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a b s t r a c t 
Accurate reconstruction of the ensemble average propagators (EAPs) from undersampled diffusion MRI 
(dMRI) measurements is a well-motivated, actively researched problem in the field of dMRI acquisition 
and analysis. A number of approaches based on compressed sensing (CS) principles have been developed 
for this problem, achieving a considerable acceleration in the acquisition by leveraging sparse representa- 
tions of the signal. Most recent methods in literature apply undersampling techniques in the ( k, q )-space 
for the recovery of EAP in the joint ( x, r )-space. Yet, the majority of these methods follow a pipeline of 
first reconstructing the diffusion images in the ( x, q )-space and subsequently estimating the EAPs through 
a 3D Fourier transform. In this work, we present a novel approach to achieve the direct reconstruction 
of P ( x, r ) from partial ( k, q )-space measurements, with geometric constraints involving the parallelism 
of level-sets of diffusion images from proximal q -space points. By directly reconstructing P ( x, r )) from 
( k, q )-space data, we exploit the incoherence between the 6D sensing and reconstruction domains to the 
fullest, which is consistent with the CS-theory. Further, our approach aims to utilize the inherent struc- 
tural similarity (parallelism) of the level-sets in the diffusion images corresponding to proximally-located 
q -space points in a CS framework to achieve further reduction in sample complexity that could facilitate 
faster acquisition in dMRI. We compare the proposed method to a state-of-the-art CS based EAP recon- 
struction method (from joint ( k, q )-space) on simulated, phantom and real dMRI data demonstrating the 
benefits of exploiting the structural similarity in the q -space. 

© 2019 Elsevier B.V. All rights reserved. 
1. Introduction 

Diffusion-weighted MRI (dMRI) is an imaging technique that al- 
lows for the inference of axonal fiber connectivity in biological tis- 
sues non-invasively by sensitizing the MR signal to water diffusion. 
The water diffusion process is fully characterized by the ensemble 
average propagator (EAP), defined in the displacement r -space at 
each location x . It is related to the dMR measurements in ( k,q )- 
space through the 6D Fourier transform under the narrow pulse 
assumption ( Callaghan, 1991 ): 
ˆ S (k , q ) = ∫ 

R 3 
∫ 

R 3 P (x , r ) exp ( −2 π j(x t k + q t r ) ) dr dx . (1) 
In order to reconstruct the EAP with a reasonable angular 

accuracy, one usually needs to acquire diffusion-weighted images 
along a substantial number of sensitizing gradient directions, 
such as in multi-shell high angular resolution diffusion imaging 
(MS-HARDI) and diffusion spectrum imaging (DSI). For each of the 
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gradient direction, a full 3D acquisition in the k -space follows. 
The time incurred in this extensive data acquisition is the key 
problem making MS-HARDI and DSI impractical for clinical use. 
Thus, one particular important topic in this area is to accelerate 
the acquisition of diffusion MRI (especially in MS-HARDI and DSI) 
while maintaining accurate estimation of the diffusion process via 
the reconstruction of the EAPs. 

Over the past decade, various techniques have been proposed 
to this end. From an acquisition perspective, faster MR imaging 
techniques such as parallel imaging can be applied to maintain 
dense signal measurement configurations while reducing acquisi- 
tion time. On the other hand, one can strive to maintain accurate 
reconstruction of the EAPs by exploiting redundancies in the dif- 
fusion images to reduce the number of required measurements. 
In this paper, we focus our attention on the application of com- 
pressed sensing (CS) to achieve this goal, which may be employed 
in addition to these other forms of acceleration ( Shi et al., 2015 ). 

Compressed sensing (CS) aims to recover signals from sub- 
Nyquist sampled measurements, provided that the signal is com- 
pressible in some transform domain and is sampled in an incoher- 
ent manner ( Donoho, 2006 ). Following its successful application 
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to the acceleration of MR image acquisition ( Lustig et al., 2007 ), 
CS has been utilized to accelerate diffusion tensor imaging (DTI) 
from partial k -space measurements ( Shi et al., 2015; McClymont 
et al., 2016 ). In the context of HARDI/DSI, CS has been investigated 
rather extensively for the reconstruction of the signal, EAP, orien- 
tation distribution function (ODF) or fiber orientation distribution 
function (FOD) from partial q -space measurements ( Michailovich 
et al., 2011; Landman and et al., 2012; Merlet and Deriche, 2013; 
Bilgic et al., 2013; Aranda et al., 2015; Auría et al., 2015; Paquette 
et al., 2015; Ning et al., 2015; Daducci et al., 2015; Cheng et al., 
2015b ). These methods generally assume a model for the sparse 
representation of the diffusion signal and achieve signal recon- 
struction prior to EAP/ODF/FOD estimation. Most recent attempts 
among these include ( Schwab et al., 2016 ), wherein the authors 
take into consideration the spatial redundancy of dMRI by defin- 
ing a joint separable spatial-angular domain basis for the sparse 
representation of the entirety of the signal in the ( x, q )-space. This 
joint representation model was shown to achieve better sparsity in 
comparison to voxel-wise angular sparsity models. Nonetheless, as 
pointed out by the authors, they did not apply CS jointly to the ( k, 
q )-space. On a relevant note, CS has also been applied to super- 
resolution dMRI, i.e. the problem of reconstructing high-resolution 
diffusion images from low-resolution ones to reduce acquisition 
time while achieving good spatial resolution ( Ning et al., 2016; Yin 
et al., 2016 ). 

In the past few years, developments in the application of CS 
to joint ( k, q )-space for the recovery of the signal/EAP have been 
reported. In Awate and DiBella (2013) , the authors proposed an 
orientation-invariant dictionary to sparsely represent the diffusion 
signal in the ( x, q )-space, which is comprised of atoms represent- 
ing key types of diffusion profiles, including isotropic diffusion, sin- 
gle and two fiber tracts crossing at certain angles. In more recent 
works ( Mani and et al., 2015; Cheng et al., 2015a ), the CS con- 
cepts were applied in a similar manner to reconstruct the ( x, q )- 
space signal and then the EAPs. In both ( Mani and et al., 2015; 
Cheng et al., 2015a ), a pre-defined basis/dictionary was used for 
the sparse representation of the diffusion signal, sparsity was en- 
forced on the coefficients in the representation, and the diffusion 
MR signal was first estimated prior to the reconstruction of the 
EAP. From a CS standpoint, by sparsely representing and recon- 
structing S ( x, q ) from partial ( k, q )-space samples, all three afore- 
mentioned methods effectively utilized the incoherence between 
the 3D Fourier dual spaces of k and x , but did not exploit the in- 
coherence between the pair q and r . 
1.1. Motivation and overview 

In contrast to above described methods, we propose an ap- 
proach to fully exploit the incoherence between the 6D Fourier 
pair of ( k, q ) and ( x, r )-space. To demonstrate the advantage of 
harnessing such incoherence, we first present an illustrative exper- 
iment in 2-dimensions. 

In this example, we aim to construct an analogy between the 
2D Fourier dual space (x, y) - (u, v) and the 6D Fourier dual space 
we are faced with in the EAP reconstruction problem ( x, r ) - ( k, q ) 
(expanded to be ( x i , x j , x l , r i , r j , r l ) - ( k i , k j , k l , q i , q j , q l )). A sparse 
discrete signal (of size 32 × 32) was generated in the (x, y)-space 
and the problem is to reconstruct this sparse signal from its partial 
Fourier samples. This is analogous to the reconstruction of EAPs 
from partial ( k, q ) samples. We perform reconstruction using two 
methods analogous to the direct reconstruction approach proposed 
in this paper and the common framework (indirect method) shared 
in other ( k, q )-space methods respectively. We randomly sample 
the Fourier domain using variable density sampling, and recon- 
struct the signal using the aforementioned two approaches from 
the same set of samples. In approach-1, we directly reconstruct 

the spatial domain signal by solving a l 1 minimization prob- 
lem enforcing the sparsity of the signal. In approach-2 (indirect 
method), from the ( u, v ) samples, we reconstruct the ( x, v ) space 
first and then recover the spatial signal by applying inverse Fourier 
transform in the y direction for each x . In the 6D context, this is 
equivalent to first reconstructing S ( x, q ) prior to estimating P ( x, 
r ) by applying 3D Fourier transform at each grid ( x ). We vary the 
sampling rate and perform 10 repetitions for each sampling rate 
to account for the randomness in the sampling. We present the 
original signal in Fig. 1 (a), reconstructions from an example set of 
33% Fourier samples using the two methods in (b) and (c), and the 
average NMSE of reconstruction at various sampling rates in (d). 

