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A Stiefel manifold of the compact type is often encountered in
many fields of Engineering including, signal and image processing,
machine learning, numerical optimization and others. The Stiefel
manifold is a Riemannian homogeneous space but not a symmetric
space. In previous work, researchers have defined probability distribu-
tions on symmetric spaces and performed statistical analysis of data
residing in these spaces. In this paper, we present original work in-
volving definition of Gaussian distributions on a homogeneous space
and show that the maximum-likelihood estimate of the location pa-
rameter of a Gaussian distribution on the homogeneous space yields
the Fréchet mean (FM) of the samples drawn from this distribution.
Further, we present an algorithm to sample from the Gaussian dis-
tribution on the Stiefel manifold and recursively compute the FM of
these samples. We also prove the weak consistency of this recursive
FM estimator. Several synthetic and real data experiments are then
presented, demonstrating the superior computational performance of
this estimator over the gradient descent based non-recursive counter
part as well as the stochastic gradient descent based method preva-
lent in literature.

1. Introduction. Manifold-valued data have gained much importance
in recent times due to their expressiveness and ready availability of machines
with powerful CPUs and large storage. For example, these data arise as rank-
2 tensors (manifold of symmetric positive definite matrices) Moakher (2006);
Pennec, Fillard and Ayache (2006), linear subspaces (the Grassmann man-
ifold) Turaga, Veeraraghavan and Chellappa (2008); Hauberg, Feragen and
Black (2014); Goodall and Mardia (1999); Patrangenaru and Mardia (2003),
column orthogonal matrices (the Stiefel manifold) Turaga, Veeraraghavan
and Chellappa (2008); Hendriks and Landsman (1998); Chikuse (1991), di-
rectional data and probability densities (the hypersphere) Mardia and Jupp
(2009); Srivastava, Jermyn and Joshi (2007); Tuch et al. (2003); Hartley et al.
(2013) and others. A useful method of analyzing manifold valued data is to

∗This research was in part supported by the NSF grants IIS-1525431 and IIS-1724174.
MSC 2010 subject classifications: Primary 62F12; secondary 58A99
Keywords and phrases: Homogeneous Space, Stiefel Manifold, Fréchet mean, Gaussian
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compute statistics on the underlying manifold. The most popular statistic is
a summary of the data, i.e., the Riemannian barycenter (Fréchet mean (FM))
Fréchet (1948); Karcher (1977); Afsari (2011), Fréchet median Arnaudon,
Barbaresco and Yang (2013); Charfi et al. (2013) etc. However, in order
to compute statistics of manifold-valued data, the first step involves defin-
ing a distribution on the manifold. Recently, authors in Said et al. (2016)
have defined a Gaussian distribution on Riemannian symmetric spaces (or
symmetric spaces). Some typical examples of symmetric spaces include the
Grassmannian, the hypersphere etc. Several other researchers Cheng and
Vemuri (2013); Said et al. (2015) have defined a Gaussian distribution on
the space of symmetric positive definite matrices. They called the distribu-
tion a “generalized Gaussian distribution” Cheng and Vemuri (2013) and
“Riemannian Gaussian distribution” Said et al. (2015) respectively.

In this work, we define a Gaussian distribution on a homogeneous space
(a more general class than symmetric spaces). A key difficulty in defining the
Gaussian distribution on a non-Euclidean space is to show that the normal-
izing factor in the expression for the distribution is a constant. In this work,
we show that the normalizing factor in our definition of the Gaussian distri-
bution on a homogeneous space is indeed a constant. Note that a symmetric
space is a homogeneous space but not all homogeneous spaces are symmetric
and thus, our definition of Gaussian distribution is on a more generalized
topological space than the symmetric space. Given a well-defined Gaussian
distribution, the next step is to estimate the parameters of the distribution.
In this work, we prove that the maximum likelihood estimate (MLE) of the
mean of the Gaussian distribution is the Fréchet mean (FM) of the samples
drawn from the distribution.

Data with values in the space of column orthogonal matrices have be-
come popular in many applications of Computer Vision and Medical Image
analysis Turaga, Veeraraghavan and Chellappa (2008); Chakraborty, Baner-
jee and Vemuri (2017); Lui (2012); Cetingul and Vidal (2009); Pham and
Venkatesh (2008). The space of column orthogonal matrices is a topological
space, and moreover one can equip this space with a Riemannian metric
which in turn makes this space a Riemannian manifold, known as the Stiefel
manifold. The Stiefel manifold is a homogeneous space and here we extend
the definition of the Gaussian distribution to the Stiefel manifold. In this
work, we restrict ourselves to the Stiefel manifold of the compact type, which
is quite commonly encountered in most applications mentioned earlier.

We now motivate the need for a recursive FM estimator. In this age of
massive and continuous streaming data, samples are often acquired incre-
mentally. Hence, from an applications perspective, the desired algorithm
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should be recursive/inductive in order to maximize computational efficiency
and account for availability of data, requirements that are seldom addressed
in more theoretically oriented fields. We propose an inductive FM compu-
tation algorithm and prove the weak consistency of our proposed estima-
tor. FM computation on Riemannian manifolds has been an active area
of research for the past few decades. Several researchers have addressed
this problem and we refer the reader to Bhattacharya and Bhattacharya
(2008); Afsari (2011); Groisser (2004); Pennec (2006); Ando, Li and Math-
ias (2004); Moakher (2005); Bhatia (2013); Rao (1987); Fletcher and Joshi
(2007); Arnaudon, Barbaresco and Yang (2013); Sturm (2003); Ho et al.
(2013); Chakraborty and Vemuri (2015); Salehian et al. (2015).

1.1. Key Contributions. In summary, the key contributions of this paper
are: (i) A novel generalization of Gaussian distributions to compact homo-
geneous spaces. (ii) A proof that the MLE of the location parameter of this
distribution is “the” FM. (iii) A sampling technique for drawing samples
from this generalized Gaussian distribution defined on a compact Stiefel
manifold (which is a homogeneous space), and an inductive/recursive FM
estimator from the drawn samples along with a proof of its weak consistency.
Several examples of FM estimates computed from real and synthetic data
are shown to illustrate the power of the proposed methods.

Though researchers have defined Gaussian distributions on other mani-
folds in the past, see Said et al. (2016); Cheng and Vemuri (2013), their
generalization of the Gaussian distribution is restricted to symmetric spaces
of non-compact types. In this work, we define a Gaussian distribution on a
compact homogeneous space, which is a more general topological space than
the symmetric space. A few others in literature have generalized the Gaus-
sian distribution to all Riemannian manifolds, for instance, in Zhang and
Fletcher (2013), authors defined the Gaussian distribution on a Riemannian
manifold without a proof to show that the normalizing factor is a constant.
In Grenander (2008), author proposed a generalized Gaussian distribution
as a solution to the heat equation. In Fletcher (2013), though the author
commented on the constancy of the normalizing factor for Riemannian ho-
mogeneous spaces, he did not however prove the finiteness of the normaliza-
tion factor. It should be noted that the finiteness of the normalization factor
is crucial for the proposed distribution to be a valid distribution. In Pennec
(2006), the author defined the normal law on Riemannian manifolds using
the concept of entropy maximization for distributions with known mean and
covariance. Under certain assumptions, the author shows that this definition
amounts to using the Riemannian exponential map on a truncated Gaussian
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distribution defined in the tangent space at the known intrinsic mean. This
approach of deriving the normal distribution yields a normalizing factor that
is dependent on the location parameter of the distribution and hence is not
a constant with respect to the FM.

We then move our focus to the Stiefel manifold (which is a homogeneous
space) and propose a simple algorithm to draw samples from the Gaussian
distribution on the Stiefel manifold. In order to achieve this, we develop a
simple but non-trivial way to extend the sampling algorithm in Said et al.
(2016) to get samples on the Stiefel manifold. Once we have the samples
from a Gaussian distribution on the Stiefel, we propose a novel estimator
of the sample FM and prove the weak consistency of this estimator. The
proposed FM estimator is inductive in nature and is motivated by the in-
ductive FM algorithm on the Euclidean space. But, unlike Euclidean space,
due to the presence of non-zero curvature, it is necessary to prove the consis-
tency of our proposed estimator, which is presented subsequently. Further,
we experimentally validate the superior performance of our proposed FM es-
timator over the gradient descent based techniques. Moreover, we also show
that the MLE of the location parameter of the Gaussian distribution on
the Stiefel manifold asymptotically achieves the Cramér-Rao lower bound
Cramér (2016); Rao (1992), hence in turn, the MLE of the location param-
eter is efficient. This implies that our proposed consistent FM estimator,
asymptotically, has a variance lower bounded by that of the MLE.

The rest of the paper is organized as follows. In section 2, we present
the necessary mathematical background. In section 3, we define a Gaussian
distribution on a homogeneous space. More specifically, define a generalized
Gaussian distribution on the Stiefel manifold and prove that the normalizing
factor is indeed a constant with respect to the location parameter of the
distribution. Then, we propose a sampling algorithm to draw samples from
this generalized Gaussian distribution in section 3.1 and in section 3.2, show
that the MLE of the location parameter of this Gaussian distribution is the
FM of the samples drawn from the distribution. In section 4, we propose an
inductive FM estimator and prove its weak consistency. Finally we present a
set of synthetic and real data experiments in section 5 and draw conclusions
in section 6.

2. Mathematical Background: Homogeneous spaces and the Rie-
mannian symmetric space. In this section, we present a brief note on
the differential geometry background required in the rest of the paper. For
a detailed exposition on these concepts, we refer the reader to a compre-
hensive and excellent treatise on this topic by Helgason Helgason (1979).
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Several propositions and lemmas that are needed to prove the results in the
rest of the paper are stated and proved here. Some of these might have been
presented in the vast differential geometry literature but are unknown to us
and hence the proofs presented in this background section are original.

Let (M, gM) be a Riemannian manifold with a Riemannian metric gM,
i.e., (∀x ∈ M) gMx : TxM× TxM → R is a bi-linear symmetric positive
definite map, where TxM is the tangent space of M at x ∈ M. Let d :
M×M → R be the metric (distance) induced by the Riemannian metric
gM. Let I(M) be the set of all isometries of M, i.e., given g ∈ I(M),
d(g.x, g.y) = d(x, y), for all x, y ∈ M. It is clear that I(M) forms a group
(henceforth, we will denote I(M) by (G, ·)) and thus, for a given g ∈ G and
x ∈ M, g.x 7→ y, for some y ∈ M is a group action. Consider o ∈ M, and
let H = Stab(o) = {h ∈ G|h.o = o}, i.e., H is the Stabilizer of o ∈ M. We
say that G acts transitively onM, iff, given x, y ∈M, there exists a g ∈M
such that y = g.x.

Definition 2.1. Let G = I(M) act transitively onM and H = Stab(o),
o ∈M (called the “origin” of M) be a subgroup of G. Then, M is a homo-
geneous space and can be identified with the quotient space G/H under the
diffeomorphic mapping gH 7→ g.o, g ∈ G Helgason (1979).

In fact, if M is a homogeneous space, then G is a Lie group. A Stiefel
manifold, St(p, n) (definition of the Stiefel manifold is given in next section)
is a homogeneous space and can be identified with O(n)/O(n − p), where
O(n) is the group of orthogonal matrices. Now, we will list some of the
important properties of Homogeneous spaces that will be used throughout
the rest of the paper.

Properties of Homogeneous spaces: Let (M, gM) be a Homogeneous
space. Let ωM be the corresponding volume form and F :M→ R be any
integrable function. Let g ∈ G, s.t. y = g.x, x, y ∈ M. Then, the following
facts are true:

1. gM(dy, dy) = gM(dx, dx).
2. d(x, z) = d(y, g.z), for all z ∈M.

3.

∫
M
F (y)ωM(x) =

∫
M
F (x)ωM(x)

Definition 2.2. A Riemannian symmetric space is a Riemannian man-
ifold M with the following property: (∀x ∈M)(∃sx ∈ G) such that sx.x = x
and dsx|x = −I. sx is called symmetry at x Helgason (1979).
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Proposition 2.1. Helgason (1979) A symmetric spaceM is a homoge-
neous space with a symmetry, so, at o ∈M. For the other point x ∈M, by
transitivity of G, there exists g ∈ G such that x = g.o and sx = g · so · g−1.

Proposition 2.2. Helgason (1979) Any symmetric space is geodesically
complete.

Some examples of symmetric spaces include, Sn (the hypersphere), Hn

(the hyperbolic space) and Gr(p, n) (the Grassmannian). It is evident from
the definition that symmetric space is a homogeneous space but the converse
is not true. For example, the Stiefel manifold is not a symmetric space.

Proposition 2.3. Helgason (1979) The mapping σ : g 7→ so ·g · so is an
involutive automorphism of G and the stabilizer of o, i.e., H, is contained
in the group of fixed points of σ.

Clearly, σ(e) = e, as σ is an automorphism, e ∈ G is the identity element.
Recall, G is a Lie group, hence, differentiating σ at e, we get an involutive
automorphism of the Lie algebra g of G (also denoted by σ). Henceforth,
we will use σ to denote the automorphism of g. Since σ is involutive, i.e.,
σ2 = I, σ has two eigen values, ±1 and let h (Lie algebra of H) and p be
the corresponding eigenspaces, then g = h + p (direct sum).

Proposition 2.4. Helgason (1979) [h, h] ⊆ h, [h, p] ⊆ p and [p, p] ⊆ h

Hence, h is a Lie subalgebra of g. Henceforth, we will assume g to be
semisimple. We can define a symmetric, bilinear form, B on g as follows
B(u, v) = trace (ad(u) ◦ ad(v)), where ad(u) is the adjoint endomorphism of
g defined by ad(u)(v) = [u, v]. B is called the Killing form on g.

Definition 2.3. The decomposition of g as g = h + p is called the
Cartan decomposition of g associated with the involution σ. Furthermore, B
is negative definite on h, positive definite on p and h and p are orthogonal
complement of each other with respect to B on g.

Recall, a symmetric space, M, can be identified with G/H. Note that,
o, the “origin” of M can be written as o = eH, e ∈ G is the identity
element. Since, p can be identified with ToM, the Riemannian metric gM

on M corresponds to the Killing form B on p Helgason (1979), which is
a H-invariant form. Without loss of generality, we will assume that g is
over R and g be semisimple (equivalently, the Killing form on g is non-
degenerate). The symmetric space G/H is said to be compact (noncompact)
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iff the sectional curvature is strictly positive (negative), equivalently iff g
is compact (noncompact).

Duality: Given a semisimple Lie algebra g with the Cartan decomposi-
tion g = h+p, construct another Lie algebra g̃ from g as follows: g̃ = h+J(p),
where J is a complex structure of p (real Lie algebra). From the definition
of complex structure, J : p → p, is an automorphism on p s.t., J2 = −I. J
satisfies the following equality: J([T,W ]) = [J(T ),W ] = [T, J(W )], for all
T,W ∈ p. We will call g̃ the dual Lie algebra of g. It is easy to see that if
g corresponds to a symmetric space of noncompact type, g̃ is a symmetric
space of compact type and vice-versa. This duality property is very useful
and is a key ingredient of this paper.

Now, we will briefly describe the geometry of two Riemannian manifolds,
namely the Stiefel manifold and the Grassmannian. We need the geometry
of Stiefel manifold throughout the rest of the paper. Furthermore, observe
that, the Stiefel and the Grassmannian form a fiber bundle. In order to draw
samples from a distribution on the Stiefel, we will use the samples drawn
from a distribution on the Grassmannian by exploiting the fiber bundle
structure. Hence, we will require the geometry of the Grassmannian as well,
which we will briefly present below.

Differential Geometry of the Stiefel manifold: The set of all full
column rank (n × p) dimensional real matrices form a Stiefel manifold,
St(p, n), where n ≥ p. A compact Stiefel manifold is the set of all col-
umn orthonormal real matrices. When p < n, St(p, n) can be identified
with SO(n)/SO(n − p), where SO(m) is m ×m special orthogonal group.
Note that, when we consider the quotient space, SO(n)/SO(n − p), we as-
sume that SO(n − p) ' F (SO(n − p)) is a subgroup of SO(n), where,

F : SO(n − p) → SO(n) defined by X 7→
[
Ip 0
0 X

]
is an isomorphism from

SO(n− p) to F (SO(n− p)).

Proposition 2.5. SO(n− p) is a closed Lie-subgroup of SO(n). More-
over, the quotient space SO(n)/SO(n−p) together with the projection map,
Π : SO(n)→ SO(n)/SO(n− p) is a principal bundle with SO(n− p) as the
fiber.

Proof. SO(n−p) is a compact Lie-subgroup of SO(n), hence SO(n−p)
is a closed subgroup. The fiber bundle structure of (SO(n), SO(n)/SO(n−
p),Π) follows directly from the closedness of SO(n − p). As SO(n) is a
principal homogeneous space (because SO(n) ' St(n−1, n) and SO(n) acts
on it freely), hence the principal bundle structure. �
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With a slight abuse of notation, henceforth, we denote the compact Stiefel
manifold by St(p, n). Hence, St(p, n) = {X ∈ Rn×p|XTX = Ip}, where Ip
is the p × p identity matrix. The compact Stiefel manifold has dimension
pn − p(p+1)

2 . At any X ∈ St(p, n), the tangent space TXSt(p, n) is defined
as follows TXSt(p, n) = {U ∈ Rn×p|XTU + UTX = 0}. Now, given U, V ∈
TXSt(p, n), the canonical Riemannian metric on St(p, n) is defined as follows:

〈U, V 〉X = trace
(
UTV

)
(2.1)

With this metric, the compact Stiefel manifold has non-negative sectional
curvature Ziller (2007).

Given X ∈ St(p, n), we can define the Riemannian retraction and lifting
map within an open neighbourhood of X. We will use an efficient Cayley
type retraction and lifting maps respectively on St(p, n) as defined in Fraikin,
Hüper and Dooren (2007); Kaneko, Fiori and Tanaka (2013). It should be
mentioned that though the domain of retraction is a subset of the domain
of inverse-Exponential map, on St(p, n) retraction/ lifting is a useful alter-
native since, there are no closed form expressions for both the Exponential
and the inverse-Exponential maps on Stiefel manifold. Recently, a fast iter-
ative algorithm to compute Riemannian inverse-Exponential map has been
proposed in Zimmermann (2017), which can be used instead of retraction/
lifting maps to compute FM in our algorithm.

In the neighborhood of [Ip 0] (n× p matrix with upper-right p× p block
is identity and rest are zeros), given X ∈ St(p, n), we define the lifting map

Exp−1
X : St(p, n) → TXSt(p, n) by Exp−1

X (Y ) =

[
C −BT

B 0

]
where, C is a

p×p skew-symmetric matrix and B is a (n−p)×p matrix defined as follows:
C = 2(XT

u + Y T
u )−1sk(Y T

u Xu +XT
l Yl)(Xu + Yu)−1 and B = (Yl −Xl)(Xu +

Yu)−1 where, X = [Xu, Xl]
T , and Y = [Yu, Yl]

T with Xu, Yu ∈ Rp×p, and
Xl, Yl ∈ R(n−p)×p, provided that Xu + Yu is nonsingular. sk(M) is defined
as 1

2(MT −M) and, Y ∈ St(p, n).
Furthermore, in the neighborhood of [Ip 0], the retraction map defined

above is a diffeomorphism (since it is a chart map) from St(p, n) to so(n).

Proposition 2.6. The projection map Π : SO(n)→ SO(n)/SO(n− p)
is a covering map on the neighborhood of SO(n− p) in SO(n)/SO(n− p).

Proof. First, note that under the identification of St(p, n) with SO(n)/
SO(n− p), the neighborhood of [Ip 0] in St(p, n) can be identified with the
neighborhood of SO(n− p) in SO(n)/SO(n− p). Now, the retraction map
defined above is a (local) diffeomorphism from St(p, n) to so(n). Also, the
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Cayley map is a diffeomorphism from so(n) to the neighborhood of In in
SO(n). Thus, the map Π : SO(n)→ SO(n)/SO(n− p) is a diffeomorphism
to the neighborhood of SO(n−p) in SO(n)/SO(n−p) (using the fact that the
composition of two diffeomorphisms is a diffeomorphism). Now, since SO(n)
is compact and Π is surjective, Π is a covering map on the neighborhood of
SO(n− p) in SO(n)/SO(n− p) using the following Lemma. �

Lemma 2.1. Under the hypothesis in Proposition 2.6, Π : SO(n) →
SO(n)/SO(n− p) is a covering map in the neighborhood from the neighbor-
hood of In in SO(n) to the neighborhood of SO(n− p) of SO(n)/SO(n− p).

