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Abstract

Principal Component Analysis (PCA) is a fundamental
method for estimating a linear subspace approximation to
high-dimensional data. Many algorithms exist in literature
to achieve a statistically robust version of PCA called RPCA.
In this paper, we present a geometric framework for com-
puting the principal linear subspaces in both situations that
amounts to computing the intrinsic average on the space of
all subspaces (the Grassmann manifold). Points on this man-
ifold are defined as the subspaces spanned by K-tuples of
observations. We show that the intrinsic Grassmann average
of these subspaces coincide with the principal components
of the observations when they are drawn from a Gaussian
distribution. Similar results are also shown to hold for the
RPCA. Further, we propose an efficient online algorithm
to do subspace averaging which is of linear complexity in
terms of number of samples and has a linear convergence
rate. When the data has outliers, our proposed online ro-
bust subspace averaging algorithm shows significant perfor-
mance (accuracy and computation time) gain over a recently
published RPCA methods with publicly accessible code. We
have demonstrated competitive performance of our proposed
online subspace algorithm method on one synthetic and two
real data sets. Experimental results depicting stability of
our proposed method are also presented. Furthermore, on
two real outlier corrupted datasets, we present comparison
experiments showing lower reconstruction error using our
online RPCA algorithm. In terms of reconstruction error
and time required, both our algorithms outperform the com-
petition.

1. Introduction

Principal component analysis (PCA), a key work-horse
of machine learning, can be derived in many ways: Pear-
son [29] proposed to find the subspace that minimizes the
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projection error of the observed data; Hotelling [20] instead
sought the subspace in which the projected data has maximal
variance; and Tipping & Bishop [34] consider a probabilistic
formulation where the covariance of normally distributed
data is predominantly given by a low-rank matrix. All these
derivations lead to the same algorithm. Recently, Hauberg
et al. [18] noted that the average of all one-dimensional
subspaces spanned by normally distributed data coincides
with the leading principal component. Here the average is
computed over the Grassmann manifold of one-dimensional
subspaces (cf. Sec. 2). This average can be computed very
efficiently, but unfortunately their formulation does not gen-
eralize to higher-dimensional subspaces.

In this paper, we provide a formulation for estimating the
average K-dimensional subspace spanned by the observed
data, and present a very simple, parameter-free online algo-
rithm for computing this average. When the data is normally
distributed, we show that this average subspace coincides
with that spanned by the leading K principal components.
We further show that our online algorithm has a linear con-
vergence rate. Moreover, since our algorithm is online, it
has a linear complexity in terms of the number of samples.
Furthermore, we propose an online robust subspace aver-
aging algorithm which can be used to get the leading K
robust principal components. Analogous to its non-robust
counterpart, it has a linear time complexity in terms of the
number of samples.

1.1. Related Work

In this paper we consider a simple linear dimensional-
ity reduction algorithm that works in an online setting, i.e.
only uses each data point once. There are several existing
approaches in literature that tackle the online PCA and the
online Robust PCA problems and we discuss some of these
approaches here:

Oja’s rule [28] is a classic online estimator for the
leading principal components of a dataset. Given a ba-
sis Vt−1 ∈ RD×K this is updated recursively via Vt =
Vt−1 + γtXt(X

T
t Vt−1) upon receiving the observation Xt.

Here γt is the step-size (learning rate) parameter that must be
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set manually; small values gives slow-but-sure convergence,
while larger values may give fast-but-unstable convergence.

EM-PCA [33] is usually derived for probabilistic PCA,
but is easily be adapted to the online setting [9]. Here, the E-
and M-steps are given by:

(E-step) Yt =(V Tt−1Vt−1)−1(V Tt−1Xt) (1)

(M-step) Ṽt =(XtY
T
t )(YtY

T
t )−1. (2)

The basis is updated recursively via the recursion, Vt =
(1− γt)Vt−1 + γtṼt, where γt is a step-size.

