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Abstract

Analyzing data representing multifarious trajectories is

central to the many fields in Science and Engineering; for

example, trajectories representing a tennis serve, a gym-

nast’s parallel bar routine, progression/remission of dis-

ease and so on. We present a novel geometric algorithm

for performing statistical analysis of trajectories with dis-

tinct number of samples representing longitudinal (or tem-

poral) data. A key feature of our proposal is that unlike

existing schemes, our model is deployable in regimes where

each participant provides a different number of acquisitions

(trajectories have different number of sample points or tem-

poral span). To achieve this, we develop a novel method

involving the parallel transport of the tangent vectors along

each given trajectory to the starting point of the respec-

tive trajectories and then use the span of the matrix whose

columns consist of these vectors, to construct a linear sub-

space in Rm. We then map these linear subspaces (possibly

of distinct dimensions) of Rm on to a single high dimen-

sional hypersphere. This enables computing group statis-

tics over trajectories by instead performing statistics on the

hypersphere (equipped with a simpler geometry). Given a

point on the hypersphere representing a trajectory, we also

provide a “reverse mapping” algorithm to uniquely (under

certain assumptions) reconstruct the subspace that corre-

sponds to this point. Finally, by using existing algorithms

for recursive Fréchet mean and exact principal geodesic

analysis on the hypersphere, we present several experiments

on synthetic and real (vision and medical) data sets show-

ing how group testing on such diversely sampled longitudi-

nal data is possible by analyzing the reconstructed data in

the subspace spanned by the first few principal components.
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1. Introduction

In many fields of science and engineering, one encoun-

ters data in the form of trajectories i.e., a one parameter

family of multi-variate data, where the parameter describ-

ing the family is most commonly time or scale but can be

any other parameter pertinent to the application. In Com-

puter Vision (specifically in sports vision), a common ex-

ample is the actions of an athlete such as the serve of a ten-

nis player, a gymnast’s routine, a golfer’s swing and so on.

In medical applications, analyzing a time course of struc-

tural or functional images to assess progress or remission

of a disease in response to treatment is central to effec-

tive diagnosis. There is abundant literature on longitudi-

nal (time course) data analysis where features of choice are

scalar and/or vector-valued. However, with the advent of

high throughput computing resources, applications are in-

creasingly using sophisticated and rich feature sets such as

manifold-valued features that are capable of capturing much

more information contained in the raw imaging data than,

say, scalar and vector-valued features.

There is a rigorous body of work in vision demonstrat-

ing how leveraging the structure (or geometry) of the data

can yield advantages. For example in medical applications,

papers in the mid-1990s already showed that the analysis

of shapes [21] improved our ability to quantify a disease-

specific signal, not otherwise possible. The interface be-

tween geometry/structure and analysis methods has offered

effective practical tools — for instance, in Medical imag-

ing applications, analysis of diffusion weighted Magnetic

Resonance images where manifold-valued features such as

the diffusion tensors that are symmetric positive definite

(SPD) matrices that capture the diffusional behavior of wa-

ter molecules at each image voxel may be inferred from the

raw diffusion MRI data. Motivated by other applications,

we have extensions of standard statistical machine learn-
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ing tools to the unit Hilbert sphere, probability distributions

and other “structured” objects, i.e., where the samples are

drawn from a space which satisfies a manifold characteri-

zation (e.g., covariance matrices). Algorithms for regres-

sion [28], principal components analysis, dictionary learn-

ing and others are readily available. Unfortunately, few

such differential geometry inspired algorithms for image

analysis exist for the longitudinal regime where outside of

[35, 17, 40, 27, 25], the literature remains sparse. All such

methods, however, cannot cope with trajectories of distinct

number of samples within a group or across groups that

are commonly encountered in group-wise longitudinal data

analysis problems. In Computer Vision, several researchers

have exploited manifold valued features such as covariance

descriptors [44, 41, 11, 45, 37], image sets as linear sub-

spaces [43, 8, 31, 22, 39, 33] and many others. Several

of these proposals have dealt with analysis of videos for

gait analysis, action recognition, dynamic textures and so

on. For a comprehensive survey of linear dynamical system

based modeling to analyze videos for a various such tasks,

we refer the reader to [4]. These techniques do not address

the question of statistical group-wise analysis of manifold-

valued trajectories, each with a different number of samples.

Goals. Consider a setting, common across many longi-

tudinal imaging studies or temporal data analysis tasks. We

“track” a participant where at each visit, we acquire a man-

ifold valued measurement (feature). This may be a shape

(a sample on a shape manifold) or a diffusion tensor image

which is a sample from a product space of an SPD mani-

fold (“product” pertains to the number of voxels in an im-

age). Of course, if every subject provided p measurements

each, we can repurpose existing algorithms for this task.