Proof. In Proposition 2.6, we have shown that Π is local diffeomorphism
in the neighborhood specified in the hypothesis. Let V be a neighborhood
around SO(n−p) in SO(n)/SO(n−p) and U be a neighborhood around In
in SO(n) on which Π is a diffeomorphism. Let Y ∈ V, as SO(n)/SO(n− p)
is a T2 space, hence, {Y } is closed, thus, Π−1(Y ) is closed and since SO(n) is
compact, hence Π−1(Y ) is compact. For each X ∈ Π−1(Y ), let UX be a open
neighborhood around X where Π restricts to a diffeomorphism (and hence
homeomorphism). Then,

{
UX : X ∈ Π−1(Y )

}
is an open cover of Π−1(Y ),

thus as a finite subcover {UX}X∈I , where I is finite. We chose {UX} to be
disjoint as SO(n) is a T2 space. Let W = ∩X∈IΠ(UX) which is an open
neighborhood of Y . Then,

{
Π−1(W) ∩ UX

}
X∈I is a disjoint collection of

open neighborhoods each of which maps homeomorphically to V. Hence, Π
is a covering map in the local neighborhood. �

Given W ∈ so(n), the Cayley map is a conformal mapping, Cay : so(n)
→ SO(n) defined by Cay(W ) = (In+W )(In−W )−1. Using the Cayley map-
ping, we can define the Riemannian retraction map ExpX : TXSt(p, n) →
St(p, n) by ExpX(W ) = Cay(W )X. Hence, given X,Y ∈ St(p, n) within a
regular geodesic ball (the geodesic ball does not include the cut locus) of
appropriate radius (henceforth, we will assume the geodesic ball to be reg-
ular), we can define the unique geodesic from X to Y , denoted by ΓYX(t)
as

(2.2) ΓYX(t) = ExpX(t Exp−1
X (Y ))

Also, we can define the distance between X and Y as

d(X,Y ) =
√
〈Exp−1

X (Y ),Exp−1
X (Y )〉.(2.3)

Differential Geometry of the Grassmannian Gr(p, n): The Grass-
mann manifold (or the Grassmannian) is defined as the set of all p-dimensional
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linear subspaces in Rn and is denoted by Gr(p, n), where p ∈ Z+, n ∈ Z+,
n ≥ p. Grassmannian is a symmetric space and can be identified with the
quotient space SO(n)/S (O(p)×O(n− p)), where S (O(p)×O(n− p)) is
the set of all n×n matrices whose top left p×p and bottom right n−p×n−p
submatrices are orthogonal and all other entries are 0, and overall the de-
terminant is 1. A point X ∈ Gr(p, n) can be specified by a basis, X. We
say that X = Col(X) if X is a basis of X , where Col(.) is the column
span operator. It is easy to see that the general linear group GL(p) acts
isometrically, freely and properly on St(p, n). Moreover, Gr(p, n) can be
identified with the quotient space St(p, n)/GL(p). Hence, the projection map
Π : St(p, n)→ Gr(p, n) is a Riemannian submersion, where Π(X) , Col(X).
Moreover, the triplet (St(p, n),Π,Gr(p, n)) is a fiber bundle.

At every point X ∈ St(p, n), we can define the vertical space, VX ⊂
TXSt(p, n) to be Ker(Π∗X). Further, given gSt, we define the horizontal
space,HX to be the gSt-orthogonal complement of VX . Now, from the theory
of principal bundles, for every vector field Ũ on Gr(p, n), we define the
horizontal lift of Ũ to be the unique vector field U on St(p, n) for which
UX ∈ HX and Π∗XUX = ŨΠ(X), for all X ∈ St(p, n). As, Π is a Riemannian
submersion, the isomorphism Π∗X |HX

: HX → TΠ(X)Gr(p, n) is an isometry

from (HX , gSt
X ) to (TΠ(X)Gr(p, n), gGr

Π(X)). So, gGr
Π(X) is defined as:

gGr
Π(X)(ŨΠ(X), ṼΠ(X)) = gSt

X (UX , VX) = trace((XTX)−1UTXVX)(2.4)

where, Ũ , Ṽ ∈ TΠ(X)Gr(p, n) and Π∗XUX = ŨΠ(X), Π∗XVX = ṼΠ(X), UX ∈
HX and VX ∈ HX .

3. Gaussian distribution on Homogeneous spaces. In this sec-
tion, we define the Gaussian distribution, N (x̄, σ) on a compact Homoge-
neous space, M, x̄ ∈ M (location parameter), σ > 0 (scale parameter),
and then propose a sampling algorithm to draw samples from the Gaussian
distribution on St(p, n). Furthermore, we will show that the maximum like-
lihood estimator (MLE) of x̄ is the Fréchet mean (FM) Fréchet (1948) of
the samples.

We define the probability density function, f(.; x̄, σ) with respect to ωM

(the volume form) of the Gaussian distribution N (x̄, σ) on M as:

f(x; x̄, σ) =
1

C(σ)
exp

(
−d2(x, x̄)

2σ2

)
(3.1)

The above distribution is a valid probability density function, provided that
the normalization factor, C(σ) is finite and furthermore, is a constant, i.e.,
does not depend on x̄ which we will prove next.
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Proposition 3.1. Let us define Z(x̄, σ) ,
∫
M
f̃(x; x̄, σ)ωM(x), where,

f̃ is the kernel of f . Z(x̄, σ) is finite for all compact manifolds.

Proof. Observe that the kernel f̃(x; x̄, σ) ≤ 1 for all x. Hence, Z(x̄, σ) ≤∫
M
ωM(x) ≤ ∞ as the volume of any compact manifold is finite. �

Proposition 3.2. With Z(x̄, σ) as defined as above, C(σ) = Z(x̄, σ) =
Z(o, σ), where o ∈M is the origin.

Proof. As the group action on M is transitive, there exists g ∈ G s.t.,
x̄ = g.o.

Z(x̄, σ) =

∫
M
f̃(x; x̄, σ)ωM(x)

=

∫
M
f̃(g−1.x; g−1.x̄, σ)ωM(x) (using Fact 2 in section 2)

=

∫
M
f̃(x; o, σ)ωM(x) (using Fact 2 in section 2)

= Z(o, σ)

Hence, C(σ) = Z(o, σ), i.e., does not depend on x̄. �

Now that we have a valid definition of a Gaussian distribution, N (x̄, σ)
on a compact Homogeneous space, we propose a sampling algorithm for
drawing samples from N (X̄, σ) on St(p, n) (which is a homogeneous space),
X̄ ∈ St(p, n), σ > 0.

3.1. Sampling algorithm. In order to draw samples from N (X̄, σ) on
St(p, n), it is sufficient to draw samples from N (O, σ) where O ∈ St(p, n) is
the origin. Then, using group operation, we can draw samples from N (X̄, σ)
for any X̄ ∈ St(p, n). We will assume, O = [Ip 0] (n × p matrix with the
upper-right p× p block being the identity and the rest being zeros). We will
first draw samples from N (O, σ) on Gr(p, n), where O = Π(O) and use this
sample to get a sample on St(p, n) using N (O, σ). Note that Gr(p, n) is a
symmetric space and hence a homogeneous space and thus we have a valid
Gaussian density on Gr(p, n) using Eq. 3.1.