GROUSE and GRASTA [4, 19] are online PCA and matrix
completion algorithms. GRASTA can be applied to estimate
principal subspaces incrementally on subsampled data. Both
of these methods are online and use rank-one updation of
the principal subspace at each iteration. We have compared
our online subspace estimation algorithm with GROUSE.
GRASTA is an online robust subspace tracking algorithm
and can be applied on subsampled data and specifically ma-
trix completion problems. The authors proposed an `1-norm
based fidelity term that measures the error between the sub-
space estimate and the outlier corrupted observations. The
robustness of GRASTA is attributed to this `1-norm based
cost. Their formulation of the subspace estimation involves
the minimization of a non-convex function in an augmented
Lagrangian framework. This optimization is carried out in
an alternating fashion using the well known ADMM [7] for
estimating a set of parameters involving the weights, the
sparse outlier vector and the dual vector in the augmented
Lagrangian framework. For fixed estimated values of these
parameters, they employ an incremental gradient descent
to solve for the low dimensional subspace. Note that the
solution obtained is not the optimum of the combined non-
convex function of GRASTA. In the experimental results
section, we will present comparisons between GRASTA and
our recursive robust PCA algorithm.

Recursive covariance estimation [6] is straight-forward,
and the principal components can be extracted via stan-
dard eigen-decompositions. Boutsidis et al. [6] consider
efficient variants of this idea, and provide elegant perfor-
mance bounds. The approach does not however scale to
high-dimensional data as the covariance cannot practically
be stored in memory for situations involving very large data
sets as those considered in our work.

In [8], Candes et al. formulated Robust PCA (RPCA) as
separating a matrix into a low rank (L) and a sparse matrix
(S), i.e., data matrix X ≈ L+ S. They proposed Principal
Component Pursuit (PCP) method to robustly find the prin-
cipal subspace by decomposing into L and S. They showed
that both L and S can be computed by optimizing an objec-
tive function which is a linear combination of nuclear norm
on L and `1 norm on S. Recently, Lois and Vaswani [25]
proposed an online RPCA problem to solve two interrelated
problems, matrix completion and online robust subspace

estimation. The authors have some assumptions including
a good estimate of the initial subspace and that the basis
of the subspace is dense. Though the authors have shown
correctness of their algorithm under these assumptions, these
assumptions are often not practical. In another recent work,
Ha and Barber [17] proposed an online RPCA algorithm
when X = (L+S)C where C is a data compression matrix.
They proposed an algorithm to extract L and S when the data
X are compress sensed. This problem is quite interesting
in its own right but not something pursued in our work pre-
sented here. Feng et al. [13] solved RPCA using a stochastic
optimization approach. The authors have shown that if each
observation is bounded, then their solution converges to the
batch mode RPCA solution, i.e., their sequence of robust
subspaces converges to the “true” subspace. Hence, they
claimed that as the “true subspace” (subspace recovered by
RPCA) is robust, so is their online estimate. Though their
algorithm is online, the optimization steps ( Algorithm 1 in
[13]) are expensive for high-dimensional data. In an earlier
paper, Feng et al. [12] proposed a deterministic approach to
solve RPCA (dubbed DHR-PCA) for high-dimensional data.
They also showed that they can achieve maximal robustness,
i.e., a breakdown point of 50%. They proposed a robust
computation of the variance matrix and then performed PCA
on this matrix to get robust PCs. This algorithm is suitable
for very high dimensional data. As most of our real appli-
cations in this paper are in very high dimensions, we find
DHR-PCA to be well suited to carry out comparisons with.
Finally, we would like to refer the readers to an excellent
source of references on RPCA in a recent MS thesis [36].

Figure 1. The average of two subspaces.
Motivation for our work: Our work is motivated by the

work presented by Hauberg et al. [18], who recently showed
that for a data set drawn from a zero-mean multivariate
Gaussian distribution, the average subspace spanned by the
data coincides with the leading principal component. This
idea is sketched in Fig. 1. Given, {xi}Ni=1 ⊂ RD, the 1-
dimensional subspace spanned by each xi is a point on the
Grassmann manifold (Sec. 2). Hauberg et al. then compute
the average of these subspaces on the Grassmannian using
an “extrinsic” metric, i.e. the Euclidean, distance. Besides
the theoretical insight, this formulation gave rise to highly



efficient algorithms. Unfortunately, the extrinsic approach
is limited to one-dimensional subspaces, and Hauberg et al.
resort to deflation methods to estimate higher dimensional
subspaces. We overcome this limitation by using an intrinsic
metric, extend the theoretical analysis of Hauberg et al., and
provide an efficient online algorithm for subspace estimation.
We further propose an online robust subspace averaging
algorithm akin to online RPCA and proved that in the limit
our proposed method returns the first K robust principal
components. Moreover, we provide a proof of statistical
robustness of our recursive PC estimator.