It is clearly evident from this toy example that in a CS- 
based signal recovery framework, it is critical and beneficial to 
leverage the incoherence between Fourier dual spaces by making 
sure the sensing and sparse representation/reconstruction occur in 
completely dual domains and directly perform reconstruction. In 
our context, this indicates that a direct reconstruction of P ( x, r ) 
from its Fourier dual space samples ˆ S (k , q ) will potentially enable 
higher undersampling rates compared to reconstructing S ( x, q ) as 
an intermediate step. 

In accordance to this principle, we present a CS framework 
to directly reconstruct P ( x, r ) from jointly under-sampled ( k, q ) 
data. 1 To illustrate, since the sampling operation in MS-HARDI oc- 
curs in the ( k, q )-space, only a sparse representation in the ( x, 
r )-space enables the significant reductions in sampling rates while 
guaranteeing exact recovery. In this CS framework, the surfacelet 
transform is utilized to sparsely represent the EAP ( P ( x, r )) and 
a total variation (TV) penalty term was included to promote the 
smooth reconstruction of the entire EAP field. In lieu of this the- 
oretically consistent technique from the CS-theory viewpoint, we 
will use this as our baseline technique for experimental compar- 
isons with the proposed improvement. Validations are performed 
on both synthetic and real human brain data sets, and the results 
demonstrated the value of the method. 
1.1.1. Overview of the proposed improvement 

Intuitively, CS takes advantage of the redundancy in com- 
pressible signals to reduce the number of necessary samples. The 
redundancy manifests as sparsity in the coefficients when the 
signal is represented in a sparsifying basis. Thus it goes without 
saying that the more thoroughly the redundancy is exploited, the 
more time savings are to be expected. One critical question to ask 
in the dMRI context is then, have the above described existing CS 
based methods fully utilized the redundancy present in diffusion 
MR images? The answer is no. For each gradient direction q , a 
diffusion-weighted image S ( x, q ) is acquired for the entire volume 
(over all voxels x ), which encodes the response of the water 
molecule to the specific sensitizing magnetic gradient at each 
voxel. Hence, all the diffusion-weighted images from different q ’s 
are measurements taken of the same subject being imaged. It is 
then to be expected that similar structural information will be 
contained in them, especially the images corresponding to nearby 
q points. In Fig. 2 , we present the entire set of q -space sample 
points used in a HARDI dataset obtained from the WuMinn–
Human Connectome Project (HCP) ( Van Essen et al., 2013 ) and 
the diffusion images acquired at 3 closely located q -space points. 
It is evident from these that a strikingly similar structural infor- 
mation is encoded in all 3 images, resulting in an approximately 
similar visual appearance in edge locations, textures and intensity 
gradients at corresponding spatial locations across the image. This 
provides unequivocal evidence that redundancy exists among the 
diffusion-weighted images corresponding to neighboring q ’s. 

1 Preliminary results were published in a conference paper ( Sun et al., 2015 ). 
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Fig. 1. Toy example. (a) Ground-truth sparse signal, (b) direct reconstruction from 33% Fourier samples enforcing sparsity in spatial domain, (c) indirect reconstruction from 
the same set of samples, (d) reconstruction accuracy (averaged over 10 runs) for various sampling rates using the two methods. 

Fig. 2. An example of neighboring q -space points and their corresponding diffusion images. 3 q points in a neighborhood are highlighted in (a), and their corresponding 
diffusion-weighted images are presented in (b) with the same coloring scheme. 
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Fig. 3. An overview of the proposed framework. 
In the context of diffusion image reconstruction and denoising, 

structural similarities among images acquired at different q -space 
locations have been exploited by several researchers in the past. 
In Alaya et al. (2016) , a geometrical approach was presented to 
recover diffusion images not acquired at locations in q -space 
in HARDI based on the images acquired at their neighboring 
q -space points (determined through Delaunay triangulation). In 
Haldar et al. (2013) , the authors proposed a penalized maximal 
likelihood framework to jointly reconstruct a set of diffusion 
images from their k -space samples. Within this framework, the 
spatial smoothness of each diffusion image (for a specific q ) is 
enforced using a regularization functional, wherein a spatially 
varying line-process variable is incorporated to explicitly model 
the edge structure and control the power of the spatial smoothness 
constraint locally. In a later work of the same authors ( Lam et al., 
2014 ), a similar edge-prior was utilized in a maximum a posterior 
framework for the denoising of diffusion images. 

In this paper, we present a CS framework for direct EAP recon- 
struction from highly under-sampled ( k, q ) data. ( k, q ) and ( x, r ) 
spaces are The key ingredient enabling sparse representation for 
P ( x, r ) is accomplished using surfacelet basis. The most attractive 
feature of surfacelet basis is the inherent directional selectivity that 
leads to a sparse representation in the r -space. The key distinction 
between our approach and existing approaches is that, enforcing 
sparsity in P ( x, r ) entitles us to leverage incoherent sensing, not 
only in k , but also in the q -space simultaneously. Therefore, our 
approach presented here stands to benefit from practical guaran- 
tees for accurate reconstruction from partial ( k, q ) data. To further 
exploit redundancy in the ( k, q ) space, we utilize the structural 
similarity in diffusion images corresponding to proximally-located 
q points. To accomplish this, we propose an approach that empha- 
sizes the geometric correlation between these images by consider- 
ing the degree of parallelism between their level sets. We consider 
it as a priori knowledge and incorporate it into the 6D CS frame- 
work (described earlier) as a regularizing prior. Fig. 3 depicts a 
graphical self explanatory overview of our approach. It is important 
to note that the level set based constraint, the key concept in this 
regularizing prior, is very distinct from an edge-based constraint 
(which is the emphasis of the previously discussed works in this 
context). This is because, level sets in general do not necessarily 
correspond to edges in images, and vice versa. To the best of our 

knowledge, the parallelism of the level sets (as a prior) has never 
been utilized in any of the existing CS-based methods for diffusion 
signal/EAP/ODF reconstruction. Yet, a similar concept has been in- 
vestigated in completely different applications namely, color image 
denoising/demosaicing and multi-modality medical image recon- 
struction ( Ehrhardt and et al., 2014; Ehrhardt and Arridge, 2014 ). 
It has been shown in these works that the exploitation of struc- 
tural similarity by enforcing the parallelism of the level sets leads 
to improved results in both tasks respectively. 

The rest of the paper is organized as follows. In Section 2 , we 
present a brief overview of the general CS-based framework for 
EAP recovery from joint-( k, q ) space, followed by the details of 
the proposed method including the problem formulation and nu- 
merical solution. In Section 3 , several aspects of our experimental 
design and descriptions of the datasets used for validation of our 
approach are first presented. We then showcase the experimental 
results on the various datasets and provide a discussion. Finally, in 
Section 4 we draw conclusions. 
2. Material and methods 
2.1. Compressed sensing for EAP reconstruction 

In general, compressed sensing (CS) recovers the unknown x 
from partial measurements y by solving an underdetermined sys- 
tem while enforcing the sparsity of x in a certain transform domain 
along with data consistency ( Donoho, 2006 ). The three ingredients 
of the CS framework necessary to guarantee accurate reconstruc- 
tion are: 
• Sparsity: The function to be reconstructed needs to be sparsely 

representable, possibly in some transform domain. 
• Incoherent sensing: The data for reconstruction must be ac- 

quired in a domain incoherent (e.g., dual) to the domain in 
which the function is sparsely representable. 

• Nonlinear reconstruction: The reconstruction problem in- 
volves an (convex) optimization process. 
One way to formulate the problem of EAP reconstruction from 

partial ( k, q ) data appropriate in the CS settings is detailed in the 
following. Suppose we are interested in reconstructing the EAPs 
within a 3D rectangular volume ", containing N voxels. Let P be 
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a 6D matrix formed by concatenating the N EAP examples { P n } N n =1 
(each a 3D matrix) that are to be estimated. In the case where 
the sparsity is enforced on each individual EAP under a certain 
sparsifying transform # , in order to reconstruct P from partial ( k, 
q ) measurements, denoted by Q , one needs to solve the following 
minimization problem: 
min 

P 1 
2 ∥ F u P − Q∥ 2 F + µ N ∑ 

n =1 ∥ #P n ∥ 1 (2) 
where F u is the partial Fourier operator in 6-dimensions, i.e. an 
undersampled 6-D Fourier transform evaluated at selected fre- 
quencies corresponding to the undersampling scheme in the signal 
space. The 6 dimensional Fourier dual spaces are spanned by ( k, 
q ) and ( x, r ) respectively. 

In order to achieve a reconstruction of satisfactory fidelity, 
various regularization terms may be added to the basic CS for- 
mulation above to enforce a priori information pertaining to the 
desired solution. One example of such regularization terms is the 
total variation (TV) penalty, which is widely used in many inverse 
problems including MR image reconstruction from partial k -space 
samples ( Lustig et al., 2007 ). By taking regularization terms into 
account, a more general formulation for EAP reconstruction in a 
CS framework is presented below: 
min 

P 1 
2 ∥ F u P − Q∥ 2 F + µ N ∑ 

n =1 ∥ #P n ∥ 1 + K ∑ 
k =1 γk R k (P ) (3) 

in which, R k is the k -th regularization term and γ k is the trade-off
parameter between the data fidelity and the regularizer. 
2.2. Surfacelet transform revisited 

One of the key factors essential for the successful application of 
CS is to select the basis that provides the best sparsity for the sig- 
nal of interest. In the context of dMR signal/EAP/ODF reconstruc- 
tion, various basis/transforms have been utilized, such as spherical 
ridgelets and spherical harmonics to name a few. While spherical 
ridgelets and spherical harmonics are more tailored for the repre- 
sentation of dMR signals; surfaclets ( Lu and Do, 2007 ), with their 
ability to efficiently capture directional information, are particu- 
larly well-suited for sparse EAP representation. 

The surfacelet transform is implemented as a combination 
of a multi-scale pyramid with 3D directional filter banks (3D- 
DFB) ( Lu and Do, 2007 ). The basis functions are a spatial domain 
representation of symmetric pyramids partitioning the frequency 
space. Fig. 4 depicts one example surfacelet basis in the frequency 
domain as well as spatial domain. We refer interested readers to 
Lu and Do (2007) for more technical details. 

EAPs can be sparsely represented in Surfacelet basis, as de- 
picted in Fig. 5 . To demonstrate this sparsity, we constructed a field 
(30 × 30) of EAPs sampled on 3D Cartesian lattices of various sizes 
(32 × 32 × 32 and 64 × 64 × 64), and applied the surfacelet trans- 
form to the EAP at each voxel. We then sorted the coefficients of 

Fig. 4. 3D renderings of an example surfacelet basis in frequency domain (left) and 
spatial domain (right) respectively. 

Fig. 5. Average SNRs of EAP reconstruction from partial surfacelet transform coeffi- 
cients with lattices of size 32 and 64 respectively. 
the transform by absolute value and reconstructed the EAPs from 
only the top few coefficients. Fig. 5 shows the average SNRs of 
the reconstruction from a fraction of the total number of coeffi- 
cients. Evidently, for both lattice sizes, with less then 3% of the 
coefficients, we can easily achieve an SNR of over 25, which is 
commonly used as a benchmark for high quality reconstructions. 
This experiment also showed that a denser sampling grid promotes 
higher sparsity. As a trade-off between sparsity and computational 
costs, we chose 32 3 as the size of our sampling lattice. 

Following the notations introduced previously, P n ( r ) ( n = 
1 , . . . , N), the EAP at the n th voxel, can be expanded in terms of 
surfacelet basis functions ϕ (l) 

m (. ) , corresponding to different scales 
( l ) and spectral directions ( m ) as: 
P n (r ) = ∑ 

m,l c m,l ϕ (l) 
m (r ) (4) 

Let c n := [ c m,l ] be the surfacelet coefficient vector for P n and de- 
note the surfacelet transform by # , we can then write c n = #P n 
and seek a sparse coefficient vector by minimizing the ℓ 1 norm of 
c n for each voxel. 
2.3. Parallel level sets 

Equipped with an appropriate sparsifying transform for the rep- 
resentation of the EAP, what remains to guarantee an accurate re- 
construction is the enforcement of the most valuable a priori infor- 
mation at hand. As we have illustrated, there exists considerable 
structural similarities within diffusion MR images corresponding 
to adjacent q ’s, which leads to a high degree of (similarity) par- 
allelism between the level sets of these neighboring images. We 
propose to design and incorporate a regularization term to empha- 
size such geometric correlations by aligning the gradients (which 
are perpendicular to the level sets) between the corresponding im- 
ages. 

Consider S ( q i ) and S ( q j ), the diffusion-weighted image (across 
all voxels in ") for two closely located q points. We denote S ( q i ) 
and S ( q j ) by S i and S j for simplicity. The level sets of the image 
pair are considered parallel if the gradients ▽ S i and ▽ S j form an 
angle of 0 degrees at each voxel x ∈ ". We measure the degree of 
parallelism between the gradients at location x by, 
∥∇ S i (x ) ∥∥∇ S j (x ) ∥ − |⟨∇ S i (x ) , ∇ S j (x ) ⟩| . (5) 
It is a well known fact that | ⟨▽ u , ▽ v ⟩ | ≤∥▽ u ∥∥▽ v ∥ for arbitrary 
vectors u, v and equality only occurs when u and v are parallel, 
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Fig. 6. FA map of the selected slice and ROI. 
hence the above defined term is always nonnegative and reaches 
minimum 0 if and only if the gradients are parallel at location x . It 
measures how parallel the gradients or level sets are locally, with 
greater values indicating greater angles between the gradients and 
further distance from parallelism. Now we can define the global 
measure for the degree of parallelism of two diffusion-weighted 
images as 
PL (∇ S i , ∇ S j ) := ∫ 

"
(∥∇ S i (x ) ∥∥∇ S j (x ) ∥ − |⟨∇ S i (x ) , ∇ S j (x ) ⟩| ) dx 

(6) 
We want to guarantee that all pairs of images corresponding to 

neighboring q points have level sets that are close to or parallel to 
each other. Denote the entire 6D S ( x, q ) volume as S . One possi- 
ble form of the regularization term to be incorporated into the CS 
framework can be defined on S as: 
R (S) = M ∑ 

m =1 
∑ 

l∈ N (m ) PL (∇ S m , ∇ S l ) (7) 
where N (m ) represents the index set of all the q points in q m ’s 
neighborhood and M is the total number of q sampling points. 
Note that the regularizer is defined on S while the EAP, P , is what 
we desire to reconstruct. However, S and P are related at each voxel 
x through a 3D Fourier transform, which will serve as the link that 
makes the incorporation of R (S) appropriate in the CS framework. 
Also, note that the gradients in the parallel-level set constraint are 
not computed from the raw data but from the updated estimates 
of S presented in step-2 of the Split Bregman technique in the next 
section. Details are presented in the following section. 
2.4. Problem formulation and solution 

In addition to the parallelism of level sets in adjacent q vol- 
umes, another prior we have is that the reconstructed EAP field 
must be smooth across the grid. To this end, a TV penalty can 
be included as another regularizer to enforce spatial homogeneity 
in the reconstruction. Finally, we formulate the EAP reconstruction 
problem from ( k, q ) data Q as the following optimization prob- 
lem: 

min 
P 1 

2 ∥ F u P − Q∥ 2 F + µ
N ∑ 

n =1 ∥ #P n ∥ 1 + γ1 ∥ P ∥ T V + γ2 R (S) 
s. t. S n = F 3 D P n , n = 1 , 2 , · · · , N (8) 

In the above formulation, S n denotes the diffusion signal S ( x, 
q ) measured at a fixed voxel x n for all M q points. It is related to 
the EAP at the voxel through a 3D Fourier transform. S is formed 
by stacking all the S n ’s for each voxel n = 1 , 2 , · · · , N. On the other 

hand, S m (see notation introduced in Section 2.3 ) denotes the dif- 
fusion signal across all N voxels for a fixed q ( q m ). 

We solve the above optimization problem using a Split Bregman 
scheme ( Goldstein and Osher, 2009 ). After converting it into an 
unconstrained problem with a Lagrange multiplier, we introduce 
auxiliary parameters as replacements c n ← #P n , d m ← ∇S m for all 
n and m . Substituting in to Eq. (7) , the split formulation of the 
problem becomes 

min 
P,S,c n ,d m 1 

2 ∥ F u P − Q∥ 2 F + µ N ∑ 
n =1 ∥ c n ∥ 1 + γ1 ∥ P ∥ T V 

+ γ2 M ∑ 
m =1 

∑ 
l∈ N (m ) PL (d m , d l ) + λ

2 
N ∑ 

n =1 ∥ F 3 D P n − S n ∥ 2 F 
+ λ1 

2 
N ∑ 

n =1 ∥ #P n − c n ∥ 2 2 + λ2 
2 

M ∑ 
m =1 ∥ d m − ∇S m ∥ 2 2 . 

We then decompose this into subproblems using the split Bregman 
iterations to alternatively update P, S and the auxiliary parameters 
until convergence. 
Step 1 : P (t+1) = arg min 

P 1 
2 ∥ F u P − Q∥ 2 F + γ1 ∥ P ∥ T V 

+ λ
2 

N ∑ 
n =1 ∥ F 3 D P n − S (t) 

n ∥ 2 F 
+ λ1 

2 
N ∑ 

n =1 ∥ #P n − c (t) 
n − b (t) 

n ∥ 2 2 

Step 2 : S (t+1) = arg min 
S λ

2 
N ∑ 

n =1 ∥ F 3 D P (t+1) 
n − S n ∥ 2 F 

+ λ2 
2 

M ∑ 
m =1 ∥ d m (t) − ∇S m − b m (t) ∥ 2 2 

Step 3 : c (t+1) 
n = shrink (#P (t+1) 

n + b (t) 
n , µ

λ1 
)

b (t+1) 
n = b (t) 

n + #⋆ c (t+1) 
n − P (t+1) 

n , n = 1 , . . . , N 
d m (t+1) = arg min 

d m γ1 M ∑ 
m =1 

∑ 
l∈ N (m ) PL (d m , d l ) 

+ λ2 
2 

M ∑ 
m =1 ∥ d m − ∇S m ( t+1) − b m (t) ∥ 2 2 

b m (t+1) = b m (t) + ∇S m ( t+1) − d m (t+1) 
, m = 1 , . . . , M 

In the above, b n and b m are the Bregman parameters introduced 
for the updates of c n and d m respectively, #⋆ denotes the inverse 
Surfacelet transform. Most of the steps can be solved analytically, 
while for the d m update in step 3, we used a limited-memory BFGS 
based Quasi-Newton method for a numerical solution. 
3. Experiments and discussions 
3.1. Experimental design 

In this section, we preset several aspects of the experimental 
design used in this work. This involves: the choice of the method/s 
for comparison, the sampling scheme used in the ( k, q ) space for 
data acquisition and finally the evaluation metrics used to perform 
the comparisons. 
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Fig. 7. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from synthetic data jointly undersampled in the ( k, q )-space at various sampling 
rates and noise levels. 
3.1.1. Comparison to the state-of-the-art 

We demonstrate the power of employing the structural similar- 
ity in q -space for direct EAP reconstruction from highly undersam- 
pled ( k, q )-space data via performance comparison of the proposed 
method (denoted by PLS for brevity) with the CS method used in a 
preliminary conference version of this work ( Sun et al., 2015 ) (de- 
noted by baseline). This method is the choice for baseline com- 
parisons because, to date, it is the only method in the literature 
that directly reconstructs EAP from partially sensed 6D ( k, q )-space 
without signal reconstruction as an intermediate step. Further, by 
directly reconstructing the EAPs from signal in its Fourier dual 
space, this method, when compared to other existing CS-based 
methods, better utilizes the CS principles and more thoroughly ex- 
ploits the incoherence in the 6D Fourier dual (see Section 1 for a 
more detailed explanation). 
3.1.2. Sampling scheme 

Experiments are conducted on diffusion MR images acquired 
using the DSI scheme, which has been widely used as the bench- 
mark for comparisons in reported literature (CS related reconstruc- 
tion in dMRI). Since DSI sampling is designed on a Cartesian grid, 
in our current implementation the neighborhood of any given q 
point is chosen to consist of its 6-connected points in q -space. Yet, 
the framework is general in the sense that it is independent of the 
choice of neighborhood. The optimal choice of q -space neighbor- 
hood will be a topic of our future work. 

The undersampling of the 6D space is performed in the 3D k 
and q -space independently. The level of undersampling is set to be 
equal in both spaces, for example, to achieve a sampling rate of 
25% in the joint space, the sampling rate for both k and q -space 
is 50%. Such a choice was based on extensive experimentation on 
data undersampled with varying ratios between the two spaces. 
Two extreme cases are when the undersampling only takes place 
in one of the two spaces, which will henceforth be referred to as, 
“k -only” and “q -only” undersampling respectively. In the experi- 
ments to follow, in addition to the EAP reconstruction results from 
joint ( k, q )-undersampled data, we will also showcase the results 

obtained from partial data sampled with the k -only and q -only un- 
dersampling methods respectively. 

In each of the 3D k and q -spaces, we select samples ran- 
domly with the sampling density scaled according to a power of 
the distance from the origin. This power law sampling scheme 
has been very widely used in related literature, including CS- 
based MR image reconstruction ( Donoho, 2006 ) for the k -space 
and EAP/ODF/signal reconstruction from dMRI ( Bilgic et al., 2013; 
Cheng et al., 2015a ) for the q -space. It was shown to yield good 
CS-based recovery in both contexts. 
3.1.3. Evaluation 

Evaluations are carried out both quantitatively, using normal- 
ized mean squared error (NMSE) with respect to the ground-truth 
EAPs, and qualitatively through visual inspection. The reference 
ground-truth EAPs are obtained through conventional DSI recon- 
struction using the fully sampled data, also labeled by some in 
literature as “gold standard” data. In DSI reconstruction, the zero- 
padding in q -space is performed to the size of 16 × 16 × 16. No 
Hanning filter is applied prior to reconstruction to ensure fair 
comparison between the ground-truth and the various reconstruc- 
tions. For visualization purpose, we interpolate the ground-truth 
and the reconstructed EAPs (which are continuous 3D functions 
evaluated on a Cartesian grid) onto a sphere before perform- 
ing fitting with spherical harmonics. Visualization of the spheri- 
cal harmonic representations of the EAPs is done using a Java- 
based diffusion MRI processing software fanDTasia ( https://www. 
cise.ufl.edu/ ∼abarmpou/lab/fanDTasia/ ). For synthetic and phantom 
data where underlying fiber configuration is known, we also per- 
form angular analysis based on the peaks detected in the recon- 
structed EAPs. The peak directions are estimated using function 
peak_directions_nl in Dipy ( Garyfallidis et al., 2014 ) ( http://nipy. 
org/dipy/ ), a popular open source diffusion MRI toolbox developed 
in Python. For the 3 parameters in the function, we kept the de- 
fault value for min_separation_angle (25) and xtol ( 1 e − 07 ), and 
chose 0.75 as relative_peak_threshold to suppress subsidiary peaks. 
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Fig. 8. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from synthetic data undersampled using joint-( k, q ), k -only and q -only schemes 
at various rates, for (a) noise-free and (b) noisy data with SNR = 5. 

Fig. 9. EAP reconstructions and angular analysis results for noise-free synthetic data using the PLS and the baseline methods respectively. (a) Ground-truth EAPs estimated 
from gold standard noise-free data, EAP reconstructions using 5% of the data using (b) the PLS method and (c) the baseline method. (d-e) Crossing angle errors within fiber 
crossing regions for the reconstructions displayed in (b-c) respectively. (f-g) Errors in the number of peaks detected from the reconstructions displayed in (b-c) respectively. 
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Fig. 10. EAP reconstructions and angular accuracy analysis results obtained using the PLS and the baseline methods respectively, from noisy synthetic data (SNR = 5) 
undersampled with various schemes. (a) Ground-truth EAPs estimated from gold standard noise-free data, EAP reconstructions from 15% jointly undersampled ( k, q )-space 
data using (b) the PLS method and (c) the baseline method. (d-e) EAP reconstructions using the PLS method from 15% of the data undersampled in k and q -space only. 
(f-i) Crossing angle errors within fiber crossing regions for the reconstructions displayed in (b-e) respectively. (j-m) Errors in the number of peaks detected from the 
reconstructions displayed in (b-e) respectively. 
3.2. Implementation 

The proposed approach was implemented in Matlab and all 
computations were performed on a workstation with an Intel 
Core(TM) i7 CPU930 2.80 GHz x 8 processor and 24GB RAM. We 
have observed that the main bottleneck of the computation speed 
of our proposed method is in the updates of d m (which is a part of 
Step 3 in the algorithm outlined in Section 2 ). In our current im- 
plementation, we solve the optimization problem involved in this 
update step using a BFGS-based Quasi-Newton method. We believe 
further acceleration can be achieved if an analytical solution is de- 
rived and used instead. This will be an immediate focus for our 
future work. The sparsity/regularization trade-off parameters µ, γ 1 

and γ 2 in the objective function are tuned through a grid search 
within range [0.01,1]. 
3.3. Description of data sets 

Various data sets used in our experiments are described in the 
following paragraphs. 
3.3.1. Synthetic data 

We simulated a gold standard DSI dataset using a mixture of 
Gaussian functions. As discussed above, the ( k, q ) measurements 
were then generated by applying a 3D Fourier Transform on the 
diffusion image simulated for each gradient direction. This simula- 
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Fig. 11. NMSE of EAP reconstructions, using the PLS and the baseline method respectively, from phantom data jointly undersampled in the ( k, q )-space at various sampling 
rates and noise levels. 
tion process does not take into consideration the various practical 
issues involved in obtaining the magnitude MR images from the 
complex valued k space acquisitions (in MR scanners), yet it is very 
commonly used in the literature for the study of (CS-based) MR 
image reconstruction from k -space measurements ( Donoho, 2006 ) 
as well as the recovery of diffusion signal or EAP/ODF from ( k, q )- 
space ( Cheng et al., 2015a ). In order to assess the proposed method 
in the presence of noise, we contaminated the gold standard data 
with various levels of Rician noise in the ( x, q )-space. Noise levels 
are measured by SNR = 1 /σ , with σ being the standard deviation 
of the noise. 
3.3.2. ISBI HARDI challenge 2013 phantom data 

We also evaluated our method on the phantom data provided 
at the IEEE ISBI (Intl. Symp. on Biomedical Imaging) HARDI chal- 
lenge 2013 ( Daducci et al., 2013 ). The advantage of employing this 
data lies in the fact that the phantom is created in a more re- 
alistic setting and the ground-truth is available which makes the 
quantitative assessments of the results possible. The phantom con- 
sists of a set of fiber bundles with a wide range of configurations 
(branching, crossing, kissing), fiber bundles radii, and fiber geome- 
try. The diffusion MR signal is simulated in each voxel considering 
hindered and restricted diffusion, to account for extra-axonal and 
intra-axonal diffusion. Depending on the position in space, there is 
also an isotropic compartment, to account for the CSF contamina- 
tion close to the ventricles in brain imaging. Finally, the magnitude 
MR signal is corrupted by Rician noise resulting in SNR of 10, 20 
and 30 respectively. The generation of ( k, q )-space measurements 
was performed in the same manner as described for the synthetic 
data. We selected our ROI within a slice where the various types 
of fiber configurations can be best observed, the FA map of which 
is presented in Fig. 6 . 
3.3.3. MGH-USC HCP human brain data 

The MGH-USC HCP dataset ( Setsompop et al., 2013; McNab 
et al., 2013; Fan et al., 2016; Keil et al., 2013; Polimeni et al., 
2016; van der Kouwe et al., 2008; Fan et al., 2014; Fischl, 2012; 
Greve and Fischl, 2009; Andersson and Sotiropoulos, 2015; 2016; 

Crawford et al., 2016 ) we used in our real data experiment was col- 
lected on a Siemens 3T Connectome scanner using the DSI scheme. 
The images were acquired at 2 mm isotropic resolution with a 
maximum b-value of 10, 0 0 0 s/mm 2 and TE/TR = 77 / 590 0 ms , re- 
sulting in a 104 × 104 × 55 volume. We pick our ROI in centrum 
semiovale where projection, commissural and association tracts in- 
teract, and present the Fractional Anisotropy (FA) map of the se- 
lected slice with the ROI highlighted in Fig. 17 (a). 
3.4. Results and discussions 
3.4.1. Analysis of synthetic data 

We demonstrate the performance of our method on synthetic 
data in this section. In Fig. 7 , for noise-free and noise contami- 
nated data, we plot the NMSE of the EAP reconstructions (with re- 
spect to the ground-truth EAPs) obtained by applying the proposed 
method (PLS) and the baseline method on partial data undersam- 
pled jointly in the ( k, q ) space at various sampling rates (from 5% 
to 25%). Overall, the proposed method provides a decrease of the 
NMSE by 16%–50% with respect to the reconstructions using the 
baseline method at corresponding sampling rate and noise level. 
This improvement in the reconstruction accuracy is solely due to 
the exploitation of the structural similarity between diffusion im- 
ages acquired at nearby q locations. 

At SNRs higher than 15, we observed in our experiments that 
the reconstruction accuracy is maintained quite well by both meth- 
ods (with respect to performance on noise-free data). Hence, here 
we present the results only for low SNRs. It can be seen from the 
plots that at lower sampling rates (below 20%), the effect of the 
added noise on the reconstruction accuracy is less pronounced for 
the proposed PLS method than it is for the baseline method. This 
is an indication that the incorporation of the parallel level set prior 
further assists in suppressing the noise, in addition to the TV reg- 
ularization used in both approaches. Another rather promising be- 
havior we observed is that at extremely low sampling rates (such 
as 5%–10%), the most significant gain is brought forth by the PLS 
method. 
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Fig. 12. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from partial phantom data with different SNRs, undersampled using joint-( k, q ), 
k -only and q -only schemes at various rates. (a) SNR = 30, (b) SNR = 20 and (c) SNR = 10. 

In Fig. 8 , we present the comparison of the reconstruction ac- 
curacy using both approaches on partial data undersampled using 
joint-( k, q ), k -only and q -only schemes. The results for noise-free 
and noisy data (SNR = 5) are shown in sub-figure (a) and (b) re- 
spectively. It is consistent with the findings reported in our prelim- 
inary version of this paper, Sun et al. (2015) , that the joint under- 
sampling demonstrates advantage over undersampling performed 
in individual spaces in the context of CS-based reconstruction. For 
each sampling scheme, the proposed method consistently provides 
improvement in the reconstruction accuracy compared to baseline 
( Sun et al., 2015 ). Note that the wide range of the y-axis in the 
figure (necessary for the presentation of the error for baseline re- 
construction using q -only undersampling at low sampling rates) 
causes the difference in the NMSE between the reconstructions 
from jointly undersampled data using the two methods to appear 
less significant than it actually is (as is already shown in Fig. 7 ). 

To demonstrate the value of the proposed method in further 
reducing the amount of data needed for satisfactory EAP recon- 
structions, we showcase in Fig. 9 , visual comparisons of the EAP 
reconstructions from as little as 5% of gold standard data using 
the proposed and baseline methods. The ground truth EAP field 
and EAPs reconstructed from 5% of the noise-free gold standard 
data using both methods are displayed in the first row. The error 
in the crossing angles estimated (in the fiber bundle crossing re- 
gions) and the number of peaks detected (within the entire slice) 

from the two reconstructions are shown in the second and third 
row of the figure respectively. With the minimum amount of data 
given, our PLS-based approach successfully recovered most of the 
crossings present in the slice while achieving a significant accu- 
racy in crossing angle estimation, with an average angular error 
of less than 4 degrees. On the other hand, the angular analysis re- 
sults for the baseline reconstruction show a higher degree of errors 
within the crossing regions (brighter color in Fig. 9 (e) compar- 
ing to (d)). Further, at certain locations where only a single fiber 
passes through, spurious lobes were introduced more often in the 
EAPs reconstructed using the baseline method than the proposed. 
This can be clearly observed in both the EAP visualizations in sub- 
figure (c) and the error image for number of peaks (g). 

We present the results of similar analysis for noise contami- 
nated data (SNR = 5) in Fig. 10 . Here in addition to reconstructions 
from jointly undersampled data, we also display the reconstructed 
EAPs from data undersampled in the k and q -space individually 
using the proposed PLS approach (labeled as PLS-konly and PLS- 
qonly in the figure). 15% of the gold standard data was used in all 
the reconstructions. When joint-( k, q ) undersampling is used, both 
PLS and baseline EAP reconstructions present considerable visual 
similarity to the ground-truth EAPs, yet further angular and peak 
analysis reveal the subtle differences. Com paring sub-figure (f) and 
(g), we see that while the 90 ◦ crossings in the center of the slice 
appear to be slightly better recovered in the baseline results, the 
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Fig. 13. EAP reconstructions and angular accuracy analysis results for the ROI in the phantom dataset with SNR = 30 using the PLS and the baseline methods respectively. 
(a) Ground-truth EAPs estimated from gold standard data, EAP reconstructions using 5% of the data using (b) the PLS method and (c) the baseline method. (d-e) Error in the 
fiber orientations estimated from the reconstructions displayed in (b-c) respectively. 

Fig. 14. EAP reconstructions and angular accuracy analysis results for the ROI in the phantom dataset with SNR = 10 using the PLS and the baseline methods respectively. 
(a) Ground-truth EAPs estimated from gold standard data, EAP reconstructions using 10% of the data using (b) the PLS method and (c) the baseline method. (d-e) Error in 
the fiber orientations estimated from the reconstructions displayed in (b-c) respectively. 
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Fig. 15. EAP reconstructions and angular analysis results for the ROI in the phantom dataset from ( k, q )-space data undersampled using different schemes. (a) Ground-truth 
EAP estimated from gold standard data at SNR = 20, EAP reconstructions using 20% of the data undersampled in the manner of (b) joint-( k, q ), (c) k -only and (d) q -only 
manner. Error in the fiber orientations estimated from the reconstructions displayed in (b-d) are presented in (e-g) respectively. 
angular errors are more prominent in the peripheral crossing re- 
gions where the geometric structure of the fiber bundles are more 
complex. It is also shown in sub-figure (k) that a larger number 
of false peaks were introduced in the baseline reconstruction com- 
pared to PLS. Switching the focus to the results presented in the 
two columns on the right, we see how performing undersampling 
in k and q -space individually effects the proposed CS-based EAP 
reconstruction. Apparently, discarding a larger portion of the q - 
space data (which takes place in q -only undersampling compared 
to the joint undersampling) substantially impacts the recovery of 
angular information in the EAP estimations. Nonetheless, the re- 
construction appears spatially smoother to some extent compared 
to the k -only reconstruction. 
3.5. Analysis of the ISBI HARDI challenge 2013 phantom data 

In this section, we present the evaluation of our method on the 
ISBI HARDI challenge 2013 phantom data, the chosen ROI for anal- 
ysis was depicted in Fig. 6 in Section 3.3 . 

The numerical results for this dataset are presented in 
Figs. 11 and 12 in a similar fashion as in the case of synthetic data. 
Fig. 12 comprehensively depicts the performance of the proposed 
and baseline technique with respect to EAP reconstruction accu- 
racy from various percentages of the gold standard data undersam- 
pled with different schemes, while Fig. 11 is dedicated to the illus- 
tration of the difference in the two methods’ performance when 
used in conjunction with joint-( k, q ) undersampling (which is the 
sampling scheme of interest). Overall, it appears that the deterio- 
ration in the EAP estimation accuracy caused by the corruption of 
noise is more substantial for this dataset than it is for the synthetic 
data. Yet it is consistent across these two datasets that the pro- 
posed method better maintains its accuracy when noise level in- 
creases (shown in the figure as smaller vertical distances between 
the two orange dash lines compared to that between the corre- 
sponding pair of lines in blue). As the sampling rate increases, the 
gap between the performance of the two methods gradually di- 
minishes, especially in the less noisy data case (SNR = 10). 

We further support our numerical findings via visualizations of 
the reconstructed EAPs and results of fiber orientation analysis. In 
the visualizations, the EAP profiles are superimposed on the gray 
scale FA map of the ROI. The fiber orientations in the reconstruc- 

tions are determined at each voxel by performing peak detection 
using Dipy as previously mentioned. The error in the fiber orienta- 
tions (in degrees) are then computed with respect to the ground- 
truth fiber structure and mapped to a color according to its value. 

Fig. 13 showcases the methods’ ability to recover the ground- 
truth EAP profiles and correct underlying fiber orientations from 
minimum amount of the relatively clean data (5% of the data with 
SNR = 30), undersampled jointly in the ( k, q )-space. It is evident 
that for this particular dataset (with a very high SNR), a sampling 
rate of 5% is sufficient for both methods to achieve EAP reconstruc- 
tions of satisfactory quality. The majority of the fiber bundle cross- 
ings in the ROI are recovered quite accurately with both methods. 
Yet, in some regions where two fiber bundles cross, the subordi- 
nate direction in the EAP tends to get underestimated in the base- 
line method. Such phenomenon can be observed within the green 
rectangular box in the EAP visualizations. Further, when the two 
fiber bundles cross at a relatively small angle, the EAP profile could 
potentially get smeared in the baseline reconstruction (see blue 
box enclosed area). Comparing the error maps for the two recon- 
structed fields, we see that the orientations of the fiber bundles in 
these above-mentioned regions are more precisely estimated when 
the notion of PLS is incorporated as well. In addition, the proposed 
method demonstrates superiority in suppressing the introduction 
of spurious lobes caused by the severe undersampling of the data, 
one example of which is highlighted with a purple/orange box in 
the EAP visualizations/orientation error images. 

To investigate how the two methods differ when applied to data 
with high noise contamination, in Fig. 14 we present visual com- 
parisons of the EAP reconstructions from 10% jointly undersam- 
pled phantom data of which the SNR is 10. As shown in the top 
left sub-figure, the ground-truth EAP field estimated using the full 
DSI dataset appear very noisy. The two reconstructed fields, on the 
other hand, present more spatial smoothness primarily due to the 
TV regularization in both frameworks. In fact, striking similarity is 
demonstrated in the spherical harmonic based visualizations of the 
two EAP fields. Nonetheless, further insights are provided by the 
fiber orientation analysis. Quantitatively, the fiber orientation error 
within the ROI is reduced by 1.3 degrees on average with the PLS 
method. This can be visually observed in the error maps (bottom 
row) as darker color in the PLS results compared to the baseline 
results for corresponding voxels across the field. 
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Fig. 16. NMSE of EAP reconstructions, using the PLS and the baseline methods respectively, from the HCP data undersampled using joint-( k, q ), k -only and q -only schemes 
at various rates. 