Proposition 3.3. Let X ∼ N (O, σ) where O = Π(O), XTX = I. Then,
ExpO(W ) ∼ N (O, σ), with W = UΘV T , where, UΣV T = X(OTX)−1 − O
and Θ = arctan Σ.
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Proof. It is sufficient to show that d(O,ExpO(W )) = d(O,X ). Re-
call, that (St(p, n),Π,Gr(p, n)) forms a fiber bundle. Moreover, the iso-
morphism, Π∗X |HX

: HX → TΠ(X)Gr(p, n) is an isometry from (HX , gSt
X )

to (TΠ(X)Gr(p, n), gGr
Π(X)), for all X ∈ St(p, n). From, Absil, Mahony and

Sepulchre (2004), we know that Π∗O(W ) = Exp−1
O (X ). So,

d2(O,X ) = gGr
O
(
Exp−1

O (X ),Exp−1
O (X )

)
= gSt

O (W,W ) (as Π∗O is an isomorphism and using Eq.2.4)

= d2(O,ExpO(W )) (using Eq.2.3)

�

Using the Proposition 3.3, we can generate a sample from N (O, σ) on
St(p, n), using a sample from N (O, σ) on Gr(p, n). We will now propose an
algorithm to draw samples from N (O, σ) on Gr(p, n). Recall that Gr(p, n)
can be identified as SO(n)/S (O(p)×O(n− p)) which is a semisimple sym-
metric space of compact type (let it be denoted by g = h + p). Also, recall
from section 2 that, every compact semisimple symmetric space has a dual
semsimple symmetric space of non-compact type (denoted by g̃ = h + J(p

). Here, g = so(n), h =

[
Ū 0
0 V̄

]
, where Ū ∈ so(p), V̄ ∈ so(n − p),

p =

[
0 W̄
−W̄ T 0

]
, W̄ ∈ Rp×(n−p). Then, g̃ = so(p, n − p), and the cor-

responding Lie group, denoted by G̃ = SO(p, n − p) (with a slight abuse
of notation we use SO(p, n − p) to denote the identity component). Here,
SO(p, n− p) is the special pseudo-orthogonal group, i.e.,

SO(p, n− p) ,
{
g̃ | g̃I(p,n−p)g̃

T = I(p,n−p),det(g̃) = 1
}

,
I(p,n−p) , diag(1, · · · , 1︸ ︷︷ ︸

p times

,−1, · · · − 1︸ ︷︷ ︸
(n−p) times

)

. Thus, the dual non-compact type symmetric space of SO(n)/S (O(p)×O(n− p))
(identified with Gr(p, n)) is SO(p, n− p)/S (O(p)×O(n− p)). Recently, in
Said et al. (2016), an algorithm to draw samples from a Gaussian distribu-
tion on symmetric spaces of non-compact type was presented. We will use
the following proposition to get a sample from a Gaussian distribution on
the dual compact symmetric space.
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Proposition 3.4. Let X ′ ∼ N (O′, σ). Let X ′ = exp(Ad(Ū)V̄ ).O′, where
Ad is the adjoint representation, Ū ∈ h, V̄ ∈ J(p). Then, X ∼ N (O, σ),
where X = exp(Ū) · exp(Ṽ ).O and V̄ = J(Ṽ ).

Proof. Observe thatO′ = H = O. So, it suffices to show that d(X ′,O) =
d(X ,O).

d2(X ′,O) = B
(
V̄ , V̄

)
(the metric corresponds to Killing form B on p)

= B
(
J(Ṽ ), J(Ṽ )

)
= B

(
Ṽ , Ṽ

)
(Killing form is invariant under automorphisms)

= d2(X ,O)

�

Note that, the mapping H × p→ G given by (h, exp(Ṽ )) 7→ h · exp(Ṽ ) is
a diffeomorphism and is used to construct X from (Ū , exp(Ṽ )). The map-
ping X ′ = exp(Ad(Ū)V̄ ).O′ is called the polar coordinate transform. Now,
using Propositions 3.3 and 3.4, starting with a sample drawn from a Gaus-
sian distribution on SO(p, n−p)/S (O(p)×O(n− p)), we get a sample from
Gaussian distribution on St(p, n). We would like to point out that, we do not
have to compute the normalizing constant explicitly in order to draw sam-
ples, because, in order to get samples on SO(p, n− p)/S (O(p)×O(n− p)),
we can draw samples using the Algorithm 1 in Said et al. (2016), which
draws samples from the kernel of the density.

3.2. Maximum likelihood estimation (MLE) of X̄. Let, X1, X2, · · ·XN be
i.i.d. samples drawn from N (X̄, σ) with bounded support (described subse-
quently) on St(p, n), for some X̄ ∈ St(p, n), σ > 0. Then, by proposition 3.6,
the MLE of X̄ is the Fréchet mean (FM) Fréchet (1948) of {Xi}Ni=1. Fréchet
mean (FM) Fréchet (1948) of {Xi}Ni=1 ⊂ St(p, n) is defined as follows:

M = arg min
X∈St(p,n)

N∑
i=1

d2(Xi, X)(3.2)

We define an (open) “geodesic ball” of radius r > 0 to be B(X, r) =
{Xi|d(X,Xi) < r} s.t., there exists a length minimizing geodesic between
X to any Xi ∈ B(X, r). A “geodesic ball” is said to be “regular” iff r <
π/2(
√
κ), where κ is the maximum sectional curvature. The existence and

uniqueness of the Fréchet mean (FM) is ensured iff the support of the dis-
tribution N (X̄, σ) is within a regular geodesic ball Afsari (2011); Kendall
(1990).
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Proposition 3.5. Let X ∈ St(p, n), U, V ∈ HX , then, 0 ≤ κ(U, V ) ≤ 2

Proof. Let, X = Π(X). Then, there exists a unique Ũ , Ṽ ∈ TXGr(p, n)
s.t. Ũ = Π∗XU , Ṽ = Π∗XV . 0 ≤ κ(Ũ , Ṽ ) ≤ 2 Wong (1968). Now, using
O’Neil’s formula Cheeger and Ebin (1975), we know that

κ(Ũ , Ṽ ) = κ(U, V ) +
3

4
‖vertX ([U, V ]) ‖2

where, vertX is the orthogonal projection operator on VX . Clearly as the
second term in the above summation is non-negative and κ(U, V ) is non-
negative (as St(p, n) is of compact type), the result follows. �

Observe that, the support of N (X̄, σ) as defined in proposition 3.3 is a
subset of H , ∪XExpX (HX) ⊂ St(p, n), H is an arbitrary union of open
sets and hence is open. Thus, we can give H a manifold structure and using
the proposition 3.5, we can say that if the support of N (X̄, σ) is within a
geodesic ball B(X̄, π/2(

√
2)), FM exists and is unique. For the rest of the

paper, we assume this condition to ensure the existence and uniqueness of
FM.

Proposition 3.6. Let, X1, X2, · · ·XN be i.i.d. samples drawn from N (X̄, σ)
on St(p, n) (support of N (X̄, σ) is within a geodesic ball B(X̄, π/2(

√
2))),

σ > 0. Then the MLE of X̄ is the FM of {Xi}.

Proof. The likelihood of X̄ given the i.i.d. samples {Xi} is given by

L(X̄, σ; {Xi}Ni=1) =
1

C(σ)

N∏
i=1

exp

(
−d2(Xi, X̄)

2σ2

)
,(3.3)

where C(σ) is defined as in Eq. 3.1. Now, maximizing log-likelihood function
with respect to X̄ is equivalent to minimizing

∑N
i=1 d

2(Xi, X̄) with respect
to X̄. This gives the MLE of X̄ to be the FM of {Xi}Ni=1 as can be verified
using Eq. 3.2. �

4. Inductive Fréchet mean on the Stiefel manifold. In this sec-
tion, we present an inductive formulation for computing the Fréchet mean
(FM) Fréchet (1948); Karcher (1977) on Stiefel manifold. We also prove the
Weak Consistency of our FM estimator on the Stiefel manifold.