2. An Online Linear Subspace Learning Algo-
rithm

In this section, we propose an efficient online linear sub-
space learning algorithm for finding the principal compo-
nents of a data set. We first briefly discuss the geometry
of the Riemannian manifold of K-dimensional linear sub-
spaces in RD. Then, we will present an online algorithm to
get the first K principal components of the D-dimensional
data vectors.

2.1. The Geometry of Subspaces

The Grassmann manifold (or the Grassmannian) is de-
fined as the set of all K-dimensional linear subspaces in
RD and is denoted Gr(K,D), where D ≥ K. A spe-
cial case of the Grassmannian is when K = 1, i.e., the
space of one-dimensional subspaces of RD, which is known
as the real projective space (denoted by RPD). A point
X ∈ Gr(K,D) can be specified by a basis, X , i.e., a set of
K linearly independent vectors in RD (the columns of X)
that spans X . We say X = Col(X) if X is a basis of X ,
where Col(.) is the column span operator. We have included
a brief note on the geometry of the Grassmannian in the sup-
plementary material. As the Grassmannian is geodesically
complete, one can extend the geodesics on the Grassmannian
indefinitely [2, 11]. Given X ,Y ∈ Gr(K,D), with their re-
spective orthonormal basis X and Y , the unique geodesic
ΓYX : [0, 1]→ Gr(K,D) between X and Y is given by:

ΓYX (t) = span
(
XV̂ cos(Θt) + Û sin(Θt)

)
(3)

with ΓYX (0) = X and ΓYX (1) = Y , where, Û Σ̂V̂ T =
(I − XXT )Y (XTY )−1 is the “thin” Singular value de-
composition (SVD), and Θ = arctan Σ̂. The length of
the geodesic constitutes the geodesic distance on Gr(K,D),
d : Gr(K,D)×Gr(K,D)→ R+∪{0}which is as follows:
Given X ,Y with respective orthonormal bases X and Y ,

d2(X ,Y) ,

√√√√ K∑
i=1

(arccos(σi))
2, (4)

where ŪΣV̄ T = XTY be the SVD of XTY , and,
[σ1, . . . , σK ] = diag(Σ). Here arccos(σi) is known as the
ith principal angle between subspace X and Y .

2.2. The Intrinsic Grassmann Average (IGA)

We now consider intrinsic averages1 (IGA) on the Grass-
mannian. For the existence and uniqueness of IGA, we
need to define an open ball on the Grassmannian. Us-
ing the geodesic distance (4) we define an open ball
of radius r centered at X ∈ Gr(K,D) as B(X , r) =
{Y ∈ Gr(K,D)|d(X ,Y) < r}. Let κ be the maximum of
the sectional curvature in the ball. Then, we call this ball
“regular” [24] if 2r

√
κ < π. Using the results in [35], we

know that, for RPD with D ≥ 2, κ = 1, while for gen-
eral Gr(K,D) with min(K,D) ≥ 2, 0 ≤ κ ≤ 2. So, on
Gr(K,D) the radius of a “regular geodesic ball” is < π/2

√
2,

for min(K,D) ≥ 2 and on RPD, D ≥ 2, the radius is
< π/2.

Let X1, . . . ,XN be independent samples on Gr(K,D)
drawn from a distribution P (X ), then we can define an
intrinsic averageM∗ as:

M∗ = argmin
M∈Gr(K,D)

N∑
i=1

d2
(
M,Xi

)
(5)

On Gr(K,D), IGA exists and is unique if the support of
P (X ) is within a “regular geodesic ball” of radius < π/2

√
2

[3]. Note that for RPD, we can choose this bound to be π/2.
In the rest of the paper, we have assumed that data points
on Gr(K,D) are within a “regular geodesic ball” of radius
< π/2

√
2 unless otherwise specified. With this assumption,

the IGA is unique. Note that this assumption is needed for
proving the theorem presented below.

The IGA may be computed using a Riemannian steepest
descent, but this is computationally expensive and requires
selecting a suitable step-size [30]. Recently Chakraborty et
al. [10] proposed a simple and efficient inductive (intrinsic)
mean estimator:

M1 = X1 , (∀k ≥ 1)

(
Mk+1 = Γ

Xk+1

Mk

( 1

k + 1

))
(6)

This approach only needs a single pass over the data set to es-
timate the IGA. Consequently, Eq. 6 has linear complexity in
the number of observations. Furthermore, it is a truly online
algorithm as each iteration only needs one new observation.

Equation 6 merely performs repeated geodesic interpola-
tion, which is analogous to standard recursive estimators of
Euclidean averages: Consider observations xk ∈ RD, k =
1, . . . , N . Then the Euclidean average can be computed re-
cursively by moving an appropriate distance away from the

1These are also known as Fréchet means [23, 15].



kth estimator mk towards xk+1 on the straight line joining
xk+1 and mk. The inductive algorithm (6) for computing
the IGA works in the same way and is entirely based on
traversing geodesics in Gr(K,D) and without requiring any
optimization.

Theorem 1. (Weak Consistency [10]) Let X1, . . . ,XN be
samples on Gr(K,D) drawn from a distribution P (X ).
Then MN (6) converges to the IGA of {Xi}Ni=1 in proba-
bility as N →∞.

Theorem 2. (Convergence rate) Let X1, . . . ,XN be sam-
ples on Gr(K,D) drawn from a distribution P (X ). Then
Eq. 6 has a linear convergence rate.

Proof. See the supplementary material. �

2.3. Principal Components as Grassmann Averages

Following Hauberg et al. [18] we pose the linear dimen-
sionality reduction as an averaging problem on the Grassman-
nian. We consider an intrinsic Grassmann average (IGA), i.e.
an average using the geodesic distance, which allow us to
consider K > 1 dimensional subspaces. We then propose
an online linear subspace learning and show that for the
zero-mean Gaussian data, the expected IGA on Gr(K,D),
i.e., expectedK-dimensional linear subspace, coincides with
the first K principal components.

Given {xi}Ni=1, the algorithm to compute the IGA to get
the leading K-dimensional principal subspace is sketched in
Algorithm 1.

Algorithm 1: The IGA algorithm to compute PCs

Input: {xi}Ni=1 ⊂ RD , K > 0

Output: {v1, . . . ,vK} ⊂ RD

1 Partition the data {xj}Nj=1 into blocks of size D ×K ;
2 Let the ith block be denoted by, Xi = [xi1, . . . ,xiK ] ;
3 Orthogonalize each block and let the orthogonalized block be

denoted by Xi ;
4 Let the subspace spanned by each Xi be denoted by
Xi ∈ Gr(K,D) ;

5 Compute IGA,M∗, of {Xi} ;
6 Return the K columns of an orthogonal basis ofM∗; these span the

principal K-subspace.

Let {Xi} be the set of K-dimensional subspaces as con-
structed by IGA in Algorithm 1. Moreover, assume that the
maximum principal angle between Xi and Xj is < π/2

√
2,

for all i 6= j. This condition is needed to ensure that the
IGA exists and is unique on Gr(K,D). The condition can
be ensured if the angle between xl and xk is < π/2

√
2, for all

xl,xk belonging to different blocks. For xl,xk in the same
block, the angle must be < π/2. Note that, this assumption
is needed to prove Theorem 3. In practice, even if IGA is
not unique, we find a local minimizer of Eq. 5 [23], which
serves as the principal subspace.

Theorem 3. (Relation between IGA and PCA) Let us as-
sume that xi ∼ N (0,Σ), for all i. Using the same notations
as above, the jth column of M converges to the jth princi-
pal vector of {xi}Ni=1, j = 1, . . . ,K as N →∞, i.e., in the
limit, M spans the principal K-subspace,M∗, whereM∗
is defined as in Eq. 5.

Proof. LetXi be the corresponding orthonormal basis of Xi,
i.e., Xi spans Xi,for all i. The IGA,M∗ can be computed
using Eq. 5. Let, Xi = [xi1 . . .xiK ] where and let xij be
samples drawn from N(0,Σ). Let, M = [M1 . . .MK ] be
an orthonormal basis ofM∗. The distance between Xi and
M∗ is defined as d2(Xi,M∗) =

∑K
j=1(arccos((Si)jj))

2,
where ŪiSiV̄ Ti = MTXi be the SVD, and (Si)jj ≥ 0 (we
use (A)lmto denote (l,m)th entry of matrix A). As arccos
is a decreasing function and a bijection on [0, 1], we can
write an alternative form of Eq. 5 as follows:

M∗ = argmax
M

N∑
i=1

K∑
j=1

((Si)jj)
2 (7)

In fact the above alternative form can also be de-
rived using a Taylor expansion of the RHS of Eq. 5.
Note that, in the above equation Si is a function of
M . It is easy to see that (MTXi)lm ∼ N (0, σ2

