have a higher order manifold-valued deep network.

Another concern is the extra parameters, i.e. the weights, required by the MVVS
compared to the MVC. Note that for a fixed filter size d the number of weights in the
MVC is d2 and for the second-order MVVS is d2 + d2(d2 + 1)/2 which is a substantial
increase. A way to mitigate this problem is to assume that the kernel w(2)(z1, z2) is
separable, that is, w(2)(z1, z2) = w1(z1)w2(z2). Under this assumption, the number of
weights is 3d2, which is in the same order as the MVC. The separability of the kernel is
assumed in all of our experiments.

We like to emphasize that the proposed MVC/MVVS and the tReLU operations are
substitutions for the Euclidean space convolution and the ReLU operations respectively.
In the next section, we present closed form Riemannian Exp and Log operations for the
manifolds we use in the experiments.



MVVS (MVC)-Net for dMRI Processing 7

3.3 The cases of Sn and SPD(n)

Here we specify concrete versions of the building blocks (Exp and Log maps) presented
above for particular application domains in dMRI processing. We will tackle two funda-
mental problems in dMRI processing using this framework: 1) diffusion tensor imaging
classification and 2) fODF reconstruction from severely undersampled data.

Diffusion Tensor Image Classification Diffusion tensor imaging (DTI) is a simple and
popular model in dMRI processing. Diffusion tensors (DTs) are 3× 3 SPD matrices [4].
A dMRI scan processed using the DTI model will output a 3D field of DTs f : Z3 →
SPD(3). Closed form expressions of the Riemannian Log and Exp maps for the SPD(3)
manifold with the GL(n)-invariant metric are given by

ExpY (X) = Y 1/2 exp(Y −1/2XY −1/2)Y 1/2 and LogY (X) = Y 1/2 log(Y −1/2XY −1/2)Y 1/2

where exp, log are the matrix exponential and logarithmic maps, respectively.

fODF reconstruction Accurate reconstruction of the fODF from undersampled S(k, q)
data has the potential to significantly accelerate dMRI acquisition. Here we present a
framework for achieving this. Our fODF reconstruction method performs convolutions
on the unit hypersphere Sn. The closed form expressions for the Log and Exp maps on
the sphere are given by the following expression, where U = X − 〈X,Y 〉Y [28].

ExpY (X) = cos(‖X‖)Y + sin(‖X‖) X

‖X‖ and LogY (X) = U cos−1(〈X,Y 〉)/〈U,U〉

4 Experiments
In this section we present several real data experiments demonstrating the performances
of MVC-net and MVVS-net respectively.
4.1 Parkinson’s Disease vs. Controls Classification

We now present an application of the MVC-Net and the MVVS-Net to the problem of
classification of Parkinson’s disease (PD) patients vs controls. The dataset consists of
dMRI scans acquired from 355 PD patients and 356 controls. The acquisition parameters
were, # of gradient directions =64, b = 0, 1000s/mm2, repetition time = 7748 ms, echo
time= 86 ms, field of view = (224, 224) mm, slice thickness of 2mm, matrix size of
(112, 112).

time (s) Accuracy
Model Non-linearity # params. / sample Test Accuracy (60/40) Test Accuracy (90/10)

MVVS-net tReLU ∼ 23K ∼ 0.34 0.966 0.973
MVC-net tReLU ∼ 14K ∼ 0.13 0.942 0.973

DTI-ManifoldNet [7] None ∼ 30K ∼ 0.3 0.934 0.948
ODF-ManifoldNet [7] tReLU ∼ 153K ∼ 0.02 0.941 0.942

ResNet-34 [14] ReLU ∼ 30M ∼ 0.008 0.708 0.713
CapsuleNet [25] ReLU ∼ 30M ∼ 0.009 0.618 0.622

Table 1: Comparison results for PD vs. Controls classification.

From each of these
dMRIs, 12 regions of
interest (ROIs) – six
on each hemisphere
of the brain – in the
sensorimotor tract are
segmented by register-
ing to the sensorimo-
tor area tract template (SMATT) [2]. These tracts are known to be affected by PD. For
this experiment, we adopt the most widely used representation of dMRI in the clinic
namely, the DTI and also to demonstrate that our methods work well for the SPD mani-
fold. DTs are 3× 3 SPD matrices [4]. Each of the ROIs (12 in total) contain 26 voxels.
For each patient (control), all the ROIs are concatenated together to form a 12×26×3×3
input tensor to the network. The output is a binary class label specifying whether the
input image came from a PD or control.
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Architecture The MVC-Net architecture is obtained from the traditional CNN by
replacing the convolution operations with MVC (and MVVS) operations and the ReLU
with tReLU. For this experiment, the MVC-net consists of five MVC + tReLU layers.
Each of the MVC (MVVS) layers has a window size of 4 and a stride of 1. We use the
closed form exponential and log maps for the SPD(n) manifold presented in 3.3.

