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Abstract. Developing deep neural networks (DNNs) for manifold-valued data
sets has gained significant interest of late in the deep learning research community.
Examples of manifold-valued data in the medical imaging domain include (but are
not limited to) diffusion magnetic resonance imaging, tensor-based morphometry,
shape analysis and more. In this paper we present a novel theoretical framework
for DNNs to cope with manifold-valued data inputs, taking inspiration from
the convolutional neural network (CNN) architecture. We call our network the
ManifoldNet.
Analogous to vector spaces where convolutions are equivalent to computing
weighted means, manifold-valued data convolutions can be defined using the
weighted Fréchet Mean (wFM). To this end, we present a provably convergent
recursive algorithm for computation of the wFM of the given data, where the
weights are to be learned. Further, we prove that the proposed wFM layer achieves
a contraction mapping and hence the ManifoldNet need not have additional non-
linear ReLU units used in standard CNNs to achieve a contraction mapping.
Analogous to the equivariance of convolution in Euclidean space to translations, we
prove that the wFM is equivariant to the action of the group of isometries admitted
by the Riemannian manifold on which the data reside. This equivariance property
facilitates weight sharing within the network. We present experiments using the
ManifoldNet framework to achieve regression between diffusion MRI scans of
Parkinson Disease (PD) patients and clinical information such as their Movement
Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
scores. In another experiment, we present results of finding group differences
based on brain connectivity at the fiber bundle level between PD and controls.

1 Introduction

CNNs pioneered by [16] have gained much popularity since their significant success
on Imagenet data reported in [15]. In the past few years there has been a growing
interest in generalizing CNNs and deep networks in general to data that reside on smooth
non-Euclidean spaces. In this context, at the outset, it would be useful to categorize
problems into (1) those that involve data as samples of real-valued functions defined on
a manifold and (2) those that are simply manifold-valued and hence are sample points
on a manifold. In this paper we will consider the second problem, namely, when the
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input data are sample points on known Riemannian manifolds for example, the manifold
of symmetric positive definite (SPD) matrices, SPD(n), the special orthogonal group,
SO(n), the n-sphere, Sn, the Grassmannian, Gr(p, n), and others. To be precise, the
domain of interest is an n-dimensional field of points sampled from a Riemannian
manifold. There is very little prior work that we are aware of on DNNs that can cope
with input data samples residing on these manifolds with the exception of [13,12]. In [13],
authors presented a deep network architecture for classification of hand-crafted features
residing on a Grassmann manifold that form the input to the network. In [12], authors
presented a deep network architecture for data on SPD(n). In both of these works, the
architecture does not involve the use of any convolution or equivalent operations on
Gr(p, n) or SPD(n). Further, it does not use the natural invariant metric or intrinsic
operations on the Grassmannian or the SPD(n) in the network blocks. Using intrinsic
operations within the layers guarantees that the result remains on the manifold and hence
does not require any projection (extrinsic) operations to ensure the result lies in the
same space. Further, using extrinsic operations can yield results that are susceptible to
significant inaccuracies when the data variance is large [22]. Moreover, since there are
no convolution type operations defined for data on these manifolds in their network,
it can not be considered a generalization to the CNN and as a consequence does not
consider the equivariance property to the action of the group of isometries denoted by
I (M), admitted by the manifoldM.