Ml
),

l = 1, . . . ,K, m = 1, . . . ,K. Also, (MTXiV̄i)lm ∼
N (0, σ2

Ml
), l = 1, . . . ,K,m = 1, . . . ,K as V̄i

is orthogonal. Thus, (Si)ll = (ŪTi M
TXiV̄i)ll ∼

N (0, σ2
ŪilMl

). So,
∑K
j=1(Si)

2
jj ∼ Γ( 1

2

∑K
j=1 σ

2
ŪijMj

, 2)

and E[
∑K
j=1(Si)

2
jj ] =

∑K
j=1 σ

2
ŪijMj

. Now, as N → ∞,

RHS of Eq. 7 becomes E[
∑K
j=1(Si)

2
jj ]. In order to maxi-

mize E[
∑K
j=1(Si)

2
jj ] =

∑K
j=1 σ

2
ŪijMj

, Ūij should be the

left singular vectors of MTXi, and Mj should be the jth

eigenvector of Σ, for all j = 1, . . . ,K. Hence, M spans the
principal subspace,M∗. �

Now, using Theorem 1 and Theorem 3, we replace the line
5 of the IGA Algorithm 1 by Eq. 6 to get an online subspace
learning algorithm that we call, Recursive IGA (RIGA), to
compute leading K principal components, K ≥ 1.

3. A Robust Online Linear Subspace Learning
Algorithm

Let {X1,X2, · · · ,XN} ⊂ Gr(K,D),K < D be inside
a regular geodesic ball of radius < π/2

√
2 s.t., the Fréchet

Median (FMe) exists and is unique. Let X1, X2, · · · , XN

be the corresponding orthonormal bases, i.e., Xi spans Xi,
for all i. The FMe can be computed via the following mini-
mization:

M∗ = arg min
M

N∑
i=1

d(Xi,M) (8)



With a slight abuse of notation, we use the notationM∗ (M )
to denote both the FM and the FMe (and their orthonormal
basis). The FMe is robust as was shown in [14], hence we
call our estimator Robust IGA (RoIGA). In the following
theorem, we will prove that RoIGA leads to the robust PCA
in the limit as the number of the data samples goes to infin-
ity. An algorithm to compute RoIGA is obtained by simply
replacing Step 5 of Algorithm 1 by computation of RoIGA
via minimization of Eq. 8 instead of Eq. 5. This minimiza-
tion can be achieved using the Riemannian steepest descent,
but instead, here we use the stochastic gradient descent of
batch size 5 to compute RoIGA. As at each iteration, we
need to store only 5 samples, the algorithm is online. The
update step for each iteration of the online algorithm to com-
pute RoIGA (we refer to our online RoIGA algorithm as
Recursive RoIGA (RRIGA)) is as follows:

M1 = X1 , Mk+1 = ExpMk

( Exp−1
Mk

(Xk+1)

(k + 1)d(Mk,Xk+1)

)
(9)

where, k ≥ 1, Exp and Exp−1 are Riemannian exponential
and inverse exponential functions (see supplementary section
for the definition of these maps). We refer the readers to [5]
for the consistency proof of the estimator.

Theorem 4. (Robustness of RoIGA) Assuming the above
hypotheses and notations, as N → ∞, the columns of
M converge to the robust principal vectors of the {xi}Ni=1,
where M is the orthonormal basis ofM∗ as defined in Eq.
8.

Proof. Let, Xi = [xi1 · · ·xiK ] and xij be i.i.d. samples
drawn from N(0,Σ). Let, M = [M1 · · ·MK ] be an or-
thonormal basis of M. Define the distance between Xi
andM by d(Xi,M) =

√∑K
j=1(arccos((Si)jj))2, where

ŪiSiV
T
i = MTXi be the SVD, and (Si)jj ≥ 0. Since

arccos is a decreasing function and is a bijection on [0, 1],
we can rewrite Eq. 8 alternatively as follows:

M∗ = arg max
M

N∑
i=1

√√√√ K∑
j=1

((Si)jj)2 (10)

In fact the above alternative form can also be derived using
a Taylor expansion of the RHS of Eq. 8.

From the proof of Theorem 3, we know that∑K
j=1((Si)jj)

2 ∼ Γ( 1
2

∑K
j=1 σ

2
ŪijMj

, 2). So,√∑K
j=1((Si)jj)2 ∼ Ng(

1
2

∑K
j=1 σ

2
ŪijMj

,
∑K
j=1 σ

2
ŪijMj

),
where Ng is the Nakagami distribution [27]. Now,
as N → ∞, the RHS of Eq. 10 becomes

E[
√∑K

j=1((Si)jj)2]. E[
√∑K

j=1((Si)jj)2] =
√

2Γ(
∑K
j=1 σ

2
ŪijMj

+ 0.5)/Γ(
∑K
j=1 σ

2
ŪijMj

), where

Γ is the well known gamma function. It is easy to see

that as Γ is an increasing function, E[
√∑K

j=1((Si)jj)2] is

maximized iff
∑K
j=1 σ

2
ŪijMj

is maximized, i.e., when M
spans the principal K-subspace.

Now, if we contrast with the objective function of RIGA
in Eq. 7, there we had to maximize E[

∑K
j=1((Si)jj)

2] =∑K
j=1 σ

2
ŪijMj

. Thus, E[
√∑K

j=1((Si)jj)2] = ρ(m) ,
√

2Γ(m + 0.5)/Γ(m), where m =
∑K
j=1 σ

2
ŪijMj

. Hence,
the influence function [21] of ρ is proportional to

ψ(m) ,
∂E[

√∑K
j=1((Si)jj)2]

∂m and if we can show that
limm→∞ ψ(m) = 0, then we can claim that our objective
function in Eq. 10 is robust [21].

Now, ψ(m) = Γ(m)Γ(m + 0.5)φ(m+0.5)−φ(m)
Γ(m)2 , where φ

is the polygamma function [1] of order 0. After some simple
calculations, we get,

lim
m→∞

(φ(m + 0.5)− φ(m)) = lim
m→∞

log(1 + 1/(2m))

+ lim
m→∞

∞∑
k=1

(
Bk

(
1

kmk
− 1

k(m + 0.5)k

))
= lim

m→∞
log(1 + 1/(2m)) + 0 = 0

Here, {Bk} are the Bernoulli numbers of the second kind
[32]. So, limm→∞ ψ(m) = 0. �

We would like to point out that the outlier corrupted
data can be modeled using a mixture of independent ran-
dom variables, Y1, Y2, where Y1 ∼ N (0,Σ1) (to model
non-outlier data samples) and Y2 ∼ N (µ,Σ2) (to model
outliers), i.e., (∀i), xi = w1Y1 + (1 − w1)Y2, w1 > 0 is
generally large, so that the probability of drawing outliers is
low. Then as the mixture components are independent, (∀i),
xi ∼N ((1−w1)µ, w2

1Σ1 + (1−w1)2Σ2). A basic assump-
tion in any online PCA algorithm is that data is centered. So,
in case the data is not centered (similar to the model of xi),
the first step of PCA would be to centralize the data. But
then the algorithm can not be made online, hence our above
assumption that xi ∼ N (0,Σ) is a valid assumption in an
online scenario. But, in a general case, after centralizing the
data as the first step of PCA, the above theorem is valid.

4. Experimental Results
In this section, we present an experimental evaluation of

the proposed estimators on both real and synthetic data. Our
overall experimental findings are that the RIGA and RRIGA
estimators are more accurate and faster than other online
linear and robust linear subspace estimators. We believe that
the higher accuracy in RIGA and RRIGA can be attributed to
the use of intrinsic geometry of the Grassmannian in our geo-
metric formulation. Specifically, finding the full set of PCs is



cast as an intrinsic averaging problem on the Grassmannian
achieved using a recursive estimator in both cases. From
a computational perspective, in the online PCA case, we
attribute the efficiency observed in the experiments to RIGA
being an optimization and parameter free method. In the
case of RRIGA, the reasons for accuracy and efficiency are
much more complicated. At this juncture, we speculate the
reason to be that our geometric formulation leads to directly
finding the subspaces using a recursive scheme as opposed
to methods that incrementally update basis of the subspace
in an alternating fashion with no convergence guarantees. In
the following, we consider RIGA and RRIGA separately.

4.1. Online Linear Subspace Estimation

Baselines: Here, we present a comparison with Oja’s rule
and the online version of EM-PCA (Sec. 1.1). For Oja’s
rule we follow common guidelines and consider step-sizes
γt = α/D

√
t with α-values between 0.005 and 0.2. For EM-

PCA we follow the recommendations from Cappé [9] and
use step-sizes γt = 1/tα with α-values between 0.6 and 0.9
along with Polyak-Ruppert averaging. For GROUSE, we
have chosen the stepsize to be 0.1.

(Synthetic) Gaussian Data: Theorem 3 states that the
RIGA estimates coincide in expectation with the leading
principal subspace when the data are drawn from a zero-
mean Gaussian distribution. We empirically verify this for
an increasing number of observations drawn from randomly
generated zero-mean Gaussians. We measure the expressed
variance which is the variance captured by the estimated sub-
space divided by the variance captured by the true principal
subspace:

Expressed Variance =

∑K
k=1

∑N
n=1 x

T
nv

(est)
k∑K

k=1

∑N
n=1 x

T
nv

(true)
k

∈ [0, 1].

An expressed variance of 1 implies that the estimated sub-
space captures as much variance as the principal subspace.
The top panel of Fig. 2 shows the mean (± one standard
deviation) expressed variance of RIGA over 150 trials. It is
evident that for the Gaussian data, the RIGA estimator does
indeed converge to the true principal subspace.

A key aspect of any online estimator is that it should
be stable and converge fast to a good estimate. Here, we
compare RIGA to the above-mentioned baselines. Both
Oja’s rule and EM-PCA require a step-size to be specified, so
we consider a larger selection of such step-sizes. The middle
panel of Fig. 2 shows the expressed variance as a function
of number of observations for different estimators and step-
sizes. EM-PCA was found to be quite stable with respect to
the choice of step-size, though it does not seem to converge
to a good estimate. Oja’s rule, on the other hand, seems to
converge to a good estimate, but its practical performance

is critically dependent on the step-size. GROUSE is seen to
oscillate for small data size however, with a large number of
samples, it yields a good estimate. On the other hand, RIGA
is parameter-free and is observed to have good convergence
properties.

In the bottom panel of Fig. 2, we perform a stability
analysis of GROUSE and RIGA. Here, for a fixed value of
N , we generate a data matrix and perform 200 independent
runs on the data matrix and report the mean (± one standard
deviation) expressed variance. As can be seen from the
figure, RIGA is very stable in comparison to GROUSE.

Human Body Shape: Online algorithms are generally
well-suited for solving large-scale problems as by construc-
tion, they should have linear time-complexity in the number
of observations. As an example, we consider a large collec-
tion of three-dimensional scans of human body shape [31].
This dataset contains N = 21862 meshes which each con-
sist of 6890 vertices in R3. Each mesh is, thus, viewed as
a D = 6890 × 3 = 20670 vector. We estimate a K = 10
dimensional principal subspace using Oja’s rule, EM-PCA,
GROUSE and RIGA respectively. The average reconstruc-
tion error (squared distance between the original data and
its estimate) over all meshes are 16.8 mm for Oja’s rule, 1.9
mm for EM-PCA, 1.4 mm for GROUSE, and 1.0 mm for
RIGA. Note that both Oja’s rule and EM-PCA explicitly
minimize the reconstruction error, while RIGA does not but
yet outperforms the baseline methods. We speculate that
this is due to RIGA’s excellent convergence properties and it
being a parameter free algorithm is not bogged down by the
hard problem of step-size tuning confronted in the baseline
algorithms used here.

Santa Claus Conquers the Martians: We now consider
an even larger scale experiment and consider all frames of the
motion picture Santa Claus Conquers the Martians (1964)2.
This consist ofN = 145, 550 RGB frames of size 320×240,
corresponding to an image dimension of D = 230, 400. We
estimate a K = 10 dimensional subspace using Oja’s rule,
EM-PCA, GROUSE and RIGA respectively. Again, we
measure the accuracy of the different estimators via the re-
construction error. Pixel intensities are scaled to be between
0 and 1. Oja’s rule gives an average reconstruction error
of 0.054, EM-PCA gives 0.025, while RIGA and GROUSE
give 0.023. Here RIGA and EM-PCA give roughly equally
good results, with a slight advantage to RIGA. GROUSE
gives same reconstruction error as RIGA. Oja’s rule does not
fare as well. As with the shape data, it is interesting to note
that RIGA outperforms some of the other baseline methods
on the error measure that they optimize even though RIGA
optimizes a different measure.