Algorithm for Inductive Fréchet Mean Estimator
Let X1, X2, · · · be i.i.d. samples drawn from N (X̄, σ) (whose support

is within a geodesic ball B(X̄, π/2(
√

2))) on St(p, n). Then, we define the
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inductive FM estimator (S tiFME) Mk by the recursion in Eqs. 4.1, 4.2.

M1 = X1(4.1)

Mk+1 = Γ
Xk+1

Mk
(ωk+1)(4.2)

where, ΓYX : [0, 1] → St(p, n) is the geodesic from X to Y defined as
ΓYX(t) := ExpX(tExp−1

X (Y )) and ωk+1 = 1
k+1 . Eq. 4.2 simply means that

the k + 1th estimator lies on the geodesic between the kth estimate and the
k + 1th sample point. This simple inductive estimator can be shown to con-
verge to the Fréchet expectation, i.e., X̄, as stated in Theorem 4.1.

Theorem 4.1. Let, X1, X2 · · ·XN be i.i.d. samples drawn from a Gaus-
sian distribution N (X̄, σ) on St(p, n) (with a support inside a regular geodesic
ball of radius < π/2

√
2). Then the inductive FM estimator ( StiFME) of

these samples, i.e., MN converges to X̄ as N →∞.

Proof. We will start by first stating the following propositions.

Proposition 4.1. Using Proposition 2.5., we know that Π : SO(n) →
SO(n)/SO(n−p) is a principal bundle and moreover using Proposition 2.6,
we know that this map is a covering map in the neighborhood of SO(n− p)
in SO(n)/SO(n− p). Let, gSO be the Riemannian metric on SO(n) and gq

be the metric on the quotient space SO(n)/SO(n− p). Then, gSO = Π∗gq.

Proposition 4.2. Let, Xi = giH, where H := SO(n − p) and gi ∈
G := SO(n). Let, M is an defined in Eq. 3.2, then, M = gMH, where
gM = arg ming∈SO(n)

∑N
i=1 d

2(gi, g).

Proof. Let, M = ḡH, for some ḡ ∈ G. Then, observe that,

d2(Xi,M) = d2(giH, ḡH)

= d2(ḡ−1giH,H) using property 2 of homogeneous space

= d2(ḡ−1gi, e) using Proposition 4.1

= d2(gi, ḡ) as SO(n) a Lie group

Thus the claim holds. �

By the Proposition 4.2, we can see that in order to prove Theorem 4.1,
it is sufficient to show weak consistency on SO(n). We will state and prove
the weak consistency on SO(n) in the next theorem. �
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Theorem 4.2. Using the hypothesis in Theorem 4.1, let g1, g2, · · · gN be
the corresponding i.i.d. samples drawn from the (induced) Gaussian distri-
bution N (ḡ, σ) on SO(n) where X̄ = ḡH (H := SO(n − p)) (it is easy to
show using Proposition 4.2 that this (induced) distribution on SO(n) is in-
deed a Gaussian distribution on SO(n)). Then the inductive FM estimator
( StiFME) of these samples, i.e., gN converges to ḡ as N →∞.

Proof. Since SO(n) is a special case of the (compact) Stiefel manifold,
i.e., when p = n− 1 (as SO(n) can be identified with St(n− 1, n)), we will
use X instead of g for notational simplicity. Let X ∈ SO(n). Any point in
SO(n) can be written as a product of n(n − 1)/2 planar rotation matrices
by the following claim.

Proposition 4.3. Any arbitrary element of SO(n) can be written as the
composition of planar rotations in the planes generated by the n standard
orthogonal basis vectors of Rn.

Proof. The proof is straightforward. Moreover, each element of SO(n)
is a product of n(n− 1)/2 planar rotations. �

By virtue of the Proposition 4.3, we can express X as a product of
n(n − 1)/2 planar rotation matrices. Each planar rotation matrix can be
mapped onto Sn−1, hence ∃ diffeomorphism F : SO(n) → Sn−1 × · · ·Sn−1︸ ︷︷ ︸

n(n−1)/2times

.

Let’s denote this product space of hyperspheres by O(n− 1, n(n−1)
2 ). Then,

F is a diffeomorphism from SO(p) to O(n − 1, n(n−1)
2 ). Let gO be a Rie-

mannian metric on O(n− 1, n(n−1)
2 ). Let ∇O be the Levi-Civita connection

on TO(n− 1, n(n−1)
2 ). Since, F is a diffeomorphism, every vector field U on

SO(n) pushes forward to a well-defined vector field F∗U on O(n−1, n(n−1)
2 ).

Define a map

∇SO : Ξ(TSO(n))× Ξ(TSO(n))→ Ξ(TSO(n))

(U, V ) 7→ ∇SOU V

, where Ξ(TSO(n)) gives the section of TSO(n).

Proposition 4.4. ∇SO is the Levi-Civita connection on SO(n) equipped
with the pull-back Riemannian metric F ∗gO.

Proposition 4.5. Given the hypothesis and the notation as above, if γ
is a geodesic on SO(n), F ◦ γ is a geodesic on O(n− 1, n(n−1)

2 ).
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Proof. Let, γ̂ = F ◦ γ be a curve in O(n− 1, n(n−1)
2 ). Then,

0 = F∗0 = F∗

(
∇SOγ′ γ′

)
= F∗

(
F−1
∗

(
∇O
F∗γ′F∗γ

′
))

= ∇O
γ̂′ γ̂
′.

Hence, γ̂ is a geodesic on O(n− 1, n(n−1)
2 ). �

Now, analogous to Eq. 4.1, we can define the FM estimator on SO(n)

where the geodesic, Γ
Xk+1

Mk
(ωk+1) = ExpMk

(
ωk+1Exp−1

Mk
(Xk+1)

)
. Note that,

on SO(n), ExpMk

(
ωk+1Exp−1

Mk
(Xk+1)

)
= Mk exp(ωk+1 log(M−1

k Xk+1)).

Proposition 4.6. F∗Exp−1
Mk

(Xk+1) = Exp−1
F (Mk)(F (Xk+1))

Proof. Let γ : [0, 1] → SO(n) be a geodesic from Mk to Xk+1. Then,

Exp−1
Mk

(Xk+1) = d
dt(γ(t))

∣∣∣∣
t=0

. Using Proposition 4.5, F ◦γ is a geodesic from

F (Mk) to F (Xk+1).

LogF (Mk)F (Xk+1) =
d

dt
(F ◦ γ(t))

∣∣∣∣
t=0

= F∗
d

dt
(γ(t))

∣∣∣∣
t=0

= F∗Exp−1
Mk

(Xk+1)

�

Let, Ū = Exp−1
F (Mk)(F (Xk+1)) and Û = Exp−1

Mk
(Xk+1). Using Proposition

4.6, we get,

gSO(Û , Û) = F ∗gO(Û , Û)

= gO(F∗Û , F∗Û)

= gO(Ū , Ū)

Thus, in order to show weak consistency of our proposed estimator on
{gi} ⊂ SO(n), it is sufficient to show the weak consistency of our estimator

on {F (gi)} ⊂ O(n − 1, n(n−1)
2 ). A proof of the weak consistency of our

proposed FM estimator on hypersphere has been shown in Salehian et al.
(2015) (which can be trivially extended to the product of hyperspheres).
This proof of weak consistency on the hypersphere in turn proves the weak
consistency on SO(n). �
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Since we have now shown that our proposed FM estimator on St(p, n)

is (weakly) consistent, we claim that, Var(MN ) ≥ Var(M̂N ) as N → ∞,

where M̂N is the MLE of X̄ when {Xi}Ni=1 are i.i.d. samples from N (X̄, σ)
on St(p, n). The following porposition computes the Fisher information of
X̄ when samples are drawn from N (X̄, σ) on St(p, n).