In this paper, we present a novel DNN framework called the ManifoldNet. This is a
potential analog of a CNN that can cope with input data sampled from a Riemannian
manifold. The intuition in defining the analog relies on the equivariance property. Note
that convolution of functions in vector spaces are equivariant to translations in the
input domain. Further, it is easy to show that traditional convolutions of functions are
equivalent to computing the weighted mean [10]. Hence, for the case of manifold-valued
data, we can define the analogous operation of a weighted Fréchet mean (wFM) and
prove that it is equivariant to the action of I (M). This will be presented in a subsequent
section. Our key contributions in this work (presented in section 2) are (i) we define
the analog of convolution operations for manifold-valued data to be one of estimating
the wFM for which we present a provably convergent, efficient and recursive estimator.
(ii) A proof of equivariance of wFM to the action of I (M). This equivariance allows
the network to share weights within the layers. (iii) A novel deep architecture involving
the Riemannian counterparts to the conventional CNN units (presented in section 3).
(iv) Two real data experiments, (a) regression between changes in diffusional structure
– captured in the Cauchy deformation tensor obtained via nonrigid registration of the
ensemble average propagator (EAP) field computed from the patient scan to the EAP
control atlas – and function in movement disorder patients. (b) An experiment on finding
group differences based on brain connectivity at the fiber bundle level specifically, the
motor sensory area (M1) tract in both the brain hemispheres.

2 Group action equivariant network for manifold-valued data

In this section, we will define the equivalent of a convolution operation on Riemannian
manifolds. As mentioned in the introduction, the domain of interest is an n-dimensional
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field of manifold valued points. Before formally defining such an operation and building
the ManifoldNet, we first present some relevant concepts from differential geometry that
will be used in the rest of the paper.

Preliminaries. Let (M, gM) be a orientable complete Riemannian manifold with
a Riemannian metric gM, i.e., (∀x ∈ M) gMx : TxM× TxM → R is a bi-linear
symmetric positive definite map, where TxM is the tangent space ofM at x ∈M. Let
d :M×M→ [0,∞) be the metric (distance) induced by the Riemannian metric gM.
With a slight abuse of notation we will denote a Riemannian manifold (M, gM) byM
unless specified otherwise. Let ∆ be the supremum of the sectional curvatures ofM.

Definition 1. Let p ∈ M, r > 0. Define Br(p) = {q ∈M|d(p, q) < r} to be a open
ball at p of radius r.

Definition 2. [11] The local injectivity radius at p ∈M, rinj(p), is defined as rinj(p) =
sup

{
r|Expp : (Br(0) ⊂ TpM)→M is defined and is a diffeomorphism onto its image}.

The injectivity radius [19] ofM is defined as rinj(M) = infp∈M {rinj(p)}.

Within Br(p), where r ≤ rinj(M), the mapping Exp−1p : Br(p)→ U ⊂ TpM, is called
the inverse Exponential/ Log map.

Definition 3. [14] An open ball Br(p) is a regular geodesic ball if r < rinj(p) and
r < π/

(
2∆1/2

)
.

In Definition 3 and below, we interpret 1/∆1/2 as∞ if ∆ ≤ 0. It is well known that, if
p and q are two points in a regular geodesic ball Br(p), then they are joined by a unique
geodesic within Br(p) [14].

Definition 4. [7] U ⊂ M is strongly convex if for all p, q ∈ U , there exists a unique
length minimizing geodesic segment between p and q and the geodesic segment lies
entirely in U .

Definition 5. [11] Let p ∈ M. The local convexity radius at p, rcvx(p), is defined
as rcvx(p) = sup {r ≤ rinj(p)|Br(p) is strongly convex}. The convexity radius ofM is
defined as rcvx(M) = infp∈M {rcvx(p)}.

For the rest of the paper, we will assume that the samples on M lie inside an
open ball U = Br(p) where r = min {rcvx(M), rinj(M)}, for some p ∈ M, unless
mentioned otherwise. Now, we are ready to define the operations necessary to develop
the ManifoldNet architecture.

