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a b s t r a c t 

Diffusion-weighted magnetic resonance imaging (dMRI) is a non-invasive technique to probe the com- 

plex micro-architecture of the tissue being imaged. The diffusional properties of the tissue at the imaged 

resolution are well captured by the ensemble average propagator (EAP), which is a probability density 

function characterizing the probability of water molecule diffusion. Many properties in the form of imag- 

ing ’stains’ can then be computed from the EAP that can serve as bio-markers for a variety of diseases. 

This motivates the development of methods for the accurate estimation of the EAPs from dMRI, which is 

an actively researched area in dMRI analysis. To this end, in the recent past, dictionary learning (DL) tech- 

niques have been applied by many researchers for accurate reconstruction of the EAP fields from dMRI 

scans of the central nervous system (CNS). However, most of the DL-based methods did not exploit the 

geometry of the space of the EAPs, which are probability density functions. By exploiting the geometry of 

the space of probability density functions, it is possible to reconstruct EAPs that satisfy the mathematical 

properties of a density function and hence yield better accuracy in the EAP field reconstruction. 

Using a square root density parameterization, the EAPs can be mapped to a unit Hilbert sphere, which 

is a smooth manifold with well known geometry that we will exploit in our formulation of the DL prob- 

lem. Thus, in this paper, we present a general formulation of the DL problem for data residing on smooth 

manifolds and in particular the manifold of EAPs, along with a numerical solution using an alternating 

minimization method. We then showcase the properties and the performance of our algorithm on the 

reconstruction of the EAP field in a patch-wise manner from the dMRI data. Through several synthetic, 

phantom and real data examples, we demonstrate that our non-linear DL-based approach produces ac- 

curate and spatially smooth estimates of the EAP field from dMRI in comparison to the state-of-the-art 

EAP reconstruction method called the MAPL method, as well as the linear DL-based EAP reconstruction 

approaches. To further demonstrate the accuracy and utility of our approach, we compute an entropic 

anisotropy measure (HA), that is a function of the well known Rényi entropy, from the EAP fields of 

control and injured rat spinal cords respectively. We demonstrate its utility as an imaging ’stain’ via a 

quantitative comparison of HA maps computed from EAP fields estimated using our method and com- 

peting methods. The quantitative comparison is achieved using a two sample t -test and the results of 

significance are displayed for a visualization of regions of the spinal cord affected most by the injury. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Diffusion weighted MRI (dMRI) is a non-invasive imaging tech- 

nique which facilitates exploration of the complex micro-structure 

of fibrous tissues (such as white matter in the central neural 

system (CNS)) through sensing the diffusion of water molecules 
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( Basser et al., 1994 ). Water diffusion can be fully characterized 

by the diffusion probability density function (PDF) known as 

the ensemble average propagator (EAP) ( Callaghan, 1991 ). Under 

the narrow pulse assumption, the ensemble average propagator 

denoted by P ( r ) is related to the attenuation of the diffusion 

sensitized signal E ( q ) through the Fourier transform relationship 

( Callaghan, 1991 ): 

P (r ) = 

∫ 
E(q ) exp (−2 π i q · r ) dq (1) 
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where E(q ) = S(q ) /S 0 and S 0 is the MR signal with zero diffusion 

gradient. 

The information captured by the EAP about the water diffusion 

process makes its reconstruction one of the most important and 

actively researched problems in the field of diffusion MRI process- 

ing over the past decade. An accurate EAP reconstruction approach 

is critical and essential to other dMRI applications such as fiber 

tractography, which plays a fundamental role in the mapping of 

connectivity in the brain. With platforms like the Human Connec- 

tome Project, where multi-modality imaging data (including diffu- 

sion MR data) as well as behavioral and genetic information col- 

lected from over a thousand subjects are made available, our abil- 

ity to detect subtle links between human brain connectivity pat- 

terns, genetics and behavioral diversities can be significantly en- 

hanced. In addition to assisting the study of brain circuitry, the 

reconstruction of EAPs could also open the possibilities of diffu- 

sion imaging being used in the investigation of neural develop- 

ments in numerous disorders and neuroplastic changes following 

CNS injuries. One such example is the study of spinal cord injury 

(SCI), which will be further discussed in one of the experiments 

presented in this paper. 

Numerous methods have been proposed to take on the chal- 

lenge of accurate EAP estimation from dMRI data ( Özarslan et al., 

2006; Jian et al., 2007; Descoteaux et al., 2011; Merlet et al., 2013; 

Rathi et al., 2014; Özarslan et al., 2013; Fick et al., 2016 ). We refer 

interested readers to recent surveys ( Assemlal et al., 2011; Daducci 

et al., 2014 ) for further reading. Methods that model the diffusion 

signal in different ways can also be used to compute the EAP us- 

ing the above described Fourier transform relation, details of which 

can be found in a comprehensive survey on compartmental mod- 

eling methods ( Panagiotaki et al., 2012 ). Most of these techniques 

either assume a known model in which case, the basis functions 

for reconstruction are predefined or in the case of the model free 

approaches, the positivity constraints on the EAP have to be ex- 

plicitly enforced, which in some works was not done. In our work 

here, we take a fresh patch-based dictionary learning approach to 

this problem. This approach will move away from the requirement 

of pre-specifying the basis functions and hence is more flexible. 

Further, the utilization of the square root parameterization of the 

EAP enables us to incorporate the intrinsic manifold structure of 

the unit Hilbert sphere in the reconstruction process and produce 

a non-negative EAP reconstruction without resorting to any explicit 

constraint enforcement. Last but not least, a patch-based formula- 

tion was employed which further enhances the spatial smoothness 

in the reconstruction. 

In the following, we present a brief review of relevant non- 

linear dictionary learning algorithms and the state-of-the-art in 

dictionary based EAP reconstruction techniques. 

1.1. Dictionary learning on Riemannian manifolds: Literature review 

Dictionary learning (DL) or sparse coding, which involves rep- 

resenting data as a linear combination of a small number of atoms 

from the dictionary, has been proven very effective in various im- 

age processing tasks ( Aharon et al., 2006 ) as well as dMRI analysis 

tasks, such as super resolution generation ( Yoldemir et al., 2014 ), 

image reconstruction from k -space data ( Song et al., 2014 ) and 

EAP reconstruction, which we shall discuss in detail in the fol- 

lowing section. In these tasks, learning a dictionary that adapts 

well to the data is of great importance for a good performance 

of the sparse representation. Therefore, properly incorporating the 

geometric structure of the data space is critical to the success 

of dictionary learning. Several existing dictionary learning algo- 

rithms assume that the data points and the atoms are vectors re- 

siding in a Euclidean space, and the dictionary is learned based 

on the vector space structure of the input data (see ( Elad, 2010 ) 

and references therein). However, the data used in many medical 

image analysis tasks often live on Riemannian manifolds such as 

the space of, symmetric positive definite (SPD) matrices ( Moakher, 

20 05; Wang and Vemuri, 20 05; Lenglet et al., 2006; Pennec et al., 

2006; Fletcher and Joshi, 2007; Xie et al., 2010 ) and square root 

densities ( Sun et al., 2013; Ncube and Srivastava, 2011; Çetingül 

and Vidal, 2011 ). Therefore, the existing extrinsic approaches that 

overlook the potentially important intrinsic geometric structure of 

the data space can exhibit less accuracy in the context of such ap- 

plications. The issue of accuracy of representation or reconstruc- 

tion becomes especially evident when the data on the manifold 

have a large variance. Intuitively, this is obvious and can be easily 

illustrated in the case of data lying on the upper (lower) hemi- 

sphere. Using an extrinsic metric such as the Euclidean metric for 

computations in this case amounts to ignoring the curvature of 

the sphere. This is acceptable only when data are tightly clustered 

around the point of linearization of the manifold and not accept- 

able when the data have a large variance. 

Recently, a provably convergent algorithm was presented in 

Sun et al. (2015) for the recovery of a complete dictionary from 

vector-valued data. This was formulated as an optimization prob- 

lem with a spherical constraint and solved using a Riemannian 

trust region algorithm over the sphere. Another category of meth- 

ods seek to solve the dictionary learning problem specifically for 

data residing on a manifold and are more relevant to the prob- 

lem addressed in this paper. Yet the majority of these meth- 

ods are designed for specific manifolds such as the manifold of 

SPD matrices ( Cherian and Sra, 2014; Wu et al., 2015; Sivalingam 

et al., 2015 ) and the Grassman manifold. Naturally, these manifold- 

specific methods, while effective in their respective contexts, are 

typically difficult to generalize to other Riemannian manifolds. 

More recently, in Harandi and Salzmann (2015) , the authors in- 

troduced a Riemannian coding framework that makes use of ker- 

nels. However, the successful application of this approach requires 

one to define/ construct positive definite kernels on the Rieman- 

nian manifold of interest, which may not be easy in general 

( Feragen et al., 2015 ). In contrast, our dictionary learning formu- 

lation is applicable to any Riemannian manifold with known or 

easy to compute the Riemannian exponential (exp ) and logarith- 

mic (log ) maps ( Lee, 1997 ). 

In general, dictionary learning in the Euclidean setting 

can be formulated as min c 1 , ... ,c n ,D 
∑ n 

i =1 ‖ s i − Dc i ‖ 2 + Sp (c i ) , where 

s 1 , . . . , s n denotes the given collection of data points, D is the ma- 

trix with columns consisting of the atoms a i , c i the sparse coding 

coefficients and Sp ( c i ) the sparsity promoting term. One of the key 

difficulties in generalizing dictionary learning to Riemannian man- 

ifolds is to make sure that the collection of atoms as well as the 

approximation of the data points generated using the atoms still 

lie on the manifold. The reason is that, in Euclidean space, it is 

the global linear structure that guarantees the data approximated 

by a linear combination of the atoms resides in the same space, 

whereas on Riemannian manifolds, the Riemannian geometry pro- 

vides only local linear structures through the Riemannian exp and 

log maps. However, by taking advantage of this diversity of linear 

structures, it is possible to formulate the dictionary learning prob- 

lem on Riemannian manifolds in a data specific way. The formula- 

tion will be discussed in detail in subsequent sections. It suffices 

to say that we employ the Riemannian exp and log maps – which 

are well defined within a neighborhood defined by the injectivity 

radius of the manifold ( Afsari, 2011 ) – along with an affine con- 

straint to achieve this goal. 

1.2. Dictionary based EAP reconstruction: Literature review 

Dictionaries have long been incorporated in EAP reconstruc- 

tion techniques in the dMRI community. Existing dictionary based 
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approaches either involves the design/learning of a dictionary to 

sparsely represent the diffusion signal or one that is intended for 

the representation of the EAP. 

• Dictionaries for signal representation . 

1. Pre-defined dictionaries . 

One sub-category of these signal-oriented dictionary based 

methods assume a fixed known model for the diffusion sig- 

nal, in which case the dictionary consists of a set of pre- 

defined basis. In existing literature, basis that have been uti- 

lized in such settings include diffusion basis function (DBF) 

( Özarslan et al., 2006; Ye et al., 2016 ), Spherical Ridgelets 

(SR) ( Michailovich and Rathi, 2010 ), Spherical Harmonics 

(SH) ( Descoteaux et al., 2009 ), SHORE basis ( Özarslan et al., 

2008; 2013; Fick et al., 2016 ), Spherical Polar Fourier (SPF) 

basis and SPF-dual ( Assemlal et al., 2009; Cheng et al., 2010; 

Merlet and Deriche, 2013 ). In these methods, following the 

fitting and reconstruction of the signal, the EAP/ ODF (ori- 

entation distribution function, which is a radial projection 

of the EAP) is calculated (numerically or analytically) from 

the coefficients of the fitted model. On a less relevant note, 

one recent development in the compressed sensing (CS) of 

the ( k, q )-space of dMRI ( Schwab et al., 2016 ) loosely falls in 

this category. In an effort to achieve higher acceleration in 

CS, the authors proposed a joint spatial-angular domain ba- 

sis using spherical ridgelet/wavelet basis pair for the sparse 

representation of a field of diffusion signals. 

Strictly speaking, these methods do not learn the dictionary 

atoms (basis) from the data. Hence the performance is heav- 

ily dependent on the choice of the basis family and thus 

compromising the flexibility of the model. 

Several approaches in this category stood out owing to 

their ability to produce non-negative EAP/ ODF recon- 

struction. For instance, in Schwab et al. (2012) the au- 

thors modeled the ODF with Spherical Harmonic (SH) ba- 

sis and enforced non-negativity on the continuous domain 

by imposing a positive semi-definiteness constraint on the 

Toeplitz-like matrices constructed from the SH representa- 

tion. Cheng et al. (2012) proposed to reconstruct the ODF/ 

EAP by first estimating the so-called wave function, i.e. the 

square root of the ODF/ EAP, directly from the diffusion sig- 

nals, ensuring non-negativity. However, like the rest of the 

methods based on fixed basis, these two methods lack full 

data-adaptivity. 

2. Semi-adaptive dictionaries . 

To circumvent the limitations of fixed dictionary atoms, sev- 

eral approaches were proposed that utilize semi-adaptive 

dictionaries. In Ye et al. (2012b) , an over-complete dictio- 

nary based approach was presented to reconstruct EAPs 

from single shell dMR acquisition. In this approach, adap- 

tive spline kernels were used for the modeling of the 

dMR signal and the EAPs were estimated post signal re- 

construction. In Merlet et al. (2013) , proposed a Spherical 

Harmonic basis function based parametric dictionary learn- 

ing framework that leads to an analytical reconstruction of 

the EAPs and ODFs from the dMRI data. DL-SPFI was pro- 

posed in Cheng et al. (2013) to learn a dictionary consist- 

ing of SPF basis with the scale value adaptively set based 

on the mean diffusivity of the diffusion signals. More re- 

cently, the same group proposed a generalization of DL-SPFI 

named DL-TSPFI ( Cheng et al., 2015 ), by considering gen- 

eral adaptive tensor setting instead of the scalar case. An- 

other recent development in the same vein was reported 

in Aranda et al. (2015) . The authors designed an adaptive 

diffusion dictionary method based on the DBF model for 

the reconstruction of the MR signal, where the dictionary 

atoms are iteratively re-estimated independently at each 

voxel. Even though EAP reconstruction was not the focus of 

this particular work, one can easily estimate the EAPs ana- 

lytically from the reconstructed signal represented in DBFs. 

Despite their effort s to adapt the atoms to the particular 

data of interest, the majority of these techniques were still 

built upon a particular model for the diffusion signal and 

only certain parameters of the model are fully flexible and 

learned in the parametric framework. Further, the post sig- 

nal reconstruction EAP/ ODF estimation provides no guaran- 

tees for the non-negativity of the probability functions. 
• Dictionaries for EAP/ ODF representation . 

The second category of dictionary based techniques aim to uti- 

lize a dictionary specifically designed for the EAPs to achieve 

direct EAP reconstruction without resorting to first fitting a 

model to the diffusion MR signal. 

Bilgic et al. (2013) , proposed to learn a discrete dictionary via 

the K-SVD algorithm on a training set of EAPs, and showed 

that this dictionary can be used in a CS framework to accel- 

erate the DSI technique for efficient direct reconstruction of the 

EAPs. However, neglecting the geometric structure of the space 

in which the EAPs live, this method cannot ensure the non- 

negativity of the reconstructed EAPs, which is an intrinsic and 

basic property of the EAPs. Accordingly, it is prone to higher 

numerical errors. Recently, in a conference version of the cur- 

rent manuscript, we reported some preliminary results of ap- 

plying a non-linear DL approach for the EAP reconstructions 

from multi-shell dMRI in Sun et al. (2013) , wherein the dic- 

tionary atoms are fully adaptive and the non-negativity of the 

reconstructed EAPs is guaranteed. Yet, the dictionary, though 

learned over the entire field, was designed for the sparse rep- 

resentation of individual (at each voxel) EAPs. However, there is 

no guarantee of a spatially smooth reconstruction without the 

incorporation of an explicit spatial regularization term. 

Distinct from the conference version ( Sun et al., 2013 ) of this 

manuscript, in this paper, we move away from voxel-wise recon- 

struction which was widely used in existing methods and con- 

sider the reconstruction of the EAP field in a patch-based manner. 

Patch-based dictionary learning is well studied in the context of 

image denoising, inpainting, super-resolution etc. Our patch-based 

algorithm is inspired by the success achieved in the task of im- 

age reconstruction in compressed sensed MRI via patch-based lin- 

ear dictionaries reported in Ravishankar and Yoram (2011) . We 

propose to apply a general non-linear dictionary learning method 

on the product manifold of Hilbert spheres where the patches of 

square root of EAPs reside. As a result, in addition to ensuring 

the non-negativity of the reconstructed EAPs, our approach also 

achieves a spatially regularized reconstruction, which can be ex- 

tremely valuable in practice especially when the data are noisy. 

We first demonstrate this point on noise contaminated synthetic 

data through quantitative and qualitative evaluations. Further, we 

showcase the potential of our method in assisting the studies of 

white matter micro-structures in the CNS through experiments on 

HCP human brain data and rat spinal cord data. 

To demonstrate the significance of respecting the intrinsic ge- 

ometric structure of the manifold the square root of EAPs re- 

side on, we compare our method to linear dictionary learning 

based EAP reconstruction techniques ( Aharon et al., 2006; Ye 

et al., 2012b ). Note that the linear dictionary learning method in 

Aharon et al. (2006) is a patch-based method and uses the KSVD 

algorithm. Hence, our method can be seen as a generalization of 

this patch-based linear DL method. We also include comparisons 

with the state-of-the-art EAP/ ODF reconstruction approach MAPL 

( Fick et al., 2016 ) (non-dictionary based) to showcase the superior 

performance of our method in the context of the angular recovery 
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accuracy. Further, we compute an imaging biomarker based on an 

entropic anisotropy measure which is a function of the well known 

Rényi entropy. Using a statistical two-sample t -test, we demon- 

strate its efficacy in discriminating and identifying the regions of 

significance between control and injured cords at sites distant from 

the injury. 

The rest of the paper is organized as follows. Section 2 con- 

tains mathematical preliminaries of Riemannian manifolds, the dic- 

tionary learning formulation and relevant basics on the two Rie- 

mannian manifolds of interest for our application. In Section 3 , 

we present a detailed description of the synthetic, phantom and 

real data sets used in testing the proposed patch-based dictionary 

learning and reconstruction algorithm. We present several exper- 

imental results on synthetic and real data sets in Section 4 and 

draw conclusions in Section 6 . 

2. Theory 

2.1. Mathematical preliminaries of Riemannian manifolds 

In this section, we review some basic concepts on Rieman- 

nian manifolds and refer the interested readers to Spivak (1979) ; 

Lee (1997) for more details. A topological space that is locally 

homeomorphic to open subsets of the Euclidean space R 

d at each 

point is called a manifold M of dimension d . Manifold M be- 

comes a differentiable manifold when it has a differential struc- 

ture globally defined on it. The global differential structure makes 

possible the definition of the globally differentiable tangent space. 

T p M , the tangent space at a point p ∈ M , is a vector space that 

consists of all the tangent vectors to M at p . A Riemannian mani- 

fold is defined as a differentiable manifold on which each tangent 

space T p M is equipped with a differentiable varying inner prod- 

uct 〈 · , · 〉 p . The geodesic curve γ : [ 0 , 1 ] → M is a smooth curve 

of minimal length connecting any two points on the manifold. We 

refer the reader to Afsari (2011) for details on the conditions for 

uniqueness of geodesics. Consider a tangent vector to the manifold 

at a point p , v ∈ T p M , there exists a unique geodesic γ v satisfy- 

ing γv (0) = p with initial tangent vector v . The exponential map 

exp p : T p M → M of v is defined as exp p (v ) = γv (1) . The logarith- 

mic map, denoted as log p : M → T p M is the inverse of the expo- 

nential map. Fig. 1 depicts an intuitive illustration of these maps 

at a point on a manifold. 

Let p i and p j be two points on M , log p i (p j ) maps point p j to 

the unique tangent vector at p i that is the initial velocity of the 

geodesic γ with γ (0) = p i and γ (1) = p j . Conditions for existence 

of these maps are elaborated upon in Pennec et al. (2006) . The 

geodesic distance between p i and p j is dist(p i , p j ) = ‖ log p i (p j ) ‖ p i . 
Here, the notation ‖ . ‖ p i indicates the induced norm at the point 

p i . 

2.2. Dictionary learning on Riemannian manifold 

Given a collection of signals s 1 , . . . , s n ∈ R 

d , the classical dictio- 

nary learning methods in a Euclidean setting ( Aharon et al., 2006 ) 

Fig. 1. Illustration of the Riemannian log and exponential maps. 

seek to find a dictionary D ∈ R 

d×m whose columns are composed 

of m atoms that can sparsely approximate each signal s i as a linear 

combination s i ≈Dc i , where c i ∈ R 

m is the coefficient vector. Apply- 

ing l 1 regularization on c i , the dictionary learning problem can be 

formulated as: 

min 
c i ,D 

n ∑ 

i =1 

(‖ s i − Dc i ‖ 

2 
2 + λ‖ c i ‖ 1 

)
(2) 

where λ is a regularization parameter. 

Let s 1 , . . . , s n ∈ M be a collection of n data points on manifold 

M , and let a 1 , . . . , a m 

∈ M be the atoms of the learned dictionary 

D = { a 1 , . . . , a m 

} . In the Riemannian manifold setting, due to the 

local linear geometric structure of M , it is unsuitable to directly 

use the linear combination of the atoms ˆ s i = 

∑ m 

j=1 c i j a j to repre- 

sent the data s i , since there is no guarantee that such an ˆ s i still 

resides on the manifold. Instead, by adopting the geodesic linear 

interpolation on M , s i can be approximated by 

ˆ s i = exp s i 

( 

m ∑ 

j=1 

c i j log s i (a j ) 

) 

(3) 

where, exp s i and log s i are the exponential and logarithmic maps 

(defined earlier) respectively at s i , and c i j ∈ R are the coefficients. 

Intuitively speaking, we project all the atoms in the dictionary to 

the tangent space at s i , the data point to be approximated, and 

construct the linear combination v i = 

∑ m 

j=1 c i j log s i (a j ) in the tan- 

gent space T s i M , then we obtain the approximation ˆ s i by taking 

the exponential map of v i at s i . 

Our goal is to construct a dictionary that minimizes the 

sum of the reconstruction error over all data point which 

is defined as E data = 

∑ n 
i =1 dist (s i , ̂  s i ) 

2 = 

∑ n 
i =1 ‖ log s i ( ̂ s i ) ‖ 2 s i = ∑ n 

i =1 ‖ 
∑ m 

j=1 c i j log s i (a j ) ‖ 2 s i . Imposing the l 1 sparsity constrain, 

we formulate the dictionary learning problem on the manifold M 

as the following optimization problem, 

min 
C , D 

n ∑ 

i =1 

‖ 

m ∑ 

j=1 

c i j log s i (a j ) ‖ 

2 
s i 

+ λ‖ v ec(C ) ‖ 1 

s.t. 

m ∑ 

j=1 

c i j = 1 , i = 1 , . . . , n. (4) 

Where, C ∈ R 

n ×m and the ( i, j ) th entry of C is denoted as c ij . vec ( C ) 

here corresponds to the vectorized form of the matrix C . Note that 

a similar data term was used in Çetingül and Vidal (2011) but the 

atoms were assumed fixed. The affine constraint in our formula- 

tion implies that affine subspaces are used to approximate the data 

instead of the usual subspaces, which are simply affine subspaces 

based at the origin. Generalizing from Euclidean spaces to Rieman- 

nian manifolds, there exists no corresponding notion of the ori- 

gin to define the usual subspaces, and this geometric fact requires 

one to discard the usual subspaces in favor of general affine sub- 

spaces. It is worth noting that explicit normalization on the atoms 

is not needed in this formulation. Due to the incorporation of the 

manifold structure of the square root densities, the atoms learned 

in our approach are always on the hypersphere, while in the tra- 

ditional dictionary learning ( Eq. (2) ) a normalization in required 

to guarantee the unique solution. Similar to the traditional dictio- 

nary learning methods, we use an iterative (alternating) method 

to solve this optimization problem where each iteration consists of 

two steps: (1) sparse coding step (for a fixed dictionary D, opti- 

mize with respect to the coefficients C ), (2) codebook optimization 

step (for fixed C optimize with respect to D). It should be noted 

that this alternating (two stage) method of solving the problem in 

the traditional vector-space setting ( Eq. (2) ) does not provide con- 

vergence guarantees to the global optimum ( Aharon et al., 2006 ). 
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However, this approach has had significant success in many prac- 

tical applications such as, denoising, in painting and classification 

( Aharon et al., 2006; Elad, 2010 ). 

The first step is a regular sparse coding (convex) problem that 

can be easily solved using many existing fast algorithms. We use 

the CVX solver for this step in this work. However, the second 

subproblem of updating the dictionary is much more challenging, 

since the optimization techniques designed in Euclidean space are 

not appropriate for the optimization problem on manifolds. We 

propose to adopt the line search algorithm on Riemannian mani- 

fold introduced in Absil et al. (2008) to update the dictionary D. 

We first initialize the atoms in the dictionary with the m clusters 

of the data s 1 , . . . , s n generated by a K-means algorithm applied to 

all the data. Then, we apply the aforementioned line search algo- 

rithm to optimize the cost function. Intuitively, the idea is to find 

a descent direction v on the tangent space anchored at each atom, 

and take a step along the geodesic γ whose initial velocity is v . 

The algorithmic details and the convergence analysis of the line 

search method on manifolds are discussed in Absil et al. (2008) . 

2.3. Manifold of square root density functions 

In this section, we present some relevant concepts pertaining 

to the manifold of square root density functions (i.e. unit Hilbert 

sphere), which is essential to understanding the structure of the 

product manifold. Without loss of generality, we restrict the anal- 

ysis to probability density functions (PDFs) defined on the interval 

[0, T ] for the purpose of simplicity. 

The manifold of square root density functions is defined as 

� = { ψ : [0 , T ] → R |∀ s, ψ(s ) ≥ 0 , 
∫ T 
0 ψ 

2 (s ) ds = 1 } . As we can see, 

� forms a convex subset of the unit sphere in a Hilbert space. 

The Fisher-Rao metric can be obtained as 〈 v , w 〉 x = 

∫ T 
0 v (s ) w (s ) ds, 

where v, w ∈ T x � are tangent vectors at x . Let x, y ∈ � be two 

arbitrary square root density functions, the geodesic distance be- 

tween them is given in closed form by dist (x, y ) = cos −1 (〈 x, y 〉 ) , 
which is simply the angle between x and y on the unit hy- 

persphere. The geodesic at x in direction v ∈ T x � is defined as 

γ (t) = cos (t) x + sin (t) v | v | . The exponential map can be computed 

as exp x (v ) = cos (| v | ) x + sin (| v | ) v | v | . Here, we restrict | v | ∈ [0, π ) to 

ensure that the exponential map is a bijection. The logarithmic 

map is then given by log x (y ) = u cos −1 (〈 x, y 〉 ) / √ 〈 u, u 〉 , where u = 

y − 〈 x, y 〉 x . Note that the Riemannian log and exp maps and the 

geodesics are uniquely defined on the sphere within the injectivity 

radius π /2. Further, the data are assumed to lie within the ball of 

this radius as is usually the case in practice. 

2.4. Product manifold of square root density functions 

Owing to the generality of the proposed dictionary learning for- 

mulation on various types of Riemannian manifolds, we can apply 

it to patches of EAPs where each EAP is represented by a square 

root density function. These patches can be treated as points on 

the product manifold of square root density functions. We now 

present the geometry of this manifold. Following the notation from 

last section, a square root density field defined on a domain � in 

R 

K can be represented as a function f : �→ � . In most medical 

image analysis applications, the square root density fields are de- 

fined over a grid (pixels or voxels), thus � will be a collection of 

m points in R 

K . We identify the space of square root density fields 

on � with the m-fold Cartesian product �m = � × � × · · · × � . 

Hence a square root density field X in �m can be represented as 

an m-tuple (x 1 , x 2 , . . . , x m 

) , where each x i is a square root density 

function, the value of X at the i th voxel in �. 

Given (M 1 , g 1 ) and (M 2 , g 2 ) as Riemannian manifolds with 

corresponding metrics, the product space M 1 × M 2 has a nat- 

ural Riemannian metric g = g 1 � g 2 , called the product metric, 

defined by g(v 1 + v 2 , w 1 + w 2 ) = g 1 (v 1 , w 1 ) + g 2 (v 2 , w 2 ) , where 

v i , w i ∈ T p i M i under the natural identification T (p 1 ,p 2 ) M 1 × M 2 = 

T p 1 M 1 � T p 2 M 2 ( Lee, 1997 ). This can be generalized to our m- 

fold product space �m . Let V , W ∈ T X �
m be two tangent vec- 

tors at X ∈ �m , the product Riemannian metric gives the inner 

product between the two vectors as 〈 V , W 〉 X = 

∑ m 

i =1 〈 v i , w i 〉 x i = ∑ m 

i =1 

∫ T 
0 v i (s ) w i (s ) ds, where v i , w i ∈ T x i � . Using this metric, the ex- 

ponential map at X maps the tangent vector V to a point in �m 

Exp X ( V ) = 

(
cos (| v 1 | ) x 1 + sin (| v 1 | ) v 1 | v 1 | , . . . , cos (| v m 

| ) x m 

+ sin (| v m 

| ) v m 

| v m 

| 
)

Given X ∈ �m , the Riemannian log map anchored at X is, 

Log X ( Y ) = 

(
u 1 cos 

−1 (〈 x 1 , y 1 〉 ) / 
√ 

〈 u 1 , u 1 〉 , . . . , u m 

cos −1 (〈 x m 

, y m 

〉 ) 

/ 
√ 

〈 u m 

, u m 

〉 
)
. 

Where, u i = y i − 〈 x i , y i 〉 x i for i = 1 , . . . , m . Using this definition 

of Riemannian log map, the geodesic distance between two 

square root density fields X and Y is computed by, dist( X , Y ) = 

‖ Log X ( Y ) ‖ = 

√ ∑ m 

i =1 

(
cos −1 (〈 x i , y i 〉 

)
2 . 

2.5. Reconstruction of EAP fields 

In this section, we describe the pipeline of our EAP field re- 

construction framework based on the dictionary learning algorithm 

presented herein. 

Given a set of dMR signals (within a 2-D slice or 3-D vol- 

ume), we first compute an initial estimate of the EAPs in a voxel- 

wise manner, for which any approach of choice can be used. In 

this work, we use different initializations namely, methods pro- 

posed in Jian et al. (2007) ; Ye et al. (2012a) ; Fick et al. (2016) ; 

Wedeen et al. (2005) . The method in Jian et al. (2007) was used 

for single shell data since the implementation is only available for 

single shell data sets. The MAPL method in Fick et al. (2016) was 

used both for single and multi-shell data sets and the method from 

Ye et al. (2012a) was used for multi-shell data. The method from 

Wedeen et al. (2005) was used with DSI data. Following the initial 

estimation, the square root parameterization is taken for each EAP 

vector at individual voxels. Then we extract overlapping patches of 

the square root density representation of the EAPs and learn a dic- 

tionary (that consists of atoms living on the product manifold of 

unit Hilbert spheres) from these patches. Subsequently, the square 

root of each EAP patch can be represented by a non-linear combi- 

nation ( Eq. (3) ) of the learned atoms, and the corresponding EAPs 

are obtained by squaring the reconstructed roots. For a voxel that 

belongs to k different patches, there exists a set of k estimates of 

the EAP. Finally, we reconstruct the EAP at every voxel by aggre- 

gating these set of estimates. The aggregation involves averaging 

the EAP estimates at the overlapping voxel locations. This can be 

achieved using the Fréchet mean of the EAP estimates or if the 

estimates are very close in geodesic distance, an arithmetic mean 

followed by a projection to the manifold of densities will prove to 

be sufficiently accurate and very efficient. In this work, we used 

the latter approach. A flow chart illustrating the pipeline of our 

EAP reconstruction framework is presented in Fig. 2 . 

2.6. Renyi entropy: An imaging ‘Stain’ 

Fig. 2 depicts the end-to-end pipeline for computing the pro- 

posed imaging biomarker/ ‘stain’ from an input diffusion MR im- 

age. We now describe the last stage of the pipeline namely, the 

computation of the scalar anisotropic index (HA) from the recon- 

structed EAPs. HA is related to the well known Rényi entropy from 
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Fig. 2. Pipeline of the proposed EAP reconstruction framework. 

information theory ( Rényi, 1961 ). Rényi entropy defines a family of 

entropies and was proposed by Rényi (1961) . Rényi entropy is anal- 

ogous in some sense to L p norms and can be interpreted geomet- 

rically using the language of these well studied norms. The reason 

one considers L p norms is that they give us a continuous trade-off

between the extremes L 0 and L ∞ 

. Shannon entropy is analogous to 

the L 1 norm, it tells us the average information but nothing about 

the variances or the extremes. The min-entropy (also called Cheby- 

shev entropy), analogous to the L ∞ 

norm, gives us the information 

on the element with the largest probability and nothing about the 

rest. The other extreme, analogous to the L 0 norm, being simply 

the logarithm of the number of nonzero components of the dis- 

tribution i.e., the support of the distribution (also called Hartely’s 

entropy). Rényi entropy provides a continuous one parameter fam- 

ily of entropies between the two extremes. Since its inception, it 

has found numerous applications in variety of fields including but 

not limited to cryptography, fractal geometry and ecology. 

The Rényi entropy of order α is defined as, 

H α(X ) = 

1 

1 − α
log 

( 

n ∑ 

i =1 

p αi 

) 

, (5) 

where, α ≥0 and α � = 1, X is a discrete random variable, ob- 

tained from the reconstructed EAP in this paper, with probabili- 

ties { p i } n i =1 
, and the logarithm is to base 2. Rényi entropy general- 

izes the Hartley or max entropy H 0 ( X ), the Shannon entropy H 1 ( X ) 

(in the limit α → 1), the collision entropy H 2 ( X ) and the min en- 

tropy H ∞ 

( X ). It is evident from the definition that, whereas H 0 ( X ) 

weighs all possible events equally and depends only on the size of 

the support of X ( n ), α → ∞ only depends on the events of high- 

est probability. For the spinal cord data, since we have two classes, 

control and moderate injury, in each voxel, we estimate the opti- 

mal α ≥0 to provide the best possible discrimination between the 

two injury groups. Here discrimination is achieved using the stan- 

dard two sample t-test. 

In this paper, the Rényi entropy computed from the EAPs mea- 

sures the uncertainty of the water diffusion process, which in turns 

can be used to quantify anisotropy at each voxel. Low entropy sig- 

nifies anisotropic diffusion, whereas high entropy shows isotropic 

diffusion. We computed an anisotropic measure (HA) from the 

Rényi entropy as defined in Mcgraw and Vemuri (2005) , which will 

serve as an imaging stain. This measure is defined as, 

HA = 

(
1 − H α(X ) 

log n 

)β

, (6) 

where, the parameter β controls the contrast between white and 

grey matter. In diffusion MR images, isotropic diffusion results in 

high entropy and hence low HA value (mapped to low gray values) 

while anisotropic diffusion leads to low entropy and hence high HA 

value (mapped to high gray values). HA can thus serve as a useful 

quantitative measure i.e., an imaging stain/ biomarker, that can be 

used to capture anisotropic changes possibly caused by pathology. 

Note that unlike fractional anisotropy (FA) which can only be com- 

puted for the diffusion tensor models, HA is not restricted to the 

type of model used to represent the diffusivity function, since it 

is computed from the EAP which is the Fourier transform of the 

diffusion sensitized MR signal. Accuracy of HA computation is di- 

rectly dependent on the accuracy of EAP estimation. Further, HA 

is easy to compute and does not require the EAPs to be paramet- 

rically represented in a basis. Note that HA does not have a pre- 

disposition toward any particular EAP estimation method. This is 

because, HA is based on Rényi entropy which is not biased toward 

the shape of any probability density function. Further, unlike ex- 

isting scalar measures of anisotropy such as RTAP (return to axis 

probability) and RTPP (return to plane probability) ( Özarslan et al., 

2013 ), which require estimating the direction of the assumed cylin- 

drical fiber model using a diffusion tensor fitting technique that 

could yield erroneous prediction in the presence of crossing fiber 

bundles, HA does not require any such estimates. This justifies HA 

as an unbiased measure of entropy-based anisotropy index and its 

use as a possible biomarker in our experiments. 

Based on this biomarker, we performed a statistical test to com- 

pare the ability of the reconstructed EAPs from various methods 

to differentiate the injured from control rat spinal cords. With the 

computed entropy fields, we carried out a two-sample t -test with 

significance level 0.10. The resulting significant regions indicated 

by voxels with p-values less than (0.10) are useful in visualizing the 

extent of the effect of the injury to various regions of the spinal 

cord. 

3. Materials and methods 

3.1. Implementation 

Our patch-based DL algorithm is implemented using a combina- 

tion of the CVX package for convex optimization and a line search 

technique on Riemannian manifolds. The former is used to solve 

the convex optimization problem to find the weights for fixed dic- 

tionary atoms and the latter is used for optimizing on the dictio- 

nary atoms for fixed weights. With regards to our patch-based DL 

algorithm, size of patches in our experiments ranged over (3,3,3), 

(5,5,5) and (7,7,7), respectively and the overlap between patches 

(i.e., stride) is set to 2 in all our experiments in the paper. Number 

of patches is a function of the size of the image, size of patches 

and amount of overlap. The number of dictionary elements/atoms 

in our experiments ranged over 50 to 200 in increments of 50. All 

the parameter values were chosen based a grid search technique 

to yield the best performance for the data at hand. 

The proposed approach and competing methods (except for 

MAPL, written in Python) were implemented in Matlab and all 

computations were performed on a workstation with a Intel 

Core(TM) i7 CPU930 2.80 GHz ×8 processor and a 24 GB RAM. 

The CPU time taken for all our experiments vary over the range of 

half hour to three and half hours. Our code however is developed 

in MATLAB and is not optimized in any way. Finally, we would like 

to mention that all the figures in color are accessible to the readers in 

the online version of the paper . 

3.2. Description of data sets 

We perform comprehensive evaluation of our method on var- 

ious types of diffusion data, including single-shell HARDI, multi- 

shell HARDI as well as DSI. The data pool consists of a syn- 

thetic dataset with complex fiber configurations, a realistic chal- 
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Fig. 3. Illustration of fiber structures in the phantom (figure from 

Daducci et al. (2013) ). 

lenge phantom dataset that has been previously validated by vari- 

ous methods and two real diffusion datasets acquired from human 

brain and rodent spinal cords respectively. 

3.2.1. Synthetic data 

We synthesized diffusion signals in a slice of size 24 ×24 simu- 

lating two straight fiber bundles crossing each other in the cen- 

ter with a circular fiber bundle passing through at the corners. 

The ground-truth EAP profiles are presented in Fig. 5 (top row). 

The signals were generated using the ball and stick model in the 

Camino diffusion MRI toolkit ( Cook et al., 2006 ). The diffusion pa- 

rameters used in a typical HCP dataset (latest release) were used 

for the data simulation, where the diffusion weighting consisted of 

3 shells of b-values {10 0 0, 20 0 0, 30 0 0 s/mm 

2 }, with 90 diffusion 

weighting directions on each shell. In addition to noise-free sim- 

ulation, we generated Rician noise contaminated version of this 

dataset with signal-to-noise ratio (SNR) varying from 10 to 30 to 

evaluate our method’s robustness to noise. 

3.2.2. ISBI HARDI challenge 2013 phantom data 

We also perform evaluation of our method on the phan- 

tom data provided at the ISBI (IEEE International Symposium on 

Biomedical Imaging) HARDI challenge 2013. The advantage of em- 

ploying this data lies in the fact that the phantom is created in 

a more realistic setting and the ground-truth is available which 

makes the quantitative assessments of the results possible. The 

phantom consists of a set of fiber bundles with a wide range 

of configurations (branching, crossing, kissing), fiber bundles radii, 

and fiber geometry. The structure of the fibers are shown in Fig. 3 

( Daducci et al., 2013 ). 

The diffusion MR signal is simulated in each voxel considering 

hindered and restricted diffusion, to account for extra-axonal and 

intra-axonal diffusion. Depending on the position in space, there is 

also an isotropic compartment, to account for the CSF contamina- 

tion close to the ventricles in brain imaging. Finally, the magnitude 

MR signal is corrupted by Rician noise resulting in SNR of 10, 20 

and 30 respectively. Three different sampling classes were used for 

the simulation, namely DTI-like, HARDI-like and DSI. In this exper- 

iment, we intend to test the proposed algorithm on data that is 

acquired with a different sampling scheme than that in the previ- 

ous dataset, and to further assess its performance on data severely 

corrupted by noise. Hence, we chose the DSI simulation with an 

SNR of 10. 

3.2.3. Wu-Minn HCP human brain data 

The HCP HARDI data used in our experiments was collected on 

a Siemens 3T “Connectome Skyr” scanner. The diffusion weighting 

consisted of 3 shells of b-values {10 0 0, 20 0 0, 30 0 0 s/mm 

2 }, with 

90 diffusion weighting directions on each shell. The images were 

acquired with 1.25 mm isotropic resolution, 210 ×180 s/mm 

2 FOV 

and T E/T R = 89 . 5 / 5520 ms . 

3.2.4. Rat spinal cord data 

In the final experiment, we validated our method on diffusion 

data collected from rat spinal cords to demonstrate the potential 

of our EAP reconstruction technique in dMRI-based studies of the 

central nervous system (CNS). In this dataset we have 8 controls 

and 12 moderately injured rat spinal cords. The rats in the mod- 

erately injured group received a contusion with 200 kdyn force 

applied to the T10 vertebral level of the spinal cord, while the 

controls have their spinal cords intact (All procedures were ap- 

proved by the University of Florida Institutional Animal Care and 

Use Committee, and the methods of anesthesia and spinal cord in- 

jury have been described previously ( Lane et al., 2012 )). The dMR 

images consist of slices from the cervical (C4) section, which is 

distant to the injury site. The dMR images were acquired on a 

Brucker MR scanner at 750MHz (17.6T) with 21 gradient direc- 

tions at b-value 10 0 0 s/mm 

2 , the voxel size was 60 μm isotropic, 

T E/T R = 20 . 64 / 700 ms . 

4. Results 

4.1. Comparisons with the state-of-the-art 

To demonstrate the properties of our non-linear DL based EAP 

field reconstruction approach, we compare it with various EAP re- 

construction techniques detailed below. 

We compare our approach with (positivity constrained) MAPL 

( Fick et al., 2016 ), which is the state-of-the-art technique for EAP/ 

ODF reconstruction from dMRI. MAPL falls in the category of meth- 

ods that use fixed basis for signal modeling. It achieves signal re- 

construction through regularizing the coefficient estimation of the 

Mean Apparent Propagator (MAP)-MRI model using the norm of 

the Laplacian of the reconstructed signal, after which the EAP/ ODF 

is analytically computed using the coefficients. Note that authors 

of Fick et al. (2016) ; Özarslan et al. (2013) use the term MAP for 

what we and others in literature call EAPs. The non-negativity of 

the reconstructed EAP can also be enforced on the MAPL frame- 

work in the same manner as proposed in the positivity constrained 

MAP-MRI approach ( Özarslan et al., 2013 ). In this paper, we com- 

pare our proposed method with this constrained version of MAPL 

to showcase the superior angular discrimination achieved by our 

method while maintaining the non-negativity of the EAP recon- 

struction. The implementation of MAPL with isotropic scaling fac- 

tors was chosen for our experiments, as the reconstruction of the 

EAPs is the primary focus of this work and for this particular 

task, the isotropic version was recommended by the first author 

of Fick et al. (2016) over the anisotropic setting. However, for the 

sake of completeness, we also included results obtained with the 

anisotropic setting as well. 

In order to establish the advantage of incorporating the intrinsic 

geometric structure of the manifolds, we compare our non-linear 

DL based approach with several linear DL based approaches. (1) 

As a representative of semi-adaptive dictionary based EAP recon- 

struction methods, the technique proposed in Ye et al. (2012b) was 

picked as one of the competing methods. It was briefly discussed 

in Section 1.2 that this method was implemented for single-shell 

dMRI data, hence for some of the data examples in the following 

experiments we had to generalize the implementation to tackle 

multi-shell acquisitions. In the rest of this paper, we denote this 

linear DL based EAP reconstruction approach as “YEV” for brevity. 

(2) We replace the proposed manifold-based DL algorithm with the 

widely used linear DL algorithm K-SVD ( Aharon et al., 2006 ) in our 

EAP reconstruction framework described in Section 2.5 (denoted as 
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K-SVD for short) and compare it with our proposed approach. Note 

that the K-SVD approach is a patch-based linear DL technique. The 

purpose of such experiment is to reduce the effect of other con- 

founding variables in the comparison and to ensure that the incor- 

poration of the manifold structure is the only factor contributing 

to any difference in the performance of the two methods. As a re- 

sult, this comparison has the potential to reveal more insight into 

the benefit provided by respecting and incorporating the geometric 

structure of the data space in the dictionary learning. 

In the following, we present and discuss the experimental re- 

sults on the datasets described previously. 

4.2. Synthetic data 

We report our findings on the synthetic data in two ways, 

through visual inspection and quantitative assessment respec- 

tively. In the quantitative assessment, we are particularly inter- 

ested in the comparison of the angular discriminative power of 

each method. Therefore we investigate the number of peaks de- 

tected from the reconstructed EAPs and the estimated crossing an- 

gles in the fiber crossing regions. For peak detection, we use the 

non-linear peak detection module in the open source library Dipy 

( Garyfallidis et al., 2014 ), and the crossing angles are estimated as 

the angle between the largest two peaks detected from the EAP 

profiles in the crossing area. We would like to point out that in 

the preliminary results reported in Sun et al. (2013) , a different 

peak detection scheme was used, wherein peaks were obtained 

by finding the local maximum in a neighborhood of the known 

ground-truth peaks. This scheme, however, requires knowledge of 

the ground-truth fiber orientations and tends to lead to underesti- 

mation of angular errors. 

The proposed approach and all 3 competing methods were ap- 

plied on the noise-free data and noisy data with various SNRs to 

reconstruct the EAPs. We estimate the fiber crossing angle at each 

voxel in the crossing regions from the reconstructed EAP fields 

and report the average angular error in contrast to the ground- 

truth crossing angles in Fig. 4 . The numerical results show that our 

proposed method yielded the lowest angular error compared to 

the state-of-the-art EAP/ ODF reconstruction approach MAPL (with 

isotropic and anisotropic settings) as well as linear DL based meth- 

ods at all noise levels (including noise-free). It achieved high ac- 

curacy reconstructions on the noise-free data with an average an- 

gular error as low as 2 degrees, and maintained considerably high 

accuracy as the noise level increases. Even for data with high noise 

contamination (SNR of 10), the angles estimated using our method 

are still within the range of 9 degrees from the ground-truth on 

average. It can also be seen that with our approach, the standard 

deviation of the angular errors in the crossing regions (shown as 

error bars in the figure) stays relatively low in the presence of 

noise. On the other hand, MAPL (isotropic setting) performed con- 

siderably well on data with low noise, but showed fluctuating be- 

havior in angular accuracy with decreasing SNR. This fluctuation 

in angular error could be due to the introduction of false peaks 

detected from the EAP reconstructions using MAPL at high noise 

level, one example is shown in Fig. 6 for the data with SNR of 

15 (the sub-figure on the far right in the third row). Conventional 

DL based approaches, YEV and K-SVD, overall showed suboptimal 

performance compared to the proposed method, yet demonstrated 

better robustness to noise in contrast to non-DL based MAPL. 

To better evaluate the quality of the reconstructions, in 

Fig. 5 we showcase the ground-truth EAP profiles and the recon- 

structed EAP fields using all 4 techniques for the noise-free data as 

well as data contaminated with 2 different levels of noise, result- 

ing in an SNR of 15 and 25, respectively. In addition, the number 

of peaks detected in each reconstructed EAP field are presented 

in Fig. 6 , along with the ground-truth number of peaks. These re- 

sults verify the observations we made previously, from a visual 

perspective. As is shown in both figures, reconstructions using the 

proposed method are of high quality for data with zero to mild 

level of noise, with respect to the recovery of both EAP profiles 

and peaks. At a lower SNR, the EAP profiles get smudged and as 

a result false peaks are detected from the EAP estimates, which is 

to be expected. Yet, the underlying structure of the fibers in the 

data can still be observed in the reconstructed EAP field (see the 

top right sub-figure in Fig. 5 ). Visually, the overall performance of 

K-SVD shows a similar pattern as the proposed approach regarding 

Fig. 4. Average angular errors in regions with crossing fibers estimated from EAP reconstructions using all the competing methods on noise-free and noisy synthetic data 

with various SNRs. 
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Fig. 5. Ground-truth EAP field (top row) and the EAP fields reconstructed from noise-free and noisy synthetic data (with an SNR of 25 and 15) using all the competing 

methods. Left to right depicts reconstructions for: noise-free, SNR = 25 and SNR = 15 , respectively. Top to bottom depicts reconstructions using different approaches: 

proposed method, MAPL, YEV and K-SVD, respectively. 

the impact of noise on the reconstructed EAPs. However, its angu- 

lar discrimination power at the boundaries of the crossing regions 

deteriorates rapidly with added noise. This phenomenon can be 

observed in the bottom row of Fig. 6 , where the K-SVD framework 

failed to recover the second peak at the margin of most cross- 

ing areas for data with SNR = 25 . On the other hand, with MAPL, 

the presence of noise leads to underestimation of the propagator 

along one of the fiber orientations in the crossing regions (shown 

in Fig. 5 ). This can sometimes cause mis-detection of crossings, as 

can be seen in the case of SNR = 25 (in Fig. 6 ), where the num- 

ber of peaks was estimated to be 1 in regions where crossings are 

present. It can also cause additional false peaks to emerge, as the 

estimated propagator value along the true fiber orientation is not 

prominent enough which causes other orientations with similar 

magnitude to be also detected as peaks, as in the case of SNR = 15 . 

As to the method YEV, the reconstructed EAP fields appear to be of 

satisfactory quality for all data instances visually, but a large num- 

ber of false peaks were detected from the EAP reconstructions ob- 

tained on data with a low SNR. This was not reflected in the nu- 

merical angular error results in Fig. 4 because the true fiber orien- 

tations are still dominant in the reconstructed EAP profiles, as can 

be seen from the corresponding sub-figure in Fig. 5 . 

To summarize, the proposed method was able to accurately re- 

construct smooth EAP fields from diffusion data simulated with 

very complex geometric configurations even in the presence of 

noise. The angular discriminative power, peak recovery as well as 

crossing angle estimation demonstrated by our approach is supe- 

rior to all competing methods. 

4.3. ISBI HARDI challenge 2013 phantom data 

In this section, we showcase the evaluation of our method on 

the ISBI HARDI challenge 2013 phantom data. For this dataset, 

we compared our method with only MAPL and K-SVD, as the 
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Fig. 6. Ground-truth number of EAP peaks (top row) and the number of peaks detected from EAP reconstructions using noise-free and noisy synthetic data (with an SNR of 

25 and 15) using all the competing methods. Left to right depicts results from: noise-free, SNR = 25 and SNR = 15 , respectively. Top to bottom depicts results from different 

approaches: proposed method, MAPL, YEV and K-SVD, respectively. 

Fig. 7. EAP reconstructions for the ROI in the DSI phantom dataset with SNR = 10 . ( a ) FA map of the slice, EAP reconstructions using ( b ) the proposed approach, ( c ) MAPL 

and ( d ) K-SVD. 

approach, YEV, was not implemented for DSI acquisitions ( Ye et al., 

2012b ). We selected our ROI within a slice where the various types 

of fiber configurations can be best observed, the FA map of which 

is presented in Fig. 7 a for visualization purposes. 

The EAP reconstructions from the 3 methods are presented in 

Fig. 7 . As is evident from the figure, the proposed framework and 

K-SVD both produced coherent and smooth EAP fields while the 

MAPL reconstructions suffered severely from the noise. In addition, 

crossing fibers were more accurately recovered by the two patch- 

based DL approaches (one example is shown in the blue rectangle 

highlighted region). This good performance can be attributed to 

the use of patch-based approaches in these two methods (which 

share the same pipeline/ framework presented in Section 2.5 ). 

Since the data generated with the highest noise level (SNR of 10) 
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Fig. 8. Comparison of number of peaks for phantom data. Top row: ground-truth number of peaks (left) and the number of peaks detected from EAP reconstructions using 

the proposed method, MAPL and K-SVD (left to right). Bottom row: the difference of number of peaks between estimations using the 3 methods and the ground-truth. Note 

that different color (gray) -mapping schemes are used for the two rows, and the color (gray) -bars are presented separately. 

was used in this experiment, as a result, the smoothing effect of 

the patch averaging operation played an important role in pro- 

ducing satisfactory results. Further, comparing the reconstructions 

from the proposed method and K-SVD, we noticed that in several 

regions where single fiber bundle passes through, spurious lobes 

exist in the EAP profiles reconstructed using the K-SVD approach 

(see the red rectangle enclosed region in Fig. 7 ). 

As with synthetic data, for this dataset we also perform quanti- 

tative assessments on the EAP reconstructions. The estimated num- 

ber of peaks remains a valuable metric in this evaluation. However, 

since the fiber configuration is far more complicated in the phan- 

tom, it is pointless and impossible to measure and compare cross- 

ing angles as we did for the synthetic data, in which the maximum 

number of fibers in an arbitrary voxel is 2. As an alternative, we 

look at the orientation of the peaks detected at every voxel and 

measure the difference between the estimated peak orientations 

and the ground-truth. 

In Fig. 8 , we present the ground-truth number of peaks in the 

ROI and the number of peaks detected in the EAP reconstructions 

from each method in the top row. Visually, the color (gray scale) 

field appears more smooth for the proposed method but it is to 

some degree difficult to determine between the proposed and the 

K-SVD results as to which of the two are of closer proximity to the 

ground-truth. Hence, we show in the second row the difference 

in the number of peaks with respect to the ground-truth for all 

the 3 methods. It is evident from these plots that the difference 

field from the proposed method has more voxels containing value 

0 (represented by larger areas of the color teal), which indicates 

a better accuracy in the number of peaks detected. Moreover, the 

color (gray scale) field appears more regularized spatially for the 

proposed method compared to the competing ones. 

The comparisons of angular error in fiber orientation estimates 

for the 3 methods are presented in Fig. 9 . For every voxel, we mea- 

sure the angle between each ground-truth fiber and the detected 

peak that forms the smallest angle with that fiber. The angular er- 

ror for all ground-truth fibers are then averaged and mapped to 

a color (gray scale) and presented in the top row of Fig. 9 in a 

voxel-wise manner for each method. We also report the mean and 

the standard deviation of the error in the entire ROI within a text 

box for each method. The error field from our method presents 

great smoothness across the voxels and is visually darker (repre- 

senting smaller values) overall compared to the fields produced by 

the competing methods. The histograms plotted below each color 

(gray) field further verify that the angular error for fiber orienta- 

tions estimated by the proposed approach are distributed closer to 

the y-axis. It is worth noting that for a dataset with an SNR as low 

as 10, our method is able to achieve highly accurate estimation of 

fiber orientations (within the range of the ground-truth orientation 

±5 degrees). This robustness to noise will be of immense value in 

practice for dMRI analysis. 

4.4. Wu-Minn HCP human brain data 

A better understanding of brain connectivity and variability in 

healthy adults will yield profound insights into what contributes 

to the great variation in human behavioral capacities. It will lay 

the foundation for future studies of brain circuitry during devel- 

opment, aging and in various neurological disorders. The Human 

Connectome Project (HCP) strives towards this goal by collecting 

data using a wide variety of imaging modalities, including diffu- 

sion MR, functional MR etc., and sharing it together with rich be- 

havioral and genetic information ( Essen et al., 2013; Moeller et al., 

2010; Feinberg et al., 2010; Setsompop et al., 2012; Xu et al., 2012; 

Glasser et al., 2013; Jenkinson et al., 2012; Fischl, 2012; Jenkin- 

son et al., 2002 ). In HCP, diffusion imaging (HARDI, in particular) 

is used to chart the fiber trajectories and generate maps of struc- 

tural connectivity in the brain via probabilistic tractography. In or- 

der to successfully apply probabilistic tractography, one needs rich 

information about the water diffusion process in the white matter, 

which can be succinctly provided by the EAPs reconstructed from 

the diffusion data. 

In the following example, we show and discuss the EAP recon- 

struction results using the proposed method on a WU-Minn HCP 

dataset, to demonstrate its ability to capture information that can 

be used in characterizing the connectivity in the human brain. The 

acquisition details of this dataset were already presented in the 

previous section. 

An area in centrum semiovale where projection, commissural 

and association tracts interact was picked as the ROI from a coro- 

nal slice, as highlighted in the FA map shown in Fig. 10 ( a ). The 

EAPs reconstructed using all 4 methods are presented in the rest 

of the figure. As can be seen from the visual comparisons, the pro- 

posed method yields coherent and smooth reconstruction over the 

entire field, especially in regions of homogeneous fiber orientation 

such as the area enclosed by the orange ellipsoid. More impor- 

tantly, the proposed method successfully recover crossings where 
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Fig. 9. Fiber orientation error comparisons for phantom data. Top row: error field of fiber orientations estimated from EAP reconstructions using the proposed method (left), 

MAPL (middle) and K-SVD (right), with the mean and standard deviation of the errors presented in a text box. Bottom row: the histogram and fitted distribution of the fiber 

orientation error for corresponding methods. 

Fig. 10. EAP reconstruction from an ROI in a coronal slice of the HCP dataset. ( a ) FA map of the slice, EAP reconstructions using ( b ) the proposed method, ( c ) MAPL, ( d ) YEV 

and ( e ) KSVD. 

fiber tracts interact (see regions highlighted with red and blue cir- 

cles). Comparing ( b ) and ( e ) we observed that the K-SVD frame- 

work performed relatively well on this dataset, which could be due 

to the advantage of employing a patch-based scheme in the frame- 

work. Another possible reason is that the EAP initialization (which 

was shared between the proposed and the K-SVD frameworks) was 

of great accuracy, which contributed to the high quality of the fi- 

nal results. Yet, in several regions it can be seen that spurious lobes 

were introduced in the K-SVD reconstruction, one example of this 

phenomena is highlighted in a green ellipsoid and zoomed in for 

closer inspection in the figure. Further, note that due to the as- 

sumption of a Euclidean vector space structure in K-SVD, the EAPs 

reconstructed with the K-SVD do not necessarily satisfy the EAP 

non-negativity condition. 

4.5. Rat spinal cord injury data 

In this section, we present another set of real data experiments 

involving HARDI acquisitions from control and injured rat spinal 

cords. We first present a brief biological motivation for this exper- 

iment and then present results of EAP reconstructions along with 

estimated HA maps and a statistical two sample t -test based vali- 

dation. 
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Fig. 11. 3D renderings of the spinal cord and the selected C4 section of a healthy 

rat. 

Somatic and autonomic functions are profoundly disrupted by 

spinal cord injury (SCI), but some degree of spontaneous recovery 

is often possible following anatomically incomplete lesion. The rel- 

ative extent of the functional recovery depends on multiple fac- 

tors, the most prominent being the size and location of the spinal 

lesion. However, neuroplastic processes at sites distant to the pri- 

mary site of spinal trauma are fundamentally important to the re- 

covery process after SCI. For example, propriospinal neurons can 

effectively establish a “relay pathway” at sites many segments re- 

moved from the primary site of SCI, and these de novo path- 

ways make a significant contribution to motor recovery after in- 

jury ( Bareyre et al., 2004; Gerasimenko et al., 2007; Courtine et al., 

20 08; Harkema, 20 08; Courtine et al., 20 09 ). In addition, following 

SCI-induced axotomy, the relative extent of neurodegeneration at 

distant sites will have a considerable impact on the success of re- 

habilitation paradigms which target induction of spinal neuroplas- 

ticity. Thus, a deeper understanding of how SCI impacts the neu- 

ronal substrate proximal to lesion sites is important to optimizing 

motor recovery and future development of personalized rehabili- 

tation paradigms directed more specifically at the available neuro- 

logic substrate. 

For this purpose, we used HARDI acquisitions of spinal cords 

(C4 section) from 8 controls and 12 moderately injured rats, with 

21 gradient directions at b-value 10 0 0 s/mm 

2 . The rats in the mod- 

erately injured group received a contusion with 200 kdyn force ap- 

plied to the T10 vertebral level of the spinal cord, which is distant 

to the imaging site (C4). In this experiment we are interested in 

testing the ability of the proposed method at producing high qual- 

ity EAP reconstructions that can potentially assist the identification 

of neurodegeneration at sites distant to the spinal cord trauma. 

Fig. 11 provides examples of 3D renderings from the S 0 image of 

the entire spinal cord as well as the C4 section from a control 

(spinal-intact) rat. The diffusion images of the C4 sections of all 

rats were co-registered prior to the EAP estimation. The HARDI ac- 

quisition parameters for this dataset have already been presented 

in the previous section. 

We first randomly chose one rat from each of the two groups 

(injured and control rats) to showcase the results. For both rats, 

the cervical (C4) section (which is distant to the injury site T10) 

was evaluated using the EAP reconstruction framework developed 

herein and the results are presented. For this data set, we compare 

results from the proposed method only with the methods YEV and 

MAPL, due to the fact that the K-SVD method did not yield com- 

parable result. 

For a selected slice in the C4 region of the spinal cord, Fig. 12 

shows the FA map for the control rat (top row) and injured rat 

(bottom row) overlayed with the reconstructed EAPs in this ROI us- 

ing different methods. Comparing the results from different meth- 

ods for a single rat (horizontally across in a figure), we can see 

that the proposed approach yields a coherent EAP field for both 

the rats, while some of the reconstructed EAP fields using compet- 

ing methods are not as coherent. Further, the connectivities evi- 

dent in the reconstructed EAP field using the proposed framework 

appear more plausible. We noticed that the fiber orientations re- 

covered using different approaches do not completely agree (both 

in the case of healthy and injured rat). This is likely a result of the 

method MAPL and YEV being more suitable for data acquired at 

higher angular resolutions, while the data used here was acquired 

using only 21 gradient directions. On the other hand, comparing 

the reconstructed EAP field for the different rats using the same 

approach (vertically colum-wise in the figure), it is evident that 

the distinction between the two rats produced by the proposed 

method is far more clear and significant. 

Imaging stain computation experiments: The anisotropic in- 

dex (HA) computed from the reconstructed EAP fields, for both the 

control and injured cords, are shown in Figs. 13 and 14 , respec- 

tively. In all the experiments presented in this section, n = 724 

in Eq. (5) . The images in the top rows of Figs. 13 and 14 were 

computed using an empirically determined β = 0 . 1 (using a grid 

search). The visualization convention used here for an HA map de- 

picts anisotropic regions to be brighter than isotropic regions. 

Although, diffusion tensor model based biomarkers like frac- 

tional anisotropy (FA) etc. are still widely used clinical biomarker 

in practice, it is well known now that they can not cope with 

crossing fibers. In contrast, HA computed from any higher order 

tensors or other models of estimating EAPs overcomes this weak- 

nesses. Besides, unlike many state-of-the-art biomarkers like RTAP, 

RTOP, RTPP ( Özarslan et al., 2013; Fick et al., 2016 ), HA is not con- 

strained to EAPs represented parameterically. Instead, computing 

HA from reconstructed EAP/ ODF only requires one to evaluate 

Eqs. (5) and (6) , which is straight-forward provided the EAPs/ ODFs 

are probability distributions. 

In Figs. 13 and 14 , the comparison between HA maps obtained 

from the proposed method, MAPL and YEV, corroborates our pre- 

vious claim that the proposed method produces more reliable co- 

herent EAP reconstruction. Using our proposed method, with MAPL 

(isotropic) initialization, within ascending tracts more anisotropic 

regions have been detected in dorsal columns and spino-thalamic 

region, whereas within descending tracts, more anisotropic regions 

have been detected in reticulospinal region. On the other hand, us- 

ing MAPL with the anisotropic setting, we found more anisotropic 

regions around the ventral corticospinal tract. This can already be 

observed in the HA map obtained from the proposed method. We 

can also see that even with the anisotropic setting in MAPL, the 

white matter and gray matter contrast is still poor and HA com- 

puted with the proposed method is more coherent and meaning- 

ful. 

As mentioned before, the parameter β controls the contrast be- 

tween the anisotropic and isotropic regions. To demonstrate this, in 

the bottom rows of Figs. 13 and 14 , we present HA maps computed 

using various methods with parameter β = 0 . 15 . From the figures 

it is evident that by varying β the imaging stain obtained using 

the proposed method is much more stable than the competing 

methods. With increasing contrast between white and gray mat- 

ter, performances of MAPL and YEV deteriorate rapidly. So, in this 

work we not only introduced a novel EAP reconstruction technique 

but also discussed a flexible framework to compute a biomarker, 

which is sensitive to complex fiber geometries present in the im- 

aged sample. 

To further compare the competing methods’ ability to distin- 

guish between the two classes of imaged spinal cords, we per- 

formed the two sample t -test based on the computed HA maps. 

We want to assess whether the biomarker computed from the re- 

constructed EAPs can meaningfully identify the changes in water 

diffusion at voxels distant to spinal cord trauma. For this test a 

significance level of 0.10 was considered. In the top row of Fig. 15 

we present the t -test results obtained from various methods. For a 
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Fig. 12. EAP reconstruction for a selected slice in the C4 region of the spinal cord of a healthy rat (top row) and injured rat (bottom row). EAP reconstructions using the 

proposed method, MAPL and YEV, respectively. 

Fig. 13. HA maps for a selected slice in the C4 region of the spinal cord of a control rat . HA map with β = 0 . 10 (top row) and β = 0 . 15 (bottom row) computed from EAP 

reconstructions using (left to right) (1) the proposed method with YEV initialization, (2) the proposed method with MAPL (isotropic) initialization, (3) MAPL with isotropic 

setting, (4) MAPL with anisotropic setting and (5) YEV. 

Fig. 14. HA maps for a selected slice in the C4 region of the spinal cord of an injured rat . HA map with β = 0 . 10 (top row) and β = 0 . 15 (bottom row) computed from EAP 

reconstructions using (left to right) (1) the proposed method with YEV initialization, (2) the proposed method with MAPL (isotropic) initialization, (3) MAPL with isotropic 

setting, (4) MAPL with anisotropic setting and (5) YEV. 

better understanding, we superimposed the marked (red and 

green) significant voxels on a sample S 0 image of the spinal 

cord (C4 section) of an injured rat. Both red and green regions 

are of significance. A green voxel indicates significantly increased 

anisotropy in the injured cord compared to a control, whereas a 

red voxel indicates a more isotropic diffusion in the injured cord. 

As observed earlier, the proposed method along with HA maps 

is far more adept at distinguishing between the two classes than 

MAPL and YEV. Though both YEV and MAPL failed to pick up the 

significant voxels in the ventral funiculus region, YEV was still able 

to identify some critical changes in the lateral edge of the spinal 

cord, but MAPL did not perform as well. Moreover, from the figures 

we can observe that the proposed method with MAPL initialization 

performed better than when initialized with YEV. 

For better visualization, cross sectional images of the t -test re- 

sults from various methods on a sample slice are presented in the 

bottom row of Fig. 15 . In this figure, brightness (of the color) is in- 

versely proportional to the p-value. From this result we can see that, 

all three methods were able to identify significant voxels in poste- 

rior median sulcus. For the injured rats, the proposed method and 

YEV also identified reduced anisotropy in the lateral spinal cord, 

which includes the region of the spinocerebellar tracts. But, both 

YEV and MAPL failed to identify the increased anisotropy of the 

injured cords in ventral funiculus region, where anterior spinotha- 

lamic and ventral corticospinal tracts are present. These results 

show that the proposed method is far more effective in captur- 

ing changes in neuroplasticity at sites distant to the primary site 

of spinal trauma, which is our primary goal in this example. 
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Fig. 15. (Top) T-test results in 3D with significance level 0.10 in C4 spinal region of 

the cord. Significant regions identified by ( a ) the proposed method, ( b ) MAPL and 

( c ) YEV. (Bottom) A better visualization of the p -values via an arbitrarily selected 

slice in the C4 region. 

The observed statistically significant increases and decreases 

in voxel anisotropy are likely to reflect a combination of 

neurodegeneration-induced decreases in fiber density coupled with 

sprouting and/or reorganization of propriospinal pathways. The lit- 

erature has firmly established that the injured spinal cord under- 

goes profound neuroplastic remodeling ( Bareyre et al., 2004; Fen- 

rich and Rose, 2009; Filli and Schwab, 2015; Nakagawa et al., 2015 ), 

and the methods described herein may provide a tool to image 

these changes. For example, Fig. 15 (a) indicates decreased voxel 

anisotropy in the dorsal column region (red shading), possibly in- 

dicating degeneration of propriospinal sensory afferent pathways 

(e.g., Type Ia, Ib). Fig. 15 (a) also indicates increased anisotropy in 

the ventral-medial white matter, in the region of the spinoreticu- 

lar and spinothalamic tracts, suggesting possible growth in these 

sensory pathways. 

5. Discussion 

Through a wide variety of experiments, we have demonstrated 

the superior performance of the proposed DL based EAP field re- 

construction framework, with respect to accuracy in peak recov- 

ery, angular estimation as well as spatial coherence in the recon- 

struction. The comparisons with linear DL based EAP reconstruc- 

tion methods clearly show the advantage of respecting and incor- 

porating the manifold structure of EAPs. Further, the comparison 

with the state-of-the-art EAP/ ODF reconstruction technique, MAPL, 

suffices to demonstrate the value of our approach relative to exist- 

ing methods in the field. 

The strengths of the proposed method are three-fold. First and 

foremost, it produces very accurate and spatially smooth recon- 

structions of EAP fields while providing guarantees for the non- 

negativity of the reconstructed EAPs in the presence of noise. Sec- 

ondly, the dictionary learned in the reconstruction process is fully 

adaptive and tailored to the particular data at hand, with no as- 

sumptions on the model for signal or EAP representation. Last but 

not least, the framework presented herein is applicable to data ac- 

quired with any sampling scheme and maintains consistent per- 

formance, as demonstrated in the experiments. This independence 

with respect to the sampling scheme stems from the unique de- 

sign of the pipeline, in which the EAPs are first initialized us- 

ing any method of choice before being passed on to the DL al- 

gorithm. This design, meanwhile, makes the performance of the 

proposed approach dependent on the quality of the initialization 

to some extent. As in any method involving hard nonlinear op- 

timization which depend on a good initial guess, our method is 

also dependent on the initialization. In our experiments, we found 

that our method initialized with YEV lead to more coherent output 

compared to initialization with MAPL. However MAPL initialization 

yielded faster convergence despite the results being less coherent 

in comparison. Further theoretical analysis is however necessary to 

quantify the capture range of the method in terms of initializations 

for convergence and accuracy. This will involve significant mathe- 

matical analysis and is a possible venue of investigation for future 

work. 

One of the key features of our method is that it is a patch- 

based Dictionary Learning method. Patch-based dictionary learn- 

ing is well studied in the context of image denoising, inpaint- 

ing, super-resolution, etc. Our patch-based algorithm is inspired by 

the success achieved in the task of image reconstruction in com- 

pressed sensed MRI by patch-based linear dictionaries reported in 

Ravishankar and Yoram (2011) . The effect of size of patches on 

the quality of reconstruction is similar to that in any patch-based 

algorithms employed in image processing. Larger the patch size, 

smoother is the reconstruction at the expense of computational 

cost. Patch-size is similar to the scale parameter in scale-space 

methods and dictates the scale of reconstruction. Finer the desired 

scale of reconstruction, smaller the patch size. In our work, patch- 

size was determined via a grid search. 

One of the limitations of the proposed framework is the higher 

computation time incurred in the non-linear DL process, typically 

ranging over thirty minutes to several hours. This computation 

time is dependent several factors namely, quality of the initializa- 

tion and patch size (discussed above). Closer the initialization to 

the local optimum, faster will be the convergence. With regards to 

current limitation of the method in computation time, one possi- 

ble venue to explore is to implement the entire pipeline in C and 

use GPU accelerated computations. We will explore this venue in 

our future work. 

In this work, we proposed an effective biomarker based on 

Rényi entropy. This biomarker summarizes the diffusion character- 

istics captured by the reconstructed EAP. As EAPs are probability 

densities, this Rényi entropy based index is natural and easy to 

compute and unlike FA, it can also reflect anisotropy in the regions 

of crossing fibers. It is also not biased toward any chosen basis for 

EAP representations. Using a two sample t -test, we showed that 

the proposed biomarker can meaningfully capture significant struc- 

tural changes between the control and injured cord groups distant 

from the site of injury. 

6. Conclusions 

In this paper, we presented a novel patch-based EAP field re- 

construction technique from dMRI data sets. EAPs capture the dif- 

fusional characteristics of the tissue micro-architecture and hence 

are of fundamental importance to the inference of the structural 

changes. In the recent past, EAP field reconstruction has been 

commonly achieved via known basis expansions as well as dic- 

tionary learning and sparse coding based methods formulated in 

vector spaces. Here, we presented a generalization of the dictio- 

nary learning and sparse coding problem in Euclidean space to 

smooth (Riemannian) manifolds and discussed a two stage alter- 

nating minimization solver for this generalization. We applied this 

formulation to the EAP field reconstruction problem where the EAP 

field in a patch is represented as a point on the product man- 

ifold of square root densities. Using this patch-based approach, 

we achieved a smooth EAP field reconstruction from dMRI data. 

Through multiple synthetic, phantom and real data experiments, 

we demonstrated that our method outperforms vector-space dic- 

tionary learning based methods as well the state-of-the-art in EAP 

reconstruction namely, the MAPL method. This performance can 

be attributed to the incorporation of the geometric structure of 

the data space into the dictionary learning process in combina- 

tion with the patch-based framework. Further, we also presented 
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an imaging stain/ biomarker (HA) that is a function of the well 

known Rényi entropy from information theory literature which has 

been widely employed in a variety of applications. This biomarker 

is easy to compute from the estimated EAPs, is unbiased to the 

choice of EAP representations and is an effective tool in captur- 

ing complex diffusion patterns in the tissue being imaged. Using a 

two-sample t -test, we presented quantitative results depicting the 

ability of the imaging biomarker (HA) to capture changes in the tis- 

sue microstructure of the spinal cord distant from the site of the 

injury. 
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