Proposition 4.7. Let X be a random variable which follows N (X̄, σ)
on St(p, n). Then, I(X̄) = 1/σ2

Proof. The likelihood of X̄ is given by

L(X̄;σ,X = X) =
1

C(σ)
exp

(
−d2(X, X̄)

2σ2

)
(4.3)

Then, I(X̄) = EX

[
〈 ∂l
∂X̄
, ∂l
∂X̄
〉
X̄

]
, where l(X̄;σ,X) is the log likelihood. Now,

l(X̄;σ,X) =
Exp−1

X̄
X

σ2 , hence, EX

[
〈 ∂l
∂X̄
, ∂l
∂X̄
〉
]

= EX

[
〈Exp−1

X̄
X,Exp−1

X̄
X〉

X̄

]
= EX

[
d2(X, X̄)

]
. Now, observe that, Var(X) = EX

[
d2(X, X̄)

]
(here, defini-

tion of variance of a manifold valued random variable is as in Pennec (2006)),
where from the definition of the Gaussian distribution, Var(X) = σ2. Hence,
I(X̄) = 1/σ2. �

As, Var(M̂N ) = σ2 (as we have shown that M̂N is the FM of the samples
in proposition 3.6) when the number of samples tends to infinity, and σ2 =
1/I(X̄) by proposition 4.7, we conclude that MLE achieves the Cramér-Rao
lower bound asymptotically (this observation is in line with normal random
vector). Furthermore MLE is unbiased, and is asymptotically an efficient
estiamtor. As, we have shown consistency of our estimator, hence Var(MN )

is lower bounded by Var(M̂N ) as N → ∞. In other words, asymptotically,

Var(MN ) ≥ Var(M̂N ) = σ2.

5. Experimental Results. In this section, we present experiments
demonstrating the performance of StiFME in comparison to the batch mode
counterpart with “warm start”(which uses the gradient descent on the sum
of squared geodesic distances cost function, henceforth termed StFME) on
synthetic and real datasets. By “warm start” we mean that, when a new
data point is acquired as input, we initialize the FM to its computed value
prior to the arrival/acquisition of the new data point. All the experimental
results reported here were performed on a desktop with a 3.33 GHz Intel-i7
CPU with 24 GB RAM.
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5.1. Comparative performance of StiFME on Synthetic data. We gener-
ated 1000 i.i.d. samples drawn from a Normal distribution on St(p, n) with
variance 0.25 and expectation Ĩ, where

Ĩij =

{
1 1 ≤ i = j ≤ p
0 o.w.

We input these i.i.d. samples to both StiFME and StFME. To compare
the performance, we compute the error, which is the distance (on St(p, n))
between the computed FM and the known true FM Ĩ. We also report the
computation time for both these cases. We performed this experiment 5000
times and report the average error and the average computation time. The
comparison plot for the average error is shown in Fig. 1a, here n = 50, p = 10.
In order to achieve faster convergence of StFME, we used the “warm start”
technique, i.e., FM of k samples is used to initialize the FM computation for
k + 1 samples. From this plot, it is evident that the average accuracy error
of StiFME is almost same as that of StFME.
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Fig 1: Comparison between StFME and StiFME.
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Method Scenario Precision(%) Time(s)

StFME d1 78.21 204.59
StiFME d1 77.33 2.32

StFME d2 73.33 253.15
StiFME d2 70.67 2.48

StFME d3 79.67 267.40
StiFME d3 77.91 2.59

StFME d4 83.83 216.27
StiFME d4 90.73 2.82

Table 1
Comparison results on the KTH action recognition database

The computation time comparison between StiFME and StFME is shown
in Fig. 1a. From this figure, we can see that StiFME outperforms StFME.
As the number of samples increases, the computational efficiency of StiFME
over StFME becomes significantly large. We can also see that the time re-
quirement for StiFME is almost constant with respect to the the number of
samples, which makes StiFME computationally very efficient and attractive
for large number of data samples.

Another interesting question to ask is, how much computation time is
needed in order to estimate the FM with a given error tolerance? We answer
this question through the plot in Figure 1c and present a comparison of
the time required for StiFME and StFME respectively to reach the specified
error tolerance. From Fig.1c, is is evident that the time required to reach the
specified error tolerance by StiFME is far less than that required by StFME.

5.2. Clustering action data from videos. In this subsection, we applied
our FM estimator to cluster the KTH video action data Schuldt, Laptev
and Caputo (2004). This data contains 6 actions performed by 25 human
subjects in 4 scenarios (denoted by ‘d1’, ‘d2’, ‘d3’ and ‘d4’). From each video,
we extracted a sequence of frames. Then, from each frame we computed the
Histogram of Oriented Gradients (HOG) Dalal and Triggs (2005) features.
We then used an auto-regressive moving average (ARMA) model Doretto
et al. (2003) to model each activity. The equations for the ARMA model are
given below:

f(t) = Cz(t) + w(t)

z(t+ 1) = Az(t) + v(t)

where, w and v are zero-mean Gaussian noise, f is the feature vector, z
is the hidden state, A is the transition matrix and C is the measurement
matrix. In Doretto et al. (2003), authors proposed a closed form solution for
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A and C by stacking feature vectors over time and performing a singular
value decomposition on the feature matrix. More specifically, let T be the
number of frames and let F be the matrix formed by stacking the feature
vectors from each frame. Let, UΣV T be SVD of F , then, A and C can be
approximated as, C = U , A = ΣV TD1V

(
V TD2V

)−1
Σ−1, where D1 and

D2 are zero matrices with identity in bottom-left and top-left submatrix
respectively. Clearly, C lies on a Stiefel manifold, but in general A does not
have any special structure. Hence, we identify each activity with a product
space of U , Σ and V . Note that both U and V lie on Steifel manifold (possibly
of different dimensions) and Σ lies in the Euclidean space.

Here, we perform clustering of the actions by doing clustering on the
product manifold of St(p, n) × St(n, n) × Rn. The accuracy is reported in
Table 1. From this table, we can see StiFME depicts significant gain in
computation time over StFME and is comparable in accuracy.

We would like to point out that in the real data experiment, one can
easily fit a half-normal distribution on

{
d(Xi, X̄)

}
by viewing the relation

of our definition of Gaussian distribution with the kernel of the half-normal
distribution on

{
d(Xi, X̄)

}
with location parameter 0 and scale parameter

σ2. So, the goodness of fit can be evaluated using the Chi-squared test where
the null hypothesis H0 is that

{
d(Xi, X̄)

}
are drawn from a half-normal

distribution.
In this experiment, we estimated the goodness of fit in fitting a Gaussian

to the set of samples, {Ui} (samples collected from a given action), using
the aforementioned procedure. We found that the Chi-squared test does not
reject the null hypothesis with a 5% significance level, implying that, {Ui}
are indeed drawn from a Gaussian distribution on St(p, n). We also tried
to fit a Gaussian to the entire data, i.e., over all actions, and found that
the entire data are not drawn from a Gaussian distribution. This is not
surprising, as the entire dataset probably follow a mixture of Gaussians as
each individual action/ cluster follows a Gaussian distribution.