Fig. 2: Left: HCP sample patch from centrum
semiovale ground truth/gold standard fODF.
Right: Network reconstruction from 7% sam-
pled data. Zoomed-in figures display a particu-
larly hard crossing-fiber ROI.

Experimental Results In this experi-
ment on PD vs. Control classification
from DTI brain scans, we compared the
performance of MVC-Net and MVVS-
Net with several deep net architectures
including the ManifoldNet [7, 8] the
ResNet-34 architecture [14] and a Cap-
suleNet architecture [25] with dynamic
routing. To perform the comparison, we
applied each of the aforementioned deep
net architectures to the above described
diffusion tensor image data sets. For the
ResNET-34 and CapsuleNet, we vector-
ize the diffusion tensors as these net-
works are applicable only to vector space
data.

We train our MVC-net architecture
for 200 epochs using the cross-entropy
loss and an Adam optimizer with the
learning rate set to 0.005. We report
two different results for each architecture.
One is obtained on a 90/10 training to
test split. Since the results for the top per-
forming architectures in this category were all high, we also report a more challenging
60/40 training to test split to obtain more differentiation between the methods.

As is evident from the Table 1, MVC-net and MVVS-Net outperform all other meth-
ods on both training and test accuracy while simultaneously keeping the lowest parameter
count. MVVS-net either is equal (90/10 split) or outperforms (60/40 split) MVC-net,
as expected from the increased model capacity of the MVVS. The inference speeds
under-perform ResNet-34 and CapsuleNet, but these architectures utilize operations
that were optimized heavily for inference speed over the years. Further, in terms of the
possible application domain of automated PD diagnosis, the inference speeds we have
achieved are more than sufficient in practice.

4.2 fODF Reconstruction
In this experiment, we consider the problem of reconstructing fODFs from compressed
sensed (CS) dMRI data. Specifically, given sub-Nyquist sampled (compressed sensed
in the 6-dimensional (k,q) Fourier space) dMRI data, we seek to reconstruct a field of
fODF that characterize the diffusional properties of tissue being imaged. The goal of
the network will be to learn the highly non-linear mapping between an under-sampled
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(aliased) reconstruction of the fODF field to the fully-sampled reconstruction of the
fODF field.

The fODF can be obtained from fully sampled data using a constrained spherical
deconvolution [29]. The fODF is a real-valued positive function on the sphere f : S2 →
R+ and after normalization can be represented as a square-root density, i.e. a point on the
unit Hilbert sphere. For sampled fODFs, this representation reduces to a point on the unit
hypersphere, Sn−1. This unit hypersphere representation will be used in the inter-voxel
layers, while the sampled f : S2 → R+ representation will be used in the intra-voxel
layers, leveraging a recent architecture introduced in [10]. that will be elaborated on
below. For the inter-voxel layers, we will use MVC and MVVS convolution layers on
the unit hypersphere manifold, with closed form expressions for the Exp and Log maps
respectively as presented in 3.3.

Data Description We test our fODF reconstruction network on real data from the
Human Connectome Project (HCP) [31]. Since the HCP data is acquired with extremely
dense sampling, we consider the fODF reconstructions from these HCP scans as the
ground truth/gold standard. fODFs in this case are generated using MSMT-CSD [17].
implemented in the mrtrix3 library [30] which guarantees positivity of the fODF ampli-
tudes. fODFs are represented by sampling on a consistent spherical grid consisting of
768 points in the Healpix sampling [12].

For under-sampling, we apply an inverse power-law under-sampling scheme (see
[22]) in the (k,q) space, which is the data acquisition space.

The training data sets consist of pairs of aliased (under-sampled) and ground-truth
(fully sampled) fODF field reconstructions. The goal of the network is to learn to
reconstruct the fully sampled fODF field from the input aliased fODF field reconstruction.
Due to limited computational resources, in this experiment, we only consider patches of
size 21× 21 in a slice, i.e., one training sample is a pair consisting of an under-sampled
21× 21 patch reconstruction and a fully sampled reconstruction of the same patch. This
patch-based approach is quite common in CS-based reconstruction algorithms.

For the real data, we extract the 21× 21 voxel ROI from a large subset of HCP scans
(432 in total) in the centrum semiovale where projection, commissural and association
tracts cross and pose a great challenge for under-sampled reconstruction. We use 40
random samples for testing and train on the remaining 392 samples.

HCP DataMethod MAE (7 %) MAE (11 %) MAE (20 %) bNMSE (7 %) bNMSE (11 %) bNMSE (20 %)

MVVS + SphereConv 9.31 9.29 7.41 0.24 0.40 0.38
MVC + SphereConv 10.12 9.43 7.42 0.28 0.41 0.43

SphereConv [10] 13.92 12.61 10.76 0.34 0.64 0.65
S2 U-net [27] 11.04 10.93 8.03 0.31 0.57 0.59
3D CNN [20] 11.88 11.60 8.77 0.35 0.61 0.65

MSMT-CSD (baseline) 16.81 16.32 12.14 1 1 1

Fig. 3: Comparison results on dMRI fODF reconstruction. The
number in parenthesis indicates the sampling rate of the under-
sampled reconstruction input.