2.1 wFM on M as a generalization of convolution

We will begin by defining a convolution type operation on points sampled fromM. This
convolution operation will perform an averaging over a moving window, where weighted
sums are replaced with weighted intrinsic averages. Let {Xi}Ni=1 be the manifold-valued
samples onM. We define the convolution type operation onM as the weighted Fréchet
mean (wFM) [20] of the samples {Xi}Ni=1. Also, by the aforementioned condition on
the samples, the existence and uniqueness of the FM is guaranteed [1]. As mentioned
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earlier, it is easy to show (see [10]) that convolution ψ∗ = b ? a of two functions
a : X ⊂ Rn → R and b : X ⊂ Rn → R can be formulated as computation of the
weighted mean ψ∗ = argminψ

∫
a(u)(ψ − b̃u)2du, where, ∀x ∈ X, b̃u(x) = b (u + x)

and
∫
a(x)dx = 1. Here, f2 for any function f is defined pointwise. Further, the defining

property of convolutions in vector spaces is the linear translation equivariance in both
the domain and the range of the image. Since weighted mean in vector spaces can
be generalized to wFM on manifolds and further, wFM can be shown (see below) to
be equivariant to group actions admitted by the manifold, we claim that wFM is a
generalization of convolution operations to manifold-valued data.

Let {wi}Ni=1 be the weights such that they satisfy the convexity constraint, i.e.,
∀i, wi > 0 and

∑
i wi = 1, then wFM, wFM ({Xi} , {wi}) is defined as:

wFM ({Xi} , {wi}) = argmin
M∈M

N∑
i=1

wid
2 (Xi,M) (1)

Analogous to the equivariance property of convolution to translations in vector
spaces, we will now show that the wFM is equivariant under the action of the group
of isometries of M. We will first formally define the group of isometries of M (let
us denote it by G) and then define the equivariance property and show that wFM is
G-equivariant.

Definition 6 (Group of isometries ofM (I (M))). A diffeomorphism φ :M→M is
an isometry if it preserves distance, i.e., d (φ (x) , φ (y)) = d (x, y). The set I(M) of all
isometries ofM forms a group with respect to function composition. Rather than write
an isometry as a function φ, we will write it as a group action. Henceforth, let G denote
the group I(M), and for g ∈ G, and x ∈ M, let g.x denote the result of applying the
isometry g to point x.

Clearly M is a G set (see [9] for the definition of a G set). We will now define
equivariance and show that wFM is G-equivariant.

Definition 7 (Equivariance). Let X and Y be G sets. Then, F : X → Y is said to be
G-equivariant if ∀g ∈ G, ∀x ∈ X , F (g.x) = g.F (x).

Let U ⊂M be an open ball inside which FM exists and is unique, let P be the set
of all possible finite subsets of U .

Theorem 1. Given {wi} satisfying the convex constraint, let F : P → U be a function
defined by {Xi} 7→ wFM ({Xi} , {wi}). Then, F is G-equivariant.

Proof. Let g ∈ G and {Xi}Ni=1 ∈ P , now, letM∗ = wFM ({Xi} , {wi}), as g.F ({Xi}) =
g.M∗, it suffices to show g.M∗ is wFM ({g.Xi} , {wi}) (assuming the existence and
uniqueness of wFM ({g.Xi} , {wi}) which is stated in the following claim).
Claim: Let U = Br (p) for some r > 0 and p ∈ M. Then, {g.Xi} ⊂ Br (g.p) and
hence wFM ({g.Xi} , {wi}) exists and is unique.

Let M̃ be wFM ({g.Xi} , {wi}). Then,
∑N
i=1 wid

2
(
g.Xi, M̃

)
=
∑N
i=1 wid

2 (Xi,

g−1.M̃
)

. Since, M∗ = wFM ({Xi} , {wi}), hence, M∗ = g−1.M̃ , i.e., M̃ = g.M∗.
Thus, g.M∗ = wFM ({g.Xi} , {wi}), which implies F is G-equivariant.
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A class of Riemannian manifolds on which G acts transitively are called Riemannian
homogeneous spaces. We can see that on a Riemannian homogeneous spaceM, wFM
is G-equivariant. Equipped with a G-equivariant operator on M, we can claim that
the wFM (defined above) is a valid convolution operator since group equivariance is a
unique defining property of a convolution operator.