5.3. Experiments on Vector-cardiogram dataset. This data set Downs,
Liebman and Mackay (1971) summarises vector-cardiograms of 98 healthy
children aged between 2-19. Each child has two vector-cardiograms, using the
Frank and McFee system respectively. The two vector-cardiograms are rep-
resented as two mutually orthogonal orientations in R3, hence, each vector-
cardiogram can be mapped to a point on St(2, 3). We perform statistical
analysis via principal geodesic analysis (PGA) Fletcher et al. (2004) of the
data depicted in figure 2 (at the top). One of the key steps in PGA is to
find the FM, which is depicted in the plot (in black). Further, we recon-
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structed the data from the first two principal directions (which accounts for
> 90% of the data variance) and the reconstructed results are shown in the
rightmost plot. The reconstruction error is on the average 0.05 per subject,
which implies that the reconstruction is quite accurate.

Fig 2: Averaging on Vector-cardiogram data. Data with FM shown in black
(Left), reconstructed data (Right)

5.4. Comparison with Stochastic Gradient Descent based FM Estimator.
In this subsection, we present a comparison between StiFME and the stochas-
tic gradient descent based FM estimator in Bonnabel (2013).

There are two key differences between the algorithm in Bonnabel (2013)
and StiFME. As in any stochastic gradient scheme, the next point, i.e., zt
in wt+1 = expwt

(−γtH(zt, wt)) (Eq.2 in Bonnabel (2013)) is chosen ran-
domly from the given sample set. Hence, the stochastic formulation needs
several passes over the sample set and reports the expected value over the
passes as the estimated FM. In contrast, StiFME is a deterministic algo-
rithm and hence does not need multiple passes over the data. Moreover,
our selection of this weight is primarily in spirit the same as the weights in
a recursive arithmetic mean computation in Euclidean space. In contrast,
Bonnabel (2013) does not specify any scheme to choose the proper step
size γt (Eq.2 of Bonnabel (2013)). Note that, like in any gradient descent,
the algorithm in Bonnabel (2013) is very much dependent on a proper step
size selection. Step size selection in gradient descent and its relatives is a
hard problem and the most widely used method (Armijo rule) is compu-
tationally expensive. We now provide two experimental comparisons with
algorithm in Bonnabel (2013). Consider a data set of 100 samples drawn
from a Log-Normal distribution, with a small variance of 0.05 on St(10, 50).
The distance between {FM and StiFME} and {FM and computed FM using
the algorithm in Bonnabel (2013)} (assessed in one pass over the data) are
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0.00025 and 0.009 respectively. However, Bonnabel (2013) requires 19 passes
over the data to achieve the tolerance of 0.00025 obtained by StiFME. For a
larger data variance of 0.29 on St(10, 50), the distance between FM, StiFME
and FM computed from Bonnabel (2013) are 0.00039 and 0.03 (in one pass
over the data) respectively, which is a significant difference. Furthermore,
the method in Bonnabel (2013) needs 58 passes over the data to achieve the
tolerance achieved by StiFME. This clearly indicates better computational
efficiency of StiFME over the FM estimator in Bonnabel (2013).

5.5. Time Complexity comparison. The complexity of StFME is O(ιN),
N is the number of samples in the data and ι is the number of iterations
required for convergence. The number of iterations however depends on the
step size used, too small a step size causes very slow convergence and too
large a step size overshoots the FM. In contrast, the complexity of StiFME
is O(N) because it outputs the estimated FM in a single pass through the
data. On the other hand the SGD algorithm proposed in Bonnabel (2013)
takes O(bι̂), where b is the batch size and ι̂ is the number of iterations to
convergence. So, in comparison, StiFME is much faster than the other two
competing algorithms.

6. Conclusions. In this paper, we defined a Gaussian distribution on a
compact Riemannian homogenous space and proved that the MLE of the lo-
cation parameter of this Gaussian distribution yields the FM of the samples
drawn from the distribution. Further, we presented a sampling algorithm to
draw samples from this Gaussian distribution on the Stiefel manifold (which
is a homogeneous space) and a novel recursive estimator, StiFME, for com-
puting the FM of these samples. A proof of weak consistency of StiFME
was also presented. Further, we also showed that the MLE of the location
parameter of the Gaussian distribution on St(p, n) asymptotically achieves
the Cramér-Rao lower bound and hence is efficient. The salient feature of
StiFME is that it does not require any optimization unlike the traditional
methods that seek to optimize the Fréchet functional via gradient descent.
This leads to significant savings in computation time and makes it attrac-
tive for online applications of FM computation for manifold-valued data,
such as clustering etc. We presented several experiments demonstrating the
superior performance of StiFME over gradient-descent based competing FM-
estimators on synthetic and real data sets.
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applications to Medical Image Analysis. Mathematical Foundations of Computational
Anatomy.

Schuldt, C., Laptev, I. and Caputo, B. (2004). Recognizing human actions: a lo-
cal SVM approach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on 3 32–36.

Srivastava, A., Jermyn, I. and Joshi, S. (2007). Riemannian analysis of probability
density functions with applications in vision. In CVPR 1–8.

Sturm, K.-T. (2003). Probability measures on metric spaces of nonpositive curvature.
Contemporary mathematics 338 357–390.

Tuch, D. S., Reese, T. G., Wiegell, M. R. and Wedeen, V. J. (2003). Diffusion MRI
of complex neural architecture. Neuron 40 885–895.

Turaga, P., Veeraraghavan, A. and Chellappa, R. (2008). Statistical analysis on
Stiefel and Grassmann manifolds with applications in computer vision. In Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on 1–8. IEEE.

Wong, Y.-C. (1968). Sectional curvatures of Grassmann manifolds. Proceedings of the
National Academy of Sciences 60 75–79.

Zhang, M. and Fletcher, P. T. (2013). Probabilistic principal geodesic analysis. In
Advances in Neural Information Processing Systems 1178–1186.

Ziller, W. (2007). Examples of Riemannian Manifolds with non-negative sectional cur-
vature.

Zimmermann, R. (2017). A matrix-algebraic algorithm for the Riemannian logarithm on
the Stiefel manifold under the canonical metric. SIAM Journal on Matrix Analysis and
Applications 38 322–342.


	Introduction
	Key Contributions

	Mathematical Background: Homogeneous spaces and the Riemannian symmetric space
	Gaussian distribution on Homogeneous spaces
	Sampling algorithm
	Maximum likelihood estimation (MLE) of 

	Inductive Fréchet mean on the Stiefel manifold
	Experimental Results
	Comparative performance of StiFME on Synthetic data
	Clustering action data from videos
	Experiments on Vector-cardiogram dataset
	Comparison with Stochastic Gradient Descent based FM Estimator
	Time Complexity comparison

	Conclusions
	References