Fig. 17. EAP reconstructions from jointly undersampled HCP data using the PLS and the baseline methods respectively. (a) FA map of the selected slice with ROI highlighted 
in a red box, (d) ground-truth EAPs, (b-c) EAP reconstructions using 5% of the data using the PLS and the baseline methods respectively. (e-f) EAP reconstructions using 15% 
of the data using the PLS and the baseline methods respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

EAPs reconstructed using the proposed approach from 20% 
of the data with SNR = 20, undersampled in joint-( k, q )-space, 
k -space and q -space only are displayed in Fig. 15 . Evidently from 
the visualizations, joint-( k, q ) undersampling provides major ad- 
vantage compared to individual space undersampling. The recov- 
ered EAP profiles from jointly undersampled data are of great vi- 
sual similarity to the ground-truth EAPs, and the fiber orientations 

estimated from the reconstructions have an average error of less 
than 5 degrees. Reconstructions from k -only undersampled data 
fail to preserve some of the subsidiary components in multi-fiber 
voxels, while q -space undersampling leads to serious distortions 
of the EAP shapes and poor accuracy in fiber orientation estima- 
tions. Regions where this above-mentioned behavior can be best 
observed are highlighted with rectangular boxes. 
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3.6. Analysis of the MGH-USC HCP data 

Comprehensive numerical evaluations of the EAP reconstruction 
for the MGH-USC HCP data are presented in Fig. 16 . It is clearly 
shown here that the proposed structural correlation promoting 
method outperforms the baseline method at every sampling rate. 
A similar trend that was observed in the numerical results for 
both the synthetic and phantom dataset can also be seen here 
namely, that the incorporation of the notion of parallel level sets 
brings forth greater reconstruction accuracy at lower sampling 
rates (for the case of joint undersampling). Such an attribute is 
of immense value in our context as it is our ultimate goal to 
achieve good/acceptable reconstruction at sampling rates as low 
as possible. 

We show visual comparisons of the EAP reconstruction perfor- 
mance of the proposed and baseline algorithm from jointly under- 
sampled HCP data in Fig. 17 . With 5% of the data, the EAPs can 
be recovered at considerably good quality with the PLS method 
(as shown in (b)). Marginal smearing/blurring effect can be seen 
in the EAP profiles but one can still easily distinguish the orien- 
tations of the crossing fiber bundles. However, this effect appears 
far more pronounced in the baseline reconstruction, for example 
in the blue box region where crossings are most noticeable within 
the slice in the ground-truth. In certain areas where the crossings 
are less predominant, the EAPs reconstructed using baseline ap- 
proach can be indistinguishable from the EAPs with a single fiber 
direction (see orange upside-down L-shaped region). Sub-figures in 
the second row (e-f) show that both methods are able to achieve 
highly accurate estimation of the EAPs from 15% of the data. The 
PLS method demonstrates advantage in precisely recovering the 
primary direction in the EAP profiles (with respect to the ground- 
truth), which can be observed in the blue rectangle highlighted re- 
gion. (The EAPs are colored based on the orientation of the pri- 
mary lobe in the profile, hence a similar color of the profile in- 
dicates a closer approximation in the orientation). These results 
on HCP data quantitatively and qualitatively demonstrate the value 
of the proposed method in producing satisfactory EAP reconstruc- 
tions from a small amount of real diffusion data which can be ac- 
quired in a much shorter time than when employing conventional 
methods. 
4. Conclusions 

In this paper, we proposed a novel CS based approach for direct 
EAP reconstruction from heavily undersampled ( k, q )-space dMR 
measurements utilizing the sparsity promoting surfacelet basis and 
in addition imposed the structural similarity constraint between 
the diffusion-weighted images corresponding to proximally-located 
q points. By directly reconstructing P ( x, r )) from ( k, q )-space data, 
we exploit the incoherence between the 6D sensing and recon- 
struction domains to the fullest, which is consistent with the 
CS-theory. Further, by incorporating a prior favoring parallelism 
of level sets at corresponding spatial locations between the dif- 
fusion images into a 6D CS framework, we take advantage of 
the redundancy in the ( x, q )-space which in this context has 
never been utilized in this form (employing the notion of parallel 
level sets) before. We presented extensive set of experiments 
involving synthetic, phantom and real data, demonstrating the 
power of the proposed method over the baseline method, wherein 
the structural similarity among diffusion-weighted images were 
not exploited. Our experiments show that the exploitation of 
this inherent geometric correlation considerably enhances the 
reconstruction accuracy and hence leads to additional sav- 
ings in dMRI acquisition time over state-of-the-art. Our future 
work will focus on implementation of the algorithm on clinical 
scanners. 

Acknowledgments 
This research was funded in part by the ONR grant N0 0 014- 

14-1-0762 and the NSF grant IIS-1617101 to Alireza Entezari, the 
NSF grants IIS-1525431 and IIS-1724174 and a grant from Toshiba 
America Medical Systems to Baba C. Vemuri. 

Data were provided [in part] by the Human Connectome 
Project, MGH-USC Consortium (Principal Investigators: Bruce R. 
Rosen, Arthur W. Toga and Van Wedeen; U01MH093765 ) funded 
by the NIH Blueprint Initiative for Neuroscience Research grant; 
the National Institutes of Health grant P41EB015896 ; and the In- 
strumentation grants S10RR023043 , 1S10RR023401 , 1S10RR019307 . 
References 
Alaya, I.B. , Jribi, M. , Ghorbel, F. , Kraiem, T. , 2016. A novel geometrical approach for 

a rapid estimation of the hardi signal in diffusion mri. In: International Confer- 
ence on Image and Signal Processing. Springer, pp. 253–261 . 

Andersson, J.L. , Sotiropoulos, S.N. , 2015. Non-parametric representation and predic- 
tion of single-and multi-shell diffusion-weighted MRI data using gaussian pro- 
cesses. Neuroimage 122, 166–176 . 

Andersson, J.L. , Sotiropoulos, S.N. , 2016. An integrated approach to correction for of- 
f-resonance effects and subject movement in diffusion mr imaging. Neuroimage 
125, 1063–1078 . 

Aranda, R. , Ramirez-Manzanares, A. , Rivera, M. , 2015. Sparse and adaptive diffusion 
dictionary (SADD) for recovering intra-voxel white matter structure. Med. Image 
Anal. 26 (1), 243–255 . 

Auría, A. , Daducci, A. , Thiran, J.-P. , Wiaux, Y. , 2015. Structured sparsity for spa- 
tially coherent fibre orientation estimation in diffusion MRI. Neuroimage 115, 
245–255 . 

Awate, S.P. , DiBella, E.V. , 2013. Compressed sensing hardi via rotation-invariant con- 
cise dictionaries, flexible k-space undersampling, and multiscale spatial regular- 
ity. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on. 
IEEE, pp. 9–12 . 

Bilgic, B. , Chatnuntawech, I. , Setsompop, K. , Cauley, S.F. , Yendiki, A. , Wald, L.L. , Adal- 
steinsson, E. , 2013. Fast dictionary-based reconstruction for diffusion spectrum 
imaging. IEEE Trans. Med. Imaging 32 (11), 2022–2033 . 

Callaghan, P.T. , 1991. Principles of Nuclear MR Microscopy. OUP . 
Cheng, J. , Shen, D. , Basser, P.J. , Yap, P.-T. , 2015a. Joint 6d k-q space compressed 

sensing for accelerated high angular resolution diffusion MRI. In: 24th Biennial 
International Conference on Information Processing in Medical Imaging (IPMI 
2015). Springer, pp. 782–793 . 

Cheng, J. , Shen, D. , Yap, P.-T. , Basser, P.J. , 2015b. Tensorial spherical polar fourier 
diffusion MRI with optimal dictionary learning. In: International Conference on 
Medical Image Computing and Computer-Assisted Intervention. Springer Inter- 
national Publishing, pp. 174–182 . 

Crawford, K.L. , Neu, S.C. , Toga, A.W. , 2016. The image and data archive at the labo- 
ratory of neuro imaging. Neuroimage 124, 1080–1083 . 

Daducci, A. , Canales-Rodríguez, E.J. , Zhang, H. , Dyrby, T.B. , Alexander, D.C. , Thi- 
ran, J.-P. , 2015. Accelerated microstructure imaging via convex optimization 
(amico) from diffusion MRI data. Neuroimage 105, 32–44 . 

Daducci, A., Caruyer, E., Descoteaux, M., Thiran, J., 2013. Hardi reconstruction chal- 
lenge. IEEE International Symposium on Biomedical Imaging . http://hardi.epfl. 
ch/statis/events . 