The rest of this subsection will be devoted to developing an efficient way to compute
wFM. The strategy is to cast the weighted FM computation as an unweighted FM
computation, and then use efficient FM estimators. Let ωM > 0 be the Riemannian
volume form.

Let pX be the probability density of a U -valued random variable X with respect to
ωM on U ⊂ M, so that Pr (X ∈ A) =

∫
A
pX(Y )ωM (Y ) for any Borel-measurable

subset A of U. Let Y ∈ U , we can define the expectation of the real valued random
variable d2(, Y ) : U → R by E

[
d2(, Y )

]
=
∫
U
d2(X,Y )pX(X)ωM(X). Now, let

w : U → (0,∞) be an integrable function where
∫
U
w (X)ωM (X) = 1.

Let p̃X be the probability density corresponding to the probability measure P̃r defined
by P̃r (X ∈ X) =

∫
X
p̃X(Y )ωM(Y ) :=

∫
X

1
C pX(Y )w(Y )ωM(Y ), where, X lies in

the Borel σ-algebra over U and let C =
∫
U
pX(Y )w(Y )ωM(Y ). Note that the constant

C > 0, since pX is a probability density, w > 0 andM is orientable.
Now, we will state and prove the following proposition.

Proposition 1. Using the notation from above we have: (i) supp (pX) = supp (p̃X).

(ii) wFE (X, w) = FE
(

X̃
)

.

Proof. Let X ∈ supp (pX), then, pX (X) > 0. Since, w(X) > 0, hence, p̃X (X) > 0

and thus, X ∈ supp (p̃X). On the other hand, assume X̃ to be a sample drawn from p̃X .
Then, either pX

(
X̃
)

= 0 or pX
(
X̃
)
> 0. If, pX

(
X̃
)

= 0, then, p̃X
(
X̃
)

= 0 which

contradicts our assumption. Hence, pX
(
X̃
)
> 0, i.e., X̃ ∈ supp (pX). This concludes

the proof of part (i).
Let X and X̃ be the M valued random variable following pX and p̃X respec-

tively. We define the weighted Fréchet expectation (wFE) of X as wFE (X, w) =
argminY ∈M

∫
M w(X)d2(X,Y )pX(X)ωM(X).

Observe,Ew
[
d2(, Y )

]
:=
∫
U
w(X)d2(X,Y )pX(X) ωM(X) = C

∫
U
d2(X,Y )p̃X(X)

ωM(X) = C Ẽ
[
d2(, Y )

]
.. Hence, we get FE

(
X̃
)

= wFE (X, w), asC is independent
of the choice of Y , which concludes the proof of part (ii).

Now let {Xi}Ni=1 be samples drawn from pX and
{
X̃i

}N
i=1

be samples drawn from

p̃X . In order to compute wFM, we will now present an online algorithm (inductive FM
Estimator – dubbed iFME). Note that in [22,6,17], authors present recursive algorithms
for FM computation on the hyper-sphere, Stiefel and SPD(n) manifolds respectively.
These specific algorithms are distinct from our work here since the wFM approach is
applicable to any Riemannian manifold.

iFME wFM Estimator: Given, {Xi}Ni=1 ⊂ U and {wi := w (Xi)}Ni=1 such that
∀i, wi > 0, the nth estimate, Mn of wFM ({Xi} , {wi}) is given by the following
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recursion:

M1 = X1 Mn = ΓXn

Mn−1

(
wn∑n
j=1 wj

)
. (2)

In the above equation, ΓYX : [0, 1] → U is the shortest geodesic curve from X to Y .
Observe that, in general wFM is defined with

∑N
i=1 wi = 1, but in above definition,∑N

i=1 wi 6= 1. We can normalize {wi} to get {w̃i} by w̃i = wi/ (
∑
i wi), but then Eq.

2 will not change as w̃n/
(∑n

j=1 w̃j

)
= wn/

(∑n
j=1 wj

)
. This gives us an efficient

inductive/recursive way to define convolution operation onM. We now show that the
proposed wFM estimator is consistent in the following proposition (the proof is in
supplementary section).