Architecture As ex-
plained previously,
the network consists
of two components:
an intra-voxel com-
ponent which oper-
ates individually in-
side each voxel and
an inter-voxel com-
ponent which combines features across voxels. The inter-voxel component consists
of a series of MVC→ tReLU or MVVS→ tReLU blocks. The input to these blocks
is a H ×W × C × N tensor representing a patch within a slice of the dMRI scan,
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where N is the number of sample points of the fODF spherical function and C the
number of channels. For example, in the real data experiments, we have an initial input
size of 21 × 21 × 1 × 768. The intra-voxel model needs to process the data within
voxels, i.e., the individual fODFs. We design and implement a novel intra-voxel layer
using a spherical convolution layer that we denote by SphereConv presented in the
recent DeepSphere paper [10]. This layer represent the spherical signal of the fODF as
a graph with node weights equal to the fODF value at the sample points, and applies
spectral graph convolutions to transform the signal. There are approximate rotational
equivariance guarantees for SphereConv that fit the fODF reconstruction problem well.
We would like to stress that the choice of intra-voxel layer is orthogonal to the novelty
of this work, namely the inter-voxel MVC and MVVS convolutions.

In summary, the inter-voxel component combines features between voxels by using
the MVC layer, while the intra-voxel component shares weights between all voxels but
has the capacity to learn within the voxel. We found that applying the inter-voxel layers
first, followed by intra-voxel layers later gives optimal performance. With these details
in mind, we used the following architecture for real data fODF reconstruction.

MVVS(1, 8)→MVVS(8, 16)→MVVS(16, 32)→MVVS(32, 32)→ 7×(SphereConv)

where, MVVS(Ci, Co) represents an MVVS layer with Ci input and Co output channels
respectively. All layers use a kernel size of 3 and a stride of 1. The SphereConv layers
have feature channels 32 → 64 → 128 → 256 → 256 → 128 → 48 → 1 and
use a U-net style architecture, i.e., with channel concatenation between encoder and
decoder layers. All MVVS and SphereConv layers are followed by a tReLU and ReLU
operation respectively. Results for the same architecture but using MVC layers instead
of MVVS are also presented. For training, the Adam optimizer with an initial learning
rate of 0.03 is used. We use an MSE function weighted by the fractional anisotropy of
the undersampled ground truth image as the reconstruction loss function during training.
This FA-weighted MSE encourages the network to focus more on reconstruction of
highly anisotropic voxels which in some cases was found to improve visual results
substantially. It is possible that this loss could give low weight to crossing fiber voxels
(which will appear as low FA regions), but no visual degradation was observed in these
regions.

Experimental Results We quantitatively measure the model performance using mean-
angular error (MAE) and baseline normalized MSE (bNMSE). The MAE is computed for
only crossing fiber voxels using the method presented in the experiments of [27]. In sum-
mary, a threshold of 0.1 of the largest peak is used to eliminate spurious fibers, and all cor-
responding two-peak voxels from the network output and ground truth are compared us-
ing the angular error in degrees. The bNMSE is defined as MSE(Fg, Fo)/MSE(Fg, Fi),
where Fg, Fo and Fi are the ground truth fODF, the network output and the under-
sampled (aliased) fODF respectively. Thus the bNMSE compares the accuracy of the
network output to the accuracy of the baseline method (MSMT-CSD in this case), where
lower values indicate more improvement relative to the baseline method. This metric
was used in place of MSE(Fg, Fo) to allow more robust comparisons with competing
methods, given that results reported in competing methods were most likely obtained
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from different ROIs and hence difficult to compare to without knowing the precise ROI
localization, thus a direct MSE comparison may bias results.

All models are trained for 1000 epochs on a single Quadro RTX 6000 GPU (about
64 hours total training time). Table 3 reports the results for HCP data experiments. As
evident, for all sampling rates, our method outperforms other deep learning and the
baseline (MSMT-CSD) methods in terms of both MAE and bNMSE. Visualization results
shown in figure 2 are similarly compelling. The zoomed in area shows a difficult crossing
fiber pattern which the network has reconstructed quite well. These results constitute
improvements that can reduce dMRI scan acquisition time by orders of magnitude
while retaining image quality. Moreover, from an ablation view point, we see that the
MVC layers (the inter-voxel component) improves accuracy substantially over just the
intra-voxel SphereConv layers, and MVVS further improves the accuracy. Note that our
chosen intra-voxel layer actually performs worse in all cases than the intra-voxel layer
presented in [27]. This suggests that further improvements could be made by combining
our novel inter-voxel MVVS/MVS layers with [27] which will be explored in our future
work.

5 Conclusion
In this paper, we presented a novel higher order CNN for manifold-valued images. We
defined the the analog of the traditional convolutions for manifold-valued images and
proved powerful equivariance properties. Finally, we presented experiments demonstrat-
ing the superior performance of the MVC (MVVS)-Net in comparison to other SOTA
methods on important problems in dMRI.
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