2https://archive.org/details/
SantaClausConquerstheMartians1964

https://archive.org/details/SantaClausConquerstheMartians1964
https://archive.org/details/SantaClausConquerstheMartians1964
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Figure 2. Expressed variance as a function of number of observa-
tions. Top: The mean and one standard deviation of the RIGA
estimator computed over 150 trials. In each trial data are generated
in R50 and we estimate a K = 2 dimensional subspace. Middle:
The performance of different estimators for varying step-sizes. Data
are generated in R250 and we set K = 20. In both experiments,
we observe similar trends with other values of D and K. Bottom:
Stability analysis comparison of GROUSE and RIGA (for a fixed
N , we randomly generate a data matrix, X , from a Gaussian distri-
bution on R250. we estimate K = 20 dimensional subspace and
report the mean and one standard deviation over 200 runs on X .)

4.2. Robust Subspace Estimation

We now present the comparative experimental evaluation
of robust extension (RRIGA). Here we use DHR-PCA and
GRASTA as baseline and measure performance using the

reconstruction error (RE). We have used UCSD anomaly
detection database [26] and Extended YaleB database [16].

UCSD anomaly detection database: This data contains
images of pedestrian movement on walkways captured by
a stationary mounted camera. The crowd density on the
walkway varies from sparse to very crowded. The anomaly
includes bikers, skaters, carts, people in wheelchair etc..
This database is divided in two sets: “Peds1” (people are
walking towards the camera) and “Peds2” (people are walk-
ing parallel to the camera plane). In “Peds1” there are 36
training and 34 testing videos where each video contains 180
frames of dimension 158 × 238 (D = 37604). In “Peds2”
there are 12 training and 16 testing videos containing vary-
ing samples of dimension 240 × 360 (D = 86400). The
test frames do not have anomalous activities. Some sample
frames (with and without outliers) are shown in Fig. 3. We
first extract K principal components on the training data
(including anomalies) and then compute reconstruction error
on the test frames (without anomalies) using the computed
principal components. It is expected that if the PC computa-
tion technique is robust, the reconstruction error will be good
as PCs should not be affected by the anomalies in training
samples. In Fig. 4, we compare performance of RRIGA with
GRASTA and DHR-PCA in terms of RE and time required
by varying K from 1 to 100. In terms of time it is evident
that RRIGA is very fast compared to both GRASTA and
DHR-PCA. RRIGA also outperforms both DHR-PCA and
GRASTA in terms of RE. Moreover, it is evident that RRIGA
scales very well both in terms of RE and computation time
unlike it’s competitors.

Figure 3. top and bottom row contains outliers (identified in a
rectangular box) and non-outliers frames of UCSD anomaly data
respectively

Yale ExtendedB database: This data contains 2414 face
images of 38 subjects. We crop each image to make a 32×32
images (D = 1024). Due to varying lighting condition,
some of the face images are shaded/ dark and appeared as
outliers (this experimental setup is similar to the one in [22]).
In Fig. 5 some sample face images (outlier and non-outlier)
are shown. One can see that due to poor lighting condition,
though the middle face in top row is a face image, it looks
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Figure 4. Top two: on “Peds1” anomaly data; Bottom two: on
“Peds2” anomaly data

completely dark and an outlier. For testing, we have used
142 non-outlier face images of 38 subjects and the rest we
used to extract PCs. We report RE (with varying K) and
time required for both RRIGA, GRASTA and DHR-PCA in
Fig. 6. From the figure it is evident that for small number of
PCs (i.e., small K) RRIGA performs similar to DHR-PCA,
while for larger K values, RRIGA outperforms DHR-PCA
and GRASTA. In terms of time required, RRIGA is faster
than both DHR-PCA and GRASTA.

Figure 5. top and bottom row contains outliers and non-outliers
images of YaleExtendedB data respectively
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Figure 6. Performance comparison on YaleExtendedB data

5. Conclusions

In this paper, we present a new geometric framework for
estimating the full set of principal components from given
data. We present two online algorithms, for estimating PCA
and RPCA. Since they are inherently online, they are natu-
rally scalable to very large data sets as demonstrated in the
experimental results section. The key idea in the geomet-
ric framework involves computing an intrinsic Grassmann
average as a proxy for the principal linear subspace. We
show that the if the samples are drawn from a Gaussian dis-
tribution, the intrinsic Grassmann average coincides with the
principal subspace in expectation. Further, for our online
recursive RPCA algorithm, we proved that the estimated
principal components are statistically robust. Our algorithms
have a linear time complexity and linear convergence rate.
Unlike most other online algorithms there are not step-sizes
or other parameters to tune; a most useful property in prac-
tical settings. Our future work will focus on application of
our geometric approach to the matrix completion problem.
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