The difficulty is that in general, due to logistic or financial

reasons, the number of samples from each subject are dif-

ferent. When a subject joins the study late (or drops out),

we get left (or right) censored data; in other cases, some

intermediate visits may be missing. Imputation schemes

are limited for manifold-valued data; so a practitioner is

faced with two poor choices: (a) neglect the geometry of

the space and shoehorn off the shelf techniques (problem-

atic, both theoretically and empirically) or (b) only include

participants with a full set of acquisitions (reduced sam-

ple sizes and corresponding decrease in statistical power).

What is needed are frameworks that enable operating on

“incomplete” longitudinal manifold-valued measures where

incomplete refers to the nuisance of different number of

samples/visits (temporal span) for each subject.

Contributions. This paper presents a novel algorithm

to perform statistical analysis on the space of trajectories of

manifold-valued measurements. A trajectory is a “path” on

a Riemannian manifold comprised of a set of longitudinally

acquired samples (points on the manifold). A salient fea-

ture of our technique is that trajectories with different num-

ber of samples are allowed, i.e., the number of points on a

trajectory is not assumed to be a constant across the cohort

(subjects). Our method involves parallel transporting the

tangent vectors along each given trajectory (not necessar-

ily a geodesic on the known data manifold) to the starting

point of the respective given trajectories and then using the

span of the matrix whose columns consist of these vectors,

to construct a linear subspace of distinct dimension in Rm.

Then, using a result [13], we propose an algorithm to embed

each linear subspace of distinct dimension (corresponding

to a trajectory) into a single hypersphere. The hypersphere

has a simple geometry which makes it more amenable than

other alternatives [35, 25] to compute statistics. We also

provide a procedure to identify the subspace which corre-

sponds to a given point on the hypersphere. Within various

settings (e.g., on OASIS data, Human Connectome project

data, action recognition), we show the utility of this algo-

rithm. Our results show that manifold-valued longitudinal

datasets with different number of samples per subject can

be easily handled within a flexible and efficient procedure.

Further, our technique does not make the (restrictive) as-

sumption that the given trajectory is a geodesic on the data

manifold. This formulation and its analysis is the main con-

tribution of this work.

2. Our proposed algorithms and analysis

Preliminaries. We first define the space of trajectories

and then present the theory to compute statistics on this

space. We define a trajectory γ (see inline figure) to be a

path that consists of a set of p points on a Riemannian man-

ifold Mm of dimension m (inline figure shows p = 3).

Let {γi}Ni=1 be a set

of N trajectories on M,

where γi has pi sam-

ple points (note that this

allows for trajectories

with different number of

sample points). Further, as each trajectory has a ‘time” or-

dering (or an ordering with respect to any other variable),

we can order the data point for γi as Xi
1, · · ·Xi

pi
. To fa-

cilitate presentation of our theoretical results, we make the

following mild assumptions about the trajectories:

Assumption. 1) For each trajectory γi, the sequence of

pi data points lie on a continuous curve in M.

2) Without any loss of generality, we assume that Xi
1 is

the starting point of γi, for all i.

3)
{
Xi

1

}N

i=1
lie within a “regular geodesic ball” of ra-

dius π/(2
√
κ), κ is the sectional curvature (we refer the

readers to [26] for definition of regular geodesic ball).

This assumption ensures that Fréchet mean (FM) [20] of{
Xi

1

}N

i=1
exists and is unique [3].
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4) For each trajectory, two consecutive data points can

be joined by a geodesic, i.e., the Riemannian inverse expo-

nential map [16] between two consecutive data points ex-

ists.

5) We assume pi < m for all i (usually, pi ≪ m).

Grassmanian. We will use Gr(r,m) to denote the

Grassmannian, i.e., the manifold of r < m dimensional

subspaces in Rm and Col(·) gives the column span opera-

tor, i.e., Col(A) returns the linear subspace spanned by the

columns of matrix A.

Definition 1. Given a trajectory γ, i.e., a set of p
points, X1, · · ·Xp in Mm, we compute TXj

M ∋ vj =
LogXj

(Xj+1), where j = 1, · · · , p − 1. Log is the in-

verse exponential map (Log exists because of Assumption

4). Thus, we identify γ with a point in the product space

TM× · · · × TM︸ ︷︷ ︸
(p−1) times

via γ 7→ (X1, v1, · · · vp−1), where TM

is the tangent bundle of M.

The above identification has the following properties:

Properties. 1. The above identification is well-defined

and is a bijection (this is trivial to show).

2. Since the tangent space of an m-dimensional mani-

fold is isomorphic to Rm, hence, in the above definition,

TM× · · · × TM︸ ︷︷ ︸
(p−1) times

∼= M × (Rm)
⊕(p−1)

, where ⊕ is the

direct sum. Notice that since each TXj
M has a different

anchor point (since the base point Xj varies), one needs to

treat vi and vj as vectors in TXiM and TXjM respec-

tively, but not as vectors in Rm.