Proposition 2. Using the above notations and assumptions, let {Xi}Ni=1 be i.i.d. sam-
ples drawn from pX onM. Let the wFE be finite. Then, MN converges a.s. to wFE as
N →∞.

2.2 Nonlinear operation between wFM-layers for M-valued Data

In the traditional CNN model, we need an intermediate nonlinear function between
convolutional layers (e.g. ReLU). As argued in [18], any nonlinear function used in
CNNs is basically a contraction mapping. Formally, let F be a nonlinear mapping from U
to V . Assume U and V are metric spaces equipped with metrics dU and dV respectively.
Then F is a contraction mapping iff ∃c < 1 such that dV (F (x), F (y)) ≤ c dU (x, y). F
is a non-expansive mapping [18] iff dV (F (x), F (y)) ≤ dU (x, y).

X1
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Zd

Mu

yc

y1

Invariant layer
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X1

X6
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w
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Cascaded wFM layers

wFM
(

fXig ;
{

wd

i

})

wFM

Fig. 1: Left-Right (a) Schematic diagram of ManifoldNet (b) 2× 2 ManifoldNet conv.
example

One can easily see that the popular choices for nonlinear operations like ReLU,
sigmoid are indeed non-expansive mappings. We will now show that the function wFM
as defined in 1, is a contraction mapping for any non-trivial choice of weights. Let
{Xi}Ni=1 and {Yj}Mj=1 be the two set of samples on M. Without loss of generality
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assume N ≤M . We consider the set UM = U × · · · × U︸ ︷︷ ︸
M times

. Clearly {Yj}Mj=1 ∈ U
M and

we embed {Xi}Ni=1 in UM as follows: we construct
{
X̃i

}M
i=1

from {Xi}Ni=1 by defining

X̃i = X(i−1)modN+1. Let us denote the embedding by ι. Now, define the distance on

UM as d
({

X̃i

}M
i=1

, {Yj}Mj=1

)
= maxi,j d (Xi, Yj). We say the choice of weights for

wFM is trivial if one of the weights is 1 (hence all others are 0).

Proposition 3. For all nontrivial choices of {αi}Ni=1 and {βj}Mj=1 satisfying the con-
vexity constraint , ∃c < 1 such that,

d
(

wFM
(
{Xi}Ni=1 , {αi}

N
i=1

)
,wFM

(
{Yj}Mi=1 , {βj}

M
i=1

))
≤ c d

(
ι
(
{Xi}Ni=1

)
, {Yj}Mj=1

)
(3)

2.3 The invariant (last) layer

We will form a deep network by cascading multiple sliding wFM windows each of
which acts as a convolution-type layer. Each convolutional-type layer is equivariant to
the group action, and hence at the end of the cascaded convolutional layers, the output is
equivariant to the group action applied to the input of the network. Let d be the number of
output channels each of which outputs a wFM, hence each of the channels is equivariant
to the group action. However, in order to build a network that yields an output which
is invariant to the group action we would like the last layer (i.e., the analogue to a
linear classifier) to be invariant to the group action. The last layer is thus constructed as
follows: Let {Z1, · · · , Zd} ⊂ M be the output of d channels andMu = FM

(
{Zi}di=1

)
= wFM

(
{Zi}di=1 , {1/d}

d
1

)
be the unweighted FM of the outputs {Zi}di=1. Then, we

construct a layer with d outputs whose ith output oi = d (Mu, Zi). Let c be the number
of classes for the classification task, then, a fully connected (FC) layer with inputs {oi}
and c output nodes is used. Finally, a softmax operation is then used at the c output nodes
to obtain the outputs {yi}ci=1. In the following proposition we claim that this last layer
with {Zi}di=1 inputs and {yi}ci=1 outputs is group invariant.

Proposition 4. The last layer with {Zi}di=1 inputs and {yi}ci=1 outputs is group invari-
ant.

Proof. Using the above construction, let W ∈ Rc×d and b ∈ Rc be the weight matrix
and bias respectively of the FC layer. Then,

y = F
(
WTo + b

)
= F

(
WT d (Mu, Z) + b

)
, (4)

where, F is the softmax function. In the above equation, we treat d (Mu, Z) as the vector
[d (Mu, Z1) , · · · , d (Mu, Zd)]

t. Observe that, g.Mu = FM
(
{g.Zi}di=1

)
. As each of

the d channels is group equivariant, Zi becomes g.Zi. Because of the property of the
distance under group action, d (g.Mu, g.Zi) = d (Mu, Zi). Hence, one can see that if
we change the inputs {Zi} to {g.Zi}, the output y will remain invariant.
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In Fig. 1 we present a schematic of ManifoldNet depicting the different layers of
processing the manifold-valued data as described above in Sections 2.1-2.3.

Unlike standard Euclidean CNN, note that, here we do not need a nonlinearity
between two convolution layers as argued in subsection 2.2. Note that, in standard CNN,
without the presence of non-linearity one can collapse a deep network into a shallow
one. This raises the following question Can ManifoldNet be collapsed to it’s shallow
counterpart as there is no non-linearity between layers ? In order to answer this question,
we will show that for manifolds with non-constant sectional curvatures, we can not
collapse the ManifoldNet into a shallow network.

Here we present a proof (via a counter example) to show that a multi-layer Manifold-
Net can not be collapsed to a single layer ManifoldNet whenM = SPD(n), which is a
manifold with non-constant curvature.

Theorem 2. The multi-layer ManifoldNet is not equivalent to the single layer Manifold-
Net for data on Riemannian manifolds with non-constant sectional curvature.

Proof. This is a proof by counter example. Let us suppose we are given 4 SPD ma-

trices, A =

[
0.9593 0.3429
0.3429 0.1493

]
, B =

[
1.2575 0.5475
0.5475 1.8143

]
, C =

[
1.2435 0.6396
0.6396 1.1966

]
, D =[

1.2511 0.5446
0.5447 1.3517

]
, whose wFM we want to compute. Let us consider two sequences

S1 = {A,B,C,D} and S2 = {A,C,B,D}. Consider a one layer ManifoldNet for
computing the wFM of these four matrices. For simplicity of exposition, suppose this
one layer network learns equal weights (= 0.25) for all matrices and hence yields the

wFM M =

[
1.1640 0.4667
0.4667 0.6388

]
as the solution for both sequences S1 and S2 respectively.

To compute the wFM, we use a gradient descent applied to the weighted sum of square
geodesic distances between the unknown wFM and the sample points.

Now, let us consider a two layer wFM. For S1, the first layer computes wFM of
{A,B} and {C,D} respectively and returnsM1 andM2 as the wFMs. Then, the second
layer takes M1 and M2 as inputs and returns their wFM say, M3. Analogously for the
sequence S2, the first layer computes wFM of {A,C} and {B,D} and returns M̄1 and
M̄2. Then the second layer takes as input, M̄1 and M̄2 and returns M̄3 as their wFM.

It can be verified that for the first layer if we use equal weights, we need the weights
for the second layer to be 0.4980 and 0.5050 for S1 and S2 respectively such that both
M3 = M and M̄3 = M . This counter example shows that the weights are dependent
on the input data matrices, which means that in general a multi-layer ManifoldNet can
not be collapsed to a single layer ManifoldNet.

3 Experiments

We now present the basic ManifoldNet architecture and evaluate its performance on two
medical imaging tasks: (1) Diffusion Tensor field hypothesis testing and (2) nonlinear
regression. We remark that although the ManifoldNet architecture is perfectly capable
of tackling the classification of manifold-valued data, in the medical imaging domain,
procuring a very large population of such data is either prohibitively expensive or
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unavailable via public access repositories. Hence, we chose to demonstrate the efficacy
of the ManifoldNet on other challenging applications such as regression and group
testing that do not require tens of thousands of images for training and testing.

We now describe in detail how to use the basic layers defined and analyzed in
section 2 to create multilayer ManifoldNet architectures comparable to deep CNNs.
Note that the input to ManifoldNet is always an N -dimensional field of points sampled
from a Riemannian manifold. For expository purposes we will consider the case of a
manifold-valued image, i.e., the input to any layer of the ManifoldNet architecture is,
(B ×W ×H × C) points on a Riemannian manifold. Here, B the batch size, W the
image width, H is the image height and C is the number of input channels.

Analogous to traditional convolution layers, we now define the ManifoldConv layer,
which slides a small window of weights along the spatial dimensions (W and H) of the
input, but instead of weighted sums we now compute the weighted FM in each window
as described in section 2.1. As in the traditional CNNs, we can do this for several
different weight tensors to generate multiple output channels. So the ManifoldConv
layer transforms the original tensor of manifold valued points to a size (B×W ′×H ′×C ′)
tensor of manifold valued points. Important properties of the ManifoldConv layers are:

– Traditional convolution layers are ManifoldConv withM = R, so ManifoldConv
generalizes traditional convolution layers.

– The ManifoldConv generalization preserves the key property that has made convo-
lutional layers among the most successful building blocks of deep network architec-
tures: equivariance to isometric transformations of the input data. This property is
preserved by wFM, and therefore also by the ManifoldConv layer.

– Since we have shown that the WFM operation is both a contraction mapping and,
atleast in the case of non-constant curvature manifolds, non-collapsible, it follows
that the same properties hold for the ManifoldConv layer. Therefore the stacking
of such layers without an intermediate non-linearity is justified for non-constant
curvature manifolds.

– The weights for a WFM computation should satisfy the convexity constraint, which
can be imposed by squaring the weight matrix to be positive and then normalizing to
sum to 1. This allows us to use regular backpropagation through the ManifoldConv
layer.

After stacking several ManifoldConv layers we may require a vector valued output
for classification purposes, and we would like this vector to be invariant to the natural
group isometries admitted by the manifold on which the input data reside. To generate
this vector we use the invariant final layer from section 2.3. We henceforth call this layer
the ManifoldFC layer, since it is an analogue to the traditional fully connected layers.

Using these two layers we can build general classifiers of non-constant curvature
manifold valued data using an architecture of the form

ManifoldConv→ManifoldConv→ · · · →ManifoldConv→ManifoldFC

And for other tasks such as manifold regression we can remove the ManifoldFC layer.
This architecture can be trained end-to-end using traditional backpropagation since the
weights are real valued.
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Group testing on movement disorder patients: Diffusion MRI is a commonly used
modality for diagnosing and studying neurological disorders. In this experiment we
use a dataset consisting of scans from a control group of 44 patients and a group of 50
Parkinsons patients (see 2). All scans were performed using a 3.0T Philips Achieva
scanner with a 32-channel volume head coil. The parameters of the diffusion imaging
acquisition sequence were as follows: gradient directions = 64, b-values = 0/1000 s/mm2,
repetition time = 7748ms, echo time = 86ms, flip angle = 90, field of view = 224× 224
mm, matrix size = 112112, number of contiguous axial slices = 60 and SENSE factor P
= 2. for parameters of image acquisition. Sensory motor area tracts called M1 fiber tracts
are first extracted from the scans using FSL software [2] from both the left (’LM1’) and
right hemispheres (’RM1’) respectively. We then use the FSL software [4] to extract
SPD(3) diffusion tensors from each tract. Note that the space SPD(3) of (3× 3) SPD
matrices is a homogeneous Riemannian manifold with the isometry group being GL(n).

Following [5] closely, we fit a 3 layer ManifoldNet model to both the control group
and the Parkinsons group data. Using the method from [23] we compute the distance
between these two models, denoted by d. Now we permute the class labels between
the classes, retrain the two models and compute the network distance dj . If there are
significant differences between the classes we should expect that d > dj . We repeat this
experiment for j = 1, . . . , 1000 and let p be the proportion of experiments for which
d ≤ dj . This is a permutation test of the null hypothesis “there is no significant difference
between the tract models learned from the two different classes." We can compare this
to the performance of the similar dMRI architecture SPD-SRU and the baseline methods
from [5]. We found that our ManifoldNet architecture achieved an ‘LM1’ p-value of
0.029 and an ‘RM1’ p-value of 0.024. The baseline method gave an ’LM1’ and ’RM1’
p-value of 0.17 and 0.34 respectively, while the SPD-SRU architecture gave p-values of
0.01 and 0.032 respectively. We can conclude that using ManifoldNet we can reject the
null hypothesis with 95% confidence, which is competitive with SPD-SRU.

Nonlinear Regression between Structure and Function: This dataset contains high
angular resolution diffusion image (HARDI) scans from, (1) healthy controls, (2) patients
with essential tremor (ET) and (3) Parkinson’s disease (PD) patients. This data pool
contains scans from 25 controls, 15 ET and 26 PD patients. This HARDI data was
acquired using the same parameters as before. The dimension of each image is (112×
112 × 60). From each of these images, we identify the region of interest (ROI) (40
voxels in size) containing the Substantia Nigra (a neuroanatomical structure known to be
affected most by PD and ET).

In morphometric analysis, it is common to use the Cauchy deformation tensor (CDT)
field to capture changes in a patient scan with respect to a reference template/atlas.
Thus, in order to capture changes in patient HARDI scans with respect to the con-
trol atlas, we first nonrigidly register each of the EAP (ensemble average propagator)
fields estimated from the input HARDI scan to the computed EAP atlas and obtain
the CDT at each voxel in the ROI, given by

√
JTJ , where, J is the Jacobian of the

non-rigid transformation [8]. The CDT is an SPD matrix of dimension (3 × 3) in
this case. Hence, for each patient we extract a CDT field of dimension (3 × 3 × 40).
In this experiment, we seek to find the relationship between structural information
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in the form of CDT and clinical measures such as the MDS-UPDRS (Movement
Disorder Society’s revision of the Unified Parkinson’s Disease Rating Scale) [21].

Fig. 2: M1-SMATT
template

The MDS-UPDRS score is widely used to follow the longitudi-
nal course of PD. These scores are obtained via interviews and
clinical observations by an expert. In this experiment, available
to us are the MDS-UPDRS scores for all the 58 subjects in
the population under consideration. This score is a nonnegative
natural number, with smaller values indicating normality.

For these 58 patients, we used a 3 layer ManifoldNet to find
the relation between CDT field and MDS-UPDRS scores. We
used an MSE loss and obtained an R2 statistic of 0.93. This R2

statistic value is similar to the one reported in [3].

4 Conclusions

In this paper, we presented a novel deep network called Mani-
foldNet suited for processing manifold-valued data sets. Inputs to the ManifoldNet are
manifold-valued and not real or complex-valued functions defined on non-Euclidean
domains. Our key contributions are: (i) A novel deep network to be perceived as a gener-
alization of the CNN to manifold-valued data inputs using purely intrinsic operations on
the data manifold. (ii) Analogous to convolutions in vector spaces – which can be com-
puted using the weighted mean – we present wFM operations on the manifold and prove
the equivariance of the wFM to natural group actions admitted by the manifold. This
equivariance allows us to share the learned weights within a layer of the ManifoldNet.
(iii) An efficient recursive wFM estimator that is provably convergent. (iv) Experimental
results demonstrating the efficacy of the ManifoldNet for, (a) regression between dMRI
scans of PD patients and clinical MDS-UPDRS scores and (b) finding group differences
between PD and Controls based on brain connectivity at the fiber bundle level.
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