Donoho, D.L. , 2006. Compressed sensing. IEEE Trans. Inf. Theory 52 (4), 1289–1306 . 
Ehrhardt, M.J. , et al. , 2014. Joint reconstruction of PET-MRI by exploiting structural 

similarity. Inverse Probl. 31 (1), 015001 . 
Ehrhardt, M.J. , Arridge, S.R. , 2014. Vector-valued image processing by parallel level 

sets. IEEE Trans. Image Process. 23 (1), 9–18 . 
Fan, Q. , Nummenmaa, A. , Witzel, T. , Zanzonico, R. , Keil, B. , Cauley, S. , Polimeni, J.R. , 

Tisdall, D. , Van Dijk, K.R. , Buckner, R.L. , et al. , 2014. Investigating the capability 
to resolve complex white matter structures with high b-value diffusion mag- 
netic resonance imaging on the MGH-USC connectome scanner. Brain Connect. 
4 (9), 718–726 . 

Fan, Q. , Witzel, T. , Nummenmaa, A. , Van Dijk, K.R. , Van Horn, J.D. , Drews, M.K. , 
Somerville, L.H. , Sheridan, M.A. , Santillana, R.M. , Snyder, J. , et al. , 2016. 
MGH–USC human connectome project datasets with ultra-high b-value diffu- 
sion mri. Neuroimage 124, 1108–1114 . 

Fischl, B. , 2012. Freesurfer. Neuroimage 62 (2), 774–781 . 
Garyfallidis, E. , Brett, M. , Amirbekian, B. , Rokem, A. , Van Der Walt, S. , De- 

scoteaux, M. , Nimmo-Smith, I. , Contributors, D. , 2014. Dipy, a library for the 
analysis of diffusion MRI data. Front. Neuroinform. 8 . 

Goldstein, T. , Osher, S. , 2009. The split Bregman method for l1-regularized problems. 
SIAM J. Imaging Sci. 2 (2), 323–343 . 

Greve, D.N. , Fischl, B. , 2009. Accurate and robust brain image alignment using 
boundary-based registration. Neuroimage 48 (1), 63–72 . 

Haldar, J.P. , Wedeen, V.J. , Nezamzadeh, M. , Dai, G. , Weiner, M.W. , Schuff, N. , 
Liang, Z.-P. , 2013. Improved diffusion imaging through SNR-enhancing joint re- 
construction. Magn. Reson. Med. 69 (1), 277–289 . 

Keil, B. , Blau, J.N. , Biber, S. , Hoecht, P. , Tountcheva, V. , Setsompop, K. , Triantafyl- 
lou, C. , Wald, L.L. , 2013. A 64-channel 3t array coil for accelerated brain mri. 
Magn Reson Med 70 (1), 248–258 . 



J. Sun, A. Entezari and B.C. Vemuri / Medical Image Analysis 54 (2019) 122–137 137 
van der Kouwe, A.J. , Benner, T. , Salat, D.H. , Fischl, B. , 2008. Brain morphometry with 

multiecho mprage. Neuroimage 40 (2), 559–569 . 
Lam, F. , Babacan, S.D. , Haldar, J.P. , Weiner, M.W. , Schuff, N. , Liang, Z.-P. , 2014. Denois- 

ing diffusion-weighted magnitude mr images using rank and edge constraints. 
Magn. Reson. Med. 71 (3), 1272–1284 . 

Landman, B.A. , et al. , 2012. Resolution of crossing fibers with constrained com- 
pressed sensing using diffusion tensor MRI. Neuroimage 59 (3), 2175–2186 . 

Lu, Y.M. , Do, M.N. , 2007. Multidimensional directional filter banks and surfacelets. 
IEEE Trans. Image Process. 16 (4), 918–931 . 

Lustig, M. , Donoho, D. , Pauly, J. , 2007. Sparse MRI: the application of compressed 
sensing for rapid MR imaging. Magn. Reson. Med. 58 (6), 1182–1195 . 

Mani, M. , et al. , 2015. Acceleration of high angular and spatial resolution diffu- 
sion imaging using CS with multichannel spiral data. Magn. Reson. Med. 73 (1), 
126–138 . 

McClymont, D. , Teh, I. , Whittington, H.J. , Grau, V. , Schneider, J.E. , 2016. Prospective 
acceleration of diffusion tensor imaging with compressed sensing using adap- 
tive dictionaries. Magn. Reson. Med. 76 (1), 248–258 . 

McNab, J.A. , Edlow, B.L. , Witzel, T. , Huang, S.Y. , Bhat, H. , Heberlein, K. , Feiweier, T. , 
Liu, K. , Keil, B. , Cohen-Adad, J. , et al. , 2013. The human connectome project and 
beyond: initial applications of 300mt/m gradients. Neuroimage 80, 234–245 . 

Merlet, S.L. , Deriche, R. , 2013. Continuous diffusion signal, EAP and ODF estimation 
via compressive sensing in diffusion MRI. Med. Image Anal. 17 (5), 556–572 . 

Michailovich, O. , Rathi, Y. , Dolui, S. , 2011. Spatially regularized compressed sensing 
for high angular resolution diffusion imaging. IEEE Trans. Med. Imaging 30 (5), 
1100–1115 . 

Ning, L. , Laun, F. , Gur, Y. , DiBella, E.V. , Deslauriers-Gauthier, S. , Megherbi, T. , 
Ghosh, A. , Zucchelli, M. , Menegaz, G. , Fick, R. , et al. , 2015. Sparse reconstruc- 
tion challenge for diffusion MRI: validation on a physical phantom to determine 
which acquisition scheme and analysis method to use? Med. Image Anal. 26 (1), 
316–331 . 

Ning, L. , Setsompop, K. , Michailovich, O. , Makris, N. , Shenton, M.E. , Westin, C.-F. , 
Rathi, Y. , 2016. A joint compressed-sensing and super-resolution approach for 
very high-resolution diffusion imaging. Neuroimage 125, 386–400 . 

Paquette, M. , Merlet, S. , Gilbert, G. , Deriche, R. , Descoteaux, M. , 2015. Comparison of 
sampling strategies and sparsifying transforms to improve compressed sensing 
DSI. Magn. Reson. Med. 73 (1), 401–416 . 

Polimeni, J.R. , Bhat, H. , Witzel, T. , Benner, T. , Feiweier, T. , Inati, S.J. , Renvall, V. , 
Heberlein, K. , Wald, L.L. , 2016. Reducing sensitivity losses due to respiration 
and motion in accelerated echo planar imaging by reordering the autocalibra- 
tion data acquisition. Magn. Reson. Med. 75 (2), 665–679 . 

Schwab, E. , Vidal, R. , Charon, N. , 2016. Spatial-angular sparse coding for HARDI. In: 
MICCAI (3), pp. 475–483 . 

Setsompop, K. , Kimmlingen, R. , Eberlein, E. , Witzel, T. , Cohen-Adad, J. , McNab, J.A. , 
Keil, B. , Tisdall, M.D. , Hoecht, P. , Dietz, P. , et al. , 2013. Pushing the limits of in 
vivo diffusion MRI for the human connectome project. Neuroimage 80, 220–233 . 

Shi, X. , Ma, X. , Wu, W. , Huang, F. , Yuan, C. , Guo, H. , 2015. Parallel imaging and 
compressed sensing combined framework for accelerating high-resolution dif- 
fusion tensor imaging using inter-image correlation. Magn. Reson. Med. 73 (5), 
1775–1785 . 

Sun, J. , Sakhaee, E. , Entezari, A. , Vemuri, B.C. , 2015. Leveraging eap-sparsity for 
compressed sensing of MS-HARDI in (k, q)-space. In: 24th Biennial Interna- 
tional Conference on Information Processing in Medical Imaging (IPMI 2015), 
pp. 375–386 . 

Van Essen, D.C. , Smith, S.M. , Barch, D.M. , Behrens, T.E. , Yacoub, E. , Ugurbil, K. , Con- 
sortium, W.-M.H. , et al. , 2013. The WU-MINN human connectome project: an 
overview. Neuroimage 80, 62–79 . 

Yin, S. , You, X. , Xue, W. , Li, B. , Zhao, Y. , Jing, X.-Y. , Wang, P.S. , Tang, Y. , 2016. A unified 
approach for spatial and angular super-resolution of diffusion tensor mri. In: 
Chinese Conference on Pattern Recognition. Springer, pp. 312–324 . 