3. If M is parallelizable [16], the isomorphism in the

property above is a diffeomorphism, e.g., since all Lie

groups [16] are parallelizable, and if M is a Lie group,

the above identification is a diffeomorphism.

4. If the manifold M is translated, let γ̃ be the translated

γ. Then, by the above identification, ṽj = vj , for all j, and

X̃1 and X1 will be related by the translation, i.e., the above

identification is translation invariant.

Setting up the space of trajectories. Now, we paral-

lel transport each vj from TXj
M to TX1

M, for all j =
2, · · · p − 1. With a slight abuse of notation, we denote the

parallel transported vectors by {vj}. Since after the parallel

transport operation, all vjs lie in TX1
M, i.e., lie in the same

vector space (which is isomorphic to Rm), we form a ma-

trix V of dimension m× (p−1) whose jth column is ι(vj),
where ι : TX1

M → Rm is an isomorphism. Since we will

be working with the matrix V , for the sake of notational

simplicity, we will use vj to denote ι(vj).
Let V be the column span of V , i.e., V = Col(V ),

then V ∈ Gr(r,m), where r ≤ (p − 1) is the rank of V .

Hence, using the identification of γ in Definition 1, we can

identify the space of trajectories with the product space of

M× Gr(rγ ,m), where rγ is the rank of V . Moreover, ob-

serve that rγ may be different for different trajectories γ.

In other words, different trajectories correspond to different

dimensional subspaces in Rm. We should point out that al-

though rγ can be different for different trajectories γ, they

are all still subspaces in Rm, as all the trajectories are on

M (of dimension m).

Remarks about this representation. Note that our rep-

resentation of trajectories is very general and unlike the pre-

vious methods, does not require that each trajectory should

be a geodesic path [25, 35], or consists of an arbitrarily fixed

number of points [40]. Also, when each trajectory has 2
points, our identification is same as in [25, 35] (as a topolog-

ical space, not as a manifold as we use a different metric),

i.e., our formulation is a generalization of [25, 35]. More-

over, by the above identification, we do not require linear

independence of the points on a trajectory. This is a de-

sirable property since, in many medical imaging problems,

where a sequence of scans of a subject are often acquired

longitudinally, the independence assumption is violated. To

the best of our knowledge, this is the first paper dealing with

such a general setting for statistical analysis on the space

of trajectories.

Ingredients for setting up a mapping. As each tra-

jectory may end up residing on a product of M and a

Grassmann manifold of distinct dimension (recall that rγ

may vary based on trajectory γ), we now propose a way to

map each Vγ (note that the identification of trajectory γ is

(Xγ
1 ,Vγ) ∈ M × Gr(rγ ,m)) onto a hypersphere. Given

Vγ ∈ Gr(rγ ,m), the projection matrix, P γ
V

onto Vγ is de-

fined by [12]:

P γ
V
= Ṽ

(
Ṽ T Ṽ

)−1

Ṽ T , (1)

where Ṽ is a basis of Vγ . Note that P γ
V

is a well-defined

identification of Vγ as P γ
V

is independent of the basis of

Vγ , due to the following Lemma (stated without proof).

Lemma 1. P γ
V

is independent of the choice of the basis of

Vγ [12].

2.1. Trajectories with distinct number of samples
(temporal span)

Now, we state some properties of PV (we drop the su-

perscript for simplicity), which will be used in subsequent

sections ([12] includes more details about these properties).

Fact 1) PV is a symmetric positive semi-definite matrix.

Fact 2) PV is an idempotent matrix, i.e., P 2
V = PV , its

eigen values are either 0 or 1.

Fact 3) The Frobenius norm of PV is
√
r where V is an

r-dimensional subspace of Rm.

Fact 4) The rank of PV is r.
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Fact 3 above gives us a way to map PV (after vectoriza-

tion) onto Sm2
−1 of radius

√
r. This is an isometric embed-

ding as was shown in [13]. So, given Vγ1 and Vγ2 (the ma-

trices constructed from the parallel transported tangent vec-

tors corresponding to trajectories γ1 and γ2 respectively),

we can map them on Sm2
−1 of radius

√
rγ1 and

√
rγ2 re-

spectively. Now, we can scale P γ1

V
and P γ2

V
by

√
rγ1 and√

rγ2 respectively to map them both onto the unit hyper-

sphere, Sm2
−1. The question we may ask is: Is this an

injective mapping, i.e., given two different subspaces, Vγ1

and Vγ2 with the same starting point, i.e., Xγ1

1 = Xγ2

1 ,

can they map onto the same point on Sm2
−1? If the two

subspaces are not subspaces of each other, the answer is

no. This assumption is satisfied quite commonly in practice

and we will make this assumption here as well. Now, we

will formally state and prove the following theorem which

shows that the above mapping is injective.

Theorem 1. Let Vγ1 and Vγ2 be two linear subspaces on

Rm. Without any loss of generality, assume rγ1 ≤ rγ2 . As-

sume Vγ1 is not a subspace of Vγ2 . Then, the above map-

ping is injective.

Proof. Let us assume that the mapping is not injective, i.e.,

vec(P γ1

V
)/
√
rγ1 = vec(P γ2

V
)/
√
rγ2 . Then, P γ1

V
= cP γ2

V
,

where c =
√

rγ1

rγ2
. Observe that, given P γ1

V
, the correspond-

ing Vγ1 = Col(Ũ), where UΣUT = eig(P γ1

V
) and Ũ is the

first rγ1 columns of U . Now since, P γ1

V
= cP γ2

V
, their eigen

decompositions are the same, i.e., Vγ1 is a subspace of Vγ2

(which is a contradiction to the assumption).

We will now present the forward mapping algorithm in

Alg.-1 to map a trajectory γ onto the product space of M
and the unit hypersphere.

Algorithm 1: Algorithm to map a trajectory onto the M ×
Sm2

−1.

Input: γ consists of p points on M (M is of dimension m)

Output: (X1, sγ) ∈ M× Sm2
−1

1 Let the starting point of γ be X1;

2 Compute tangent vector vj from Xj to Xj+1, j = 1, · · · p− 1;

3 Parallel transport all the vectors to TX1
M and column stack them

to form a matrix Ṽ of dimension m× (p− 1);

4 Orthonormalize Ṽ using the Gram-Schmidt orthonormalization to

get V , let the rank of V be rγ ;

5 Compute the projection matrix P γ
V

using Eq. 1. ;

6 Compute s
γ = vec(P γ

V
)/
√
rγ .

In Fig. 1, we give a pictorial description of our proposed

framework. Equipped with the algorithm to map from the

space of trajectories to M × Sm2
−1, we will now conduct

statistical analysis on the product space, which has a sim-

pler geometry (relative to the space of trajectories). We will

first define a Gaussian distribution on the hypersphere, Sn.

It is well-known in differential geometry that Sn is a homo-

geneous space and can be identified with O(n + 1)/O(n)

Figure 1: The pictorial description of the framework to map trajectories

with different number of sample points.

where O(n) is the compact Lie group of orthogonal matri-

ces [23]. Now, we will briefly give the geometry of a homo-

geneous space N . For a good reference on homogeneous

spaces, we refer the reader to [23].

2.2. Defining distributions on a homogeneous space

In this section, we will briefly summarize the results

from [10] relating to rigorously defining a Gaussian distri-

bution on a homogeneous space and then specialize it to Sn

(which is identified with a homogeneous space). First, we

will summarize the differential geometry of a homogeneous

space N , which is needed as background material.

Let (N , g) be a Riemannian manifold with a Riemannian

metric g. Let d be the metric induced by the Riemannian

metric g. Let G be the set of all isometries of N , i.e., given

g ∈ G, d(g.X, g.Y ) = d(X,Y ), for all X,Y ∈ N . Let

O ∈ N and let H = Stab(O) = {h ∈ G|h.O = O} (Stab

is abbreviation for Stabilizer). We say G acts transitively

on N , iff given X,Y ∈ N , there exists a g ∈ G such that

Y = g.X .

Definition 2. Let N be a Riemannian manifold. Let G =
I(N ) act transitively on N and H = Stab(O), O ∈ N
(called the “origin” of N ) is a subgroup of G. Then, N is

a homogeneous space and can be identified with the quo-

tient space G/H under the diffeomorphic mapping gH 7→
g.O, g ∈ G [23].

From the definition of a homogeneous space, we know

that the Riemannian metric g at X is invariant under the

group operation X 7→ g.X , hence the volume element dν
is also preserved.

The Gaussian distribution on a homogeneous space:

Let M ∈ N denote the location parameter and σ > 0 be

the scale parameter. Now, we will define the Gaussian dis-

tribution function on a homogeneous space N with respect

to an appropriately defined probability measure dν [36] as:

fX (M,σ) =
1

Z(σ)
exp(−d2(X,M)

2σ2
) (2)
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Theorem 2. The normalization factor in Eq. 2 i.e.,

Z(M,σ) =
∫
fX (M,σ) dν(X) is a constant and is in-

dependent of M , i.e., the function in Eq. 2 is a valid proba-

bility density function (see [10] for a proof).

Algorithm to reconstruct a trajectory: With a Gaus-

sian distribution on homogeneous space (and in turn on

Sm2
−1) defined as above, we now give an algorithm to re-

construct trajectory from a given sample in M × Sm2
−1

(Note that under the condition in Theorem 1 this is a well-

defined mapping). We will assume that M is a matrix Lie

group. This means that M is a group and is a smooth man-

ifold such that the group operations (multiplication and in-

verses) are smooth maps. Let e be the identity element of

Lie group M. The tangent space at e, i.e., TeM is called

the Lie algebra m corresponding to M. Let U, V ∈ m, then

the left-invariant metric, g on m is defined as g(U, V ) =
trace(UTV ), i.e., m is equipped with an Euclidean met-

ric. Moreover, given U ∈ m, one can parallel transport

U from m to TXM by m ∋ U 7→ XU ∈ TXM. The

Riemannian exponential map is defined as ExpX(U) =
XExp(X−1U), where U ∈ TXM and Exp is the matrix

exponential. The Riemannian inverse exponential map is

defined as LogX(Y ) = XLog(X−1Y ), where Log is the

matrix logarithm. We refer the reader to [23] for a good

reference on Lie groups.

Now, using the Gaussian distribution defined on Lie

groups in [19], and the Gaussian distribution on a ho-

mogeneous space (defined earlier), we can get a sample

on M × Sm2
−1, when M is a Lie group. We are now

ready to develop an algorithm to obtain γ from a point on

M× Sm2
−1.

Algorithm 2: Algorithm to recover a trajectory corresponding to

a point in M× Sm2
−1.

Input: (X1, sγ) ∈ M× Sm2
−1 where M is a Lie group and s

γ

is a vectorized projection matrix

Output: γ consists of r points on M
1 Arrange s

γ in a m×m matrix Y ;

2 Compute the rank of Y , let the rank be r − 1 ;

3 Perform eigen decomposition of Y , i.e., Ṽ ΣṼ T = Y , then, assign

V to be the first r − 1 columns of Ṽ . Note that in order for Y to be

the projection matrix of V (using Eq. 1), we assume that each

column of V , i.e., vj lies on m, so that the metric is the Euclidean

inner product;

4 Use Xjvj ∈ TXj
M to construct Xj+1 from Xj (using the

parallel transport of vj from TeM to TXj
M), j = 1, · · · r − 1;

5 Return γ consisting of X1, X2, · · ·Xr

We should point out that Alg.-2 assumes that the input

is a vectorized projection matrix. But, any point on hyper-

sphere may not be a vectorization of a projection matrix.

We now give a projection algorithm which takes an arbi-

trary point on Sm2
−1 and returns its closest point on Sm2

−1

that has a preimage on Gr(.,m). Note that, Alg.-2 can be

applied to this closest point. Algorithm 3 is a projec-

Algorithm 3: The projection algorithm.

Input: s ∈ Sm2
−1

Output: sγ ∈ Sm2
−1 which is an input of Alg.-2

1 Arrange s in a m×m matrix Y ;

2 Compute the rank of Y , let the rank be r ;

3 Perform the eigen decomposition of Y , i.e., Ṽ ΣṼ T = Y , then,

assign V to be the first r columns of Ṽ ;

4 Compute P = V V T ;

5 Vectorize P and divide by
√
r to get sγ .

tion algorithm from a square matrix to its closest symmetric

positive semi-definite idempotent matrix. One can prove

that this algorithm returns the closest projection matrix by

an argument similar to Theorem 2 in [42]. Now, we will

give expressions for the Riemannian exponential (denoted

by Exp) and inverse exponential (denoted by Log) maps

which will be required throughout the rest of the paper.

Given x,y ∈ Sn, the geodesic distance between x and y,

denoted by d(x,y) = arccos(xty). The exponential map

at x is given by Exp
x
(v) = cos(‖v‖)x+sin(‖v‖) v

v
, where

v ∈ TxS
n. The inverse exponential map between x and y

as Log
x
(y) = θ

sin(θ) (y − x cos(θ)), where θ = d(x,y).

MLE of M : Given {xi}Ni=1 ⊂ Sn, the

Fréchet mean (FM) [20], µ is defined as µ =
argminz∈Sn

∑N
i=1 d

2(z,xi). The existence and unique-

ness of FM is guaranteed if the samples lie within a “regular

geodesic ball” of radius π/2 [3] (we refer the readers to

[26] for definition of regular geodesic ball). We will now

state (proof is in the supplementary section) that maximum

likelihood estimator (MLE) of M defined above is the FM.

Lemma 2. Given, {xi}Ni=1 ⊂ Sn i.i.d. samples drawn

from the Gaussian distribution whose support is within a

geodesic ball of radius < π/2, the MLE of M (defined in

Eq. 2) is the FM of {xi}Ni=1.

Note that, although Alg.-2 assumes M to be a Lie group,

it is also applicable to other special manifolds, e.g., space of

symmetric positive definite matrices (SPD) and the hyper-

sphere. The reason for assuming the Lie group structure is

two fold (i) On a Lie group, the tangent space at e, i.e., m or

the Lie algebra is equipped with Euclidean metric, hence us-

ing XXT to get projection matrix is meaningful on m. (ii)

After getting tangent vectors on m, we can do simple matrix

multiplication to transport vj into TXj
M in the Alg.-2.

Now, we will show that both these properties are satisfied

for the manifold of SPD matrices (with the GL-invariant

metric) [24] and the hypersphere (with the arc-length met-

ric). Let M be a space of m × m SPD matrices, we

can define GL-invariant metric, gX on this manifold as

gX(U, V ) = trace
(
X−1UX−1V

)
, where U, V ∈ TXM.

So, if X is the identity matrix, clearly, gX is the Euclidean

inner product, hence the property (i) above is satisfied.
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Moreover, as the m×m invertible matrix (as a general lin-

ear group, GL(m)) acts on M, the parallel transport is just

a group operation. Hence, Alg.-2 is applicable to the SPD-

manifold with a GL-invariant metric.

Let us consider the hypersphere Sn. Any vector v ∈
Rn can be projected onto TxS

n by the following operation

v 7→ v− (vtx)x. Moreover, the parallel transport on Sn is

in an analytic form, hence we can apply Alg.-2 on Sn. As a

side note, we would like to point out that equipped with the

Log-Euclidean metric, the SPD manifold has a Lie group

structure as shown in [5] and S0, S1 and S3 are the only

hyperspheres which are Lie groups.

In the experiments, we have assumed M to be either

a hypersphere or an SPD-manifold. We will use the in-

cremental/recursive FM computation algorithm proposed in

[38] to compute FM of samples on Sm2
−1 and on the SPD-

manifold, we will use the recursive algorithm for FM com-

putation proposed in [24]. Later, we will perform principal

geodesic analysis (PGA) on the space of trajectories by us-

ing exact-PGA on Sm2
−1, presented in [9]. Both of these

methods are extremely efficient and the consistency of the

incremental/recursive FM estimator was proved in [38, 24].

3. Experiments

In this section, we demonstrate the application of the

framework to answer three important questions that arise

in neuroimaging and vision applications. (1) Can principal

geodesics (PGs) offer efficient representations in detecting

group differences in longitudinal neuroimaging studies? (2)

How robust is our framework to missing temporal data or

temporal data with varying number of time points? (3) Do

principal geodesics offer features that are independent of the

temporal spans of videos? Before we dive into the experi-

ments to evaluate these questions, we present experiments

using synthetic data computing the Fréchet mean estimation

of trajectories.

FM computation of trajectories for synthetic data:

We randomly generate geodesics on S2. We show the mean

trajectory for these synthetic experiments in Fig. 2. We

compared the results with [25], and as expected since all

the trajectories are geodesic paths, our proposed method

yields similar mean trajectory as that from the method in

[25]. This serves as a sanity check showing that for simu-

lated data, our results are consistent with an existing method

from the literature.

Efficient representation: We use OASIS data [2] to

demonstrate that using our framework, we can use PG to

detect class/group structure. OASIS data [2] contains MR

scans of demented, non-demented and “converted” patients.

Patients who are labelled as “converted” are those who pro-

gressed from non-demented to demented during the study.

This dataset contains at least two MR brain scans of 150
subjects, aged between 60 to 96 years old. For each pa-

tient, scans are separated by at least one year. The dataset

includes patients of both sexes. In order to avoid gender ef-

fects, we use MR scans of female patients from 2-5 visits,

which results in a dataset containing MR scans of 11 sub-

jects with dementia (denoted by the letter ‘D’) and 12 sub-

jects without dementia (denoted by ‘ND’) and 7 subjects of

“converted” (denoted by the letter ‘C’) group. We first com-

pute an atlas (using the method in [6]) from the MR scans

of patients without dementia. After rigidly registering each

MR scans to the atlas, we only consider intensity values in

a prespecified region of interest (ROI), namely the corpus

callosum (CC) that is known to be effected most by the dis-

ease process, from each image. Then, using the Scrödinger

distance transform (SDT) [15] applied to the ROI, we map

the CC shape to point on S2332. For each subject, we have

2-5 time points, i.e., the trajectories constitue varying # of

time points.

Figure 2: Trajectories are shown in black and the mean trajectories (us-

ing proposed method and method in [25]) are shown in green and blue

respectively. The results from both methods are similar suggesting that

our representation is reasonable.

We performed Principal geodesic analysis (PGA) to

evaluate classification accuracy and group differences on

the OASIS data. We take the first 10 principal geodesics

(PGs) and perform reconstruction of the data. On the re-

constructed data, we perform a pairwise group testing as

follows. We first choose two classes and compute the dis-

tance between the two mean trajectories (mean trajectory

from each class). Then, we randomly permute the class la-

bels 10000 times. We then count the fraction of the times

the distance between two group means computed with these

random permutations is larger than the distance on the data

with with correct permutation (class labels). This gives an

approximation of the p-value which is reported in Table

1a. Note that a smaller value signifies that there is indeed

a class structure preserved in the reconstructed data. We

can see from the table that our framework preserves better

class structure in the reconstructed data using the first 10
PGs since, the p-value is significantly smaller than that of

[25]. Next, we will perform a pairwise leave-one-out clas-

sification with the PGs to see if our framework indeed gives

better classification accuracy.

We use a linear SVM classifier on the PGs and report

sensitivity (denoted by ‘sn’), specificity (denoted by ‘sp’)

and classification accuracy (denoted by ‘ac’) in Table 2. It
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Class names Our Method [25]

C vs. D 0.065 0.53

C vs. ND 0.035 0.38

D vs. ND 0.051 0.46

(a) Comparison of approximated p-

values.

Our Method [25]

R2 statistics 0.64 0.37

p-value 0.032 0.087

(b) Comparison of regression results

Table 1: Statistical analysis on OASIS data.

is clear from the table that we achieve a better classification

accuracy than [25].

Robustness to data with varying time points: In this

section, we will demonstrate the performance of our frame-

work to do statistical analysis on temporal data with vary-

ing time points or on temporal data with missing entries.

OASIS data already included varying # of time points. In

this section, we also use data from the Human Connec-

tome project (HCP) to extract trajectories with missing time

points. Before going into the details, we briefly describe the

HCP data and how we extract the trajectories.

Class

names

Our Method [25]

sn sp ac (%) sn sp ac (%)

C vs. D 0.86 0.91 88.89 0.86 0.82 83.33

C vs. ND 0.86 1.00 94.73 0.71 0.83 78.95

D vs. ND 0.91 0.92 91.31 0.91 0.83 86.96

Table 2: Classification on OASIS data.

All sub-

jects in the

main HCP

cohort were

scanned on a

dedicated 3

Tesla (3T) scanner. We analyzed the high-quality curated

diffusion MR imaging (dMRI) data made publicly available

on over 840 healthy adults from the WU-Minn consortium

[46]. We obtained diffusion tensor images (DTI) from

the dMRI data by non-linear fitting of the tensors to the

diffusion weighted (b = 1000 s/mm2) images. These DTI

images were spatially normalized using DTI-TK [48], a

non-linear diffeomorphic registration and template esti-

mation pipeline, that can directly operate on the diffusion

tensors using a log-Euclidean framework. Seventeen major

white matter pathways were obtained by registering the

publicly available IIT white matter atlas [47] to the HCP

template using the ANTS software [6]. We analyzed DTI

data from the fornix and the cingulum bundle.

Now, from this data, we build the trajectories as follows.

We first divide ages of the subjects into the following bins:

[22, 25], [26, 29], [30, 33] and [34, .). Next, we sample 20
subjects from each bin, for all bins. The average of these

20 gives us a virtual subject who is tracked across the bins.

This is a single trajectory sample with each point on the

trajectory belonging to a product space of 228, 3 × 3 SPD

matrices. We replicate this process 500 times to get 500
virtual subjects who are tracked across all bins. Then, we

randomly choose 2-4 bins for each subject to simulate a

situation where we have missing entries corresponding to

some time points. For a pictorial depiction of the trajectory

generation for the connectome data, see Fig. 3.

One of the major tools to do statistical analysis is to

perform regression between a set of independent and de-

pendent variables. Now, we will analyze performance of a

regressor in the situation where the data has varying time

points or has missing entries. We will compare the perfor-

mance between our formulation and the formulation pro-

posed in [25] on both OASIS and HCP data.

For OASIS data, an important question to ask is: Is there

any relationship between the structure of corpus callosum

and age?. Recently, in [7], the authors have shown that

there is indeed a relationship. Motivated by this result, here

we ask the following question: Is there any relationship

between the changes in the structure of the corpus callo-

sum and age? Further, for different patients, we measured

the changes on varying number of time points. We use the

manifold-valued kernel regression (MVKR) technique pro-

posed in [7] as the non-linear regressor. In order to eval-

uate the performance, we chose the R2 statistic on Rie-

mannian manifolds as defined in [18] as a measure. An

R2 statistic value close to 1 implies better regression per-

formance. The comparative results are reported in Table

1b which clearly suggest that the regressor gives better R2

statistic using our framework. Moreover, as the regression

relationship is complex, so the approximation of a trajec-

tory by a geodesic is a probable reason behind the poor R2

statistics value given by [25]. Now, we perform a t-test with

1000 independent runs to check the statistical significance

of the regression result. We reject the null hypothesis “H0 =

mean of the unexplained variance is not less than the mean

of the data variance” with a significance level of 0.05. From

the t-test result we can see that our results are statistically

significant.

Figure 3: Trajectory generation for the connectome

data (each bubble shows the number of samples).

Recall that

in the HCP

data, we have

trajectories

with missing

entries. For this

data, it is mean-

ingful to ask

how the behav-

ioral measure of a person relates to the changes in the brain

scans, i.e., on the virtual subject, as we track the changes of

brain scans, can we predict the behavioral scores. We have

two such scores namely, ProcSpeed Unadj (denoted by

‘pU’) and ListSort Unadj (denoted by ‘lU’). These

scores measure processing speed of subjects in sorting

a list of items. As before, we perform kernel regression

(MVKR) and compute the R2 statistic. The comparative

results are reported in Table 3. The results indicate a good

R2 statistic value using our method and an unsatisfactory

performance by the method in [25]. As before, we also

perform a t-test on 1000 independent runs to check how

statistically significant is the R2 statistic value. We choose

the null hypothesis as in the case of OASIS data and reject
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Figure 4: Summarization of the Gymnastics data (five gymnastic activities) using Left: Our method, Middle: [30] and Right: [25]. Note the clear class

separation obtained by our method.

with significance level 0.05. Moreover, in contrast to the

baseline, our method yields statistically significant results.

We suspect that this is because in the HCP data, trajectories

are “complicated”, i.e., deviate from a geodesic; so, using

a geodesic-based formulation may not be appropriate for

regression on this data.

Length (of time) invariant representation: In com-

puter vision, a common type of temporal data analysis is

in calculating statistical summaries of video data. In this

section, we deal with videos of gymnastic routines from

2012 London Olympics [1]. Moreover, this data is of vary-

ing temporal span, so it would be interesting to statisti-

cally summarize this data. Each video is of dimension of

640× 360 and the frame rate is 30 fps. We collected videos

of 5 Gymnastic activities, where each activity is performed

by 8 gymnasts. We sampled this video using 1/3 fps.

Behavioral

Scores

Our Method [25]

R2 statistics p-value R2 statistics p-value

pU 0.78 0.017 0.02 0.83

lU 0.75 0.021 0.16 0.75

Table 3: Regression results on HCP data.

From each

frame, we

extracted HOG

features [14],

using the fol-

lowing parameter values: Blocksize = 2, Cellsize = 16,

Blockoverlap = 4, Number of Bins = 9. We normalize

the HOG features to map it to S1763. We construct the

trajectory from each gymnast’s video by taking each frame

as a point on the trajectory. Due to the varying time span of

the videos, we get trajectories of varying number of time

points. A sample trajectory from each act is shown in Fig.

5.

Figure 5: Sample trajectories and corresponding legends used in Fig. 4.

We report results of groupwise statistical summarization

of the Gymnastics routines from several gymnasts across

the world. The summarization is depicted in the form of a

biplot showing ability of a method employed to group gym-

nasts within groups. In this experiment, we performed PGA

on the trajectories representing gymnast routines, using our

formulation. We summarize the data, in R2 by taking the

component along the first two PGs. In addition to a compar-

ison with [25], we also compared results from using space-

time features. We first used Harris3D detector [30] to ex-

tract spatio-temporal interest point from each video. Then

from each interest point, we calculate HOG and HOF fea-

tures [32]. We use the implementation available on-line [29]

with standard parameter settings. Then, we use kernel-PCA

[34] (with a Gaussian kernel) on the feature vector to get the

first two PCs. The comparison is depicted in Fig. 4, where,

we can see that our formulation yields the best summary in

terms of preserving better structure within the same activity.

4. Conclusions

We presented a novel geometric framework and algo-

rithms for computing statistics on the space of trajectories

representing longitudinal data. The salient features of our

algorithm are: (i) it can seamlessly cope with trajectories of

distinct temporal spans and (ii) the framework maps each

trajectory of varying # of time points represented by a lin-

ear subspace of Rm on to a single finite dimensional hyper-

sphere. Since, the geometry of the hypersphere is simple

and yields analytic expressions for most geometric quan-

tities of interest here, it gives our algorithm an edge over

the competition. Finally, unlike most existing methods for

trajectory modeling, our method does not require that all

the sample points of a trajectory lie on a geodesic. We

presented experiments demonstrating how group testing on

longitudinal data with different number of time samples is

possible by analyzing the reconstructed data in the subspace

spanned by the first few PGs. We also presented experi-

ments demonstrating robustness of our framework to miss-

ing time points. Finally, we performed a statistical summa-

rization of temporal data of varying time spans and com-

pared the performance with the state-of-the-art.
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[20] M. Fréchet. Les éléments aléatoires de nature quelconque
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