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Abstract. In this paper, we present novel algorithms to compute robust
statistics from manifold-valued data. Specifically, we present algorithms
for estimating the robust Fréchet Mean (FM) and performing a robust
exact-principal geodesic analysis (ePGA) for data lying on known Rie-
mannian manifolds. We formulate the minimization problems involved in
both these problems using the minimum distance estimator called the
L2E. This leads to a nonlinear optimization which is solved efficiently
using a Riemannian accelerated gradient descent technique. We present
competitive performance results of our algorithms applied to synthetic
data with outliers, the corpus callosum shapes extracted from OASIS
MRI database, and diffusion MRI scans from movement disorder patients
respectively.

1 Introduction

In this age of data deluge, manifold-valued features are widespread in Science
and Engineering disciplines. As the amount of data to be processed grows by
leaps and bounds, there is an obvious need to reduce the dimensionality of
the data and provide some sort of statistics. To this end, Principal Component
Analysis (PCA) has been employed as the main workhorse for data lying in vector
spaces. However, when the input data reside on a smooth manifold, the nonlinear
generalization called, Principal Geodesic Analysis (PGA) [7] is often employed.
PGA in [7] makes use of the concept of linearization by first finding the intrinsic
mean of the data lying on the smooth manifold and then makes use of the inverse
Riemannian exponential (Exp) map, also called the Riemannian Log map, to
map the data from the manifold to the tangent space anchored at the intrinsic
mean of the data on the manifold. Then it performs PCA of this Log mapped
data and projects the principal vectors back on to the manifold using the Exp
map, obtaining the principal geodesic submanifolds. In order for this algorithm to
work, it is assumed that the Rieamnnian Exp and Log maps exist in the desired
neighborhood and can be computed efficiently. Although this linearized version of
PGA is computationally efficient, it lacks in accuracy of the computed principal
components when the input manifold-valued data have a large variance. In order
to cope with this issue, Sommer et al. [26] proposed to solve the problem without
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resorting to the aforementioned linearization. They called their algorithm, exact-
PGA. In exact-PGA [26], the cost function being optimized involves minimization
of the projection distance, also called the reconstruction error. This is a hard
nonlinear optimization problem and a general efficient solution is lacking to date.
Recently, Chakraborty et al. [3], proposed an efficient solution to the exact-PGA
problem for constant curvature manifolds with several applications. There are
several variants of the PGA algorithm in literature and we briefly discuss a few
here. Authors in [23] presented a technique to compute the principal geodesics
(without approximation) but only for the special Lie group, SO(3). Geodesic
PCA (GPCA) [15] solves a different optimization function namely, optimizing the
projection error along the geodesics. GPCA does not use a linear approximation,
but is restricted to manifolds where a closed form expression for the geodesics
exists. More recently, a probabilistic version of PGA called PPGA was presented
in [28], which is a nonlinear version of PPCA [27]. As an alternative to PGA,
Hauberg [11] introduced a Riemannian version of the well known principal curves
algorithm restricted to complete Riemannian manifolds. However, none of these
methods are robust to outliers in the data.

In this paper, we present a statistically robust formulation for estimating
the Fréchet mean (FM) [9] as well as for computing the exact-PGA. Our notion
of robustness here implies relative “insensitivity (stickiness)” of the location of
the estimated FM to outliers in the data. Further, our work here is restricted
to smooth Riemannian manifolds and does not consider stratified spaces. For
“sticky” and “non-sticky” FM of data in stratified spaces, we refer the reader to
[13]. Our formulation makes use of the well known M-estimator in statistics called
L2E introduced by Scott [24]. In finding the FM from data, one minimizes the so
called sum of squared geodesic distances between the unknown FM and the given
data samples. Whereas, for estimating the principal components in the exact-PGA
algorithm, one minimizes the sum of squared projection errors, defined by the
geodesic distances between the data points and the geodesics emanating from
the FM as a function of direction. In [8], authors proposed a geometric median
formulation on Riemannian manifolds and have shown robustness of the median.
Though mean and median are distinct statistics, for the sake of completeness, we
will compare our robust mean formulation with the intrinsic median.

The robust formulation for estimating the FM and computing the PGA
involves casting the aforementioned geodesic distance minimization costs in both
problems into the L2E based M-estimator framework. This is precisely what is
achieved here in this paper. Note that there are no robust PGA methods in
existing literature and the theory and algorithm presented here are the first to
the best of our knowledge. Hence, we compare our work to one other method
of achieving robust PGA, which is our own modification of the conventional
non-robust PGA. This modification involves replacing the PCA in the tangent
space at the FM performed in the conventional PGA [7] by an existing robust
PCA algorithm [12].

The rest of this paper is organized as follows: Section 2 contains the theoretical
formulation of the robust FM and PGA respectively. In Section 3, we present
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several examples on synthetic data, shapes extracted from OASIS MRI database,
and diffusion MRI scans from movement disorder patients respectively. In Section
4, we draw conclusions.

2 Robust Statistics

In this section, first we present a novel formulation of, the robust FM followed
by the robust PGA. In both these formulations, we will use the well known and
statistically robust minimum distance estimator called the integral squared error
(a.k.a. the L2 error) denoted by L2E [24].

2.1 Robust FM on a Riemannian manifold: Using the L2E

Computing the FM is a commonly encountered task in many application problems
including but not limited to shape analysis [16], directional statistics [19], diffusion
tensor analysis [22,20,17] and many others. In the following we will first define
the FM and then present a formulation for computing it robustly from data
corrupted with outliers.

Let (Mm, g) be a Riemannian manifold equipped with a Riemannian metric
g [6], where m = dim(M). Given a point p ∈ M and the tangent vector
v ∈ TpM, there exists a unique geodesic α such that α(0) = p and α′ = v.
In general, its existence however is only guaranteed locally. The Riemannian
exponential map Exp at the point p ∈ M is a locally diffeomorphic map on to
the neighborhood of p and is defined as Expp(v) = α(1), where, α is defined over
[0, 1]. If B(p) denotes the largest such neighborhood, then, the inverse of the
Exp map, called the Riemannian Log map is well defined in this neighborhood.
Let d : M×M → R be the distance induced by the metric g on M. Then,
for p, q ∈ M, d(p, q) = ||Logp(q)||p. Given the data X = {xi}Ni=1 ⊂M, the FM
µ is defined by the following minimization [9], µ = argminx∈M

∑N
i=1 d

2(x, xi).
The existence and uniqueness of the FM in general is only guaranteed within a
geodesic ball of a certain radius [1,21]. As is usually the case in literature [7,26,3],
we will also assume that the input data lie within this geodesic ball, so that
FM exists and is unique. Our assumption about the data including the outliers
lying inside a geodesic ball of an appropriate radius is in line with earlier work
reported in [8].

We now propose a robust formulation to compute FM on a Riemannian
manifold based on the well known robust L2E estimator [24]. It is easy to show
that minimizing the sum-of-squared function defined in the FM computation is
equivalent to maximizing the likelihood of the distances (of sample points from
the FM) being randomly drawn from a one-dimensional half-normal distribution.
It is well known that maximum likelihood estimation (MLE) is well suited for
estimation problems in which the model is a good descriptor for the data. However,
it well known that the ML estimates are highly biased if the data contain outliers
[2]. In [2], Basu et al. defined a single parameter family of divergences between
distributions, termed the density power divergence. This family of divergences
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is controlled by a single parameter and includes the KL (Kullback-Leibler)
divergence and the L2 distance as limiting cases. Recognizing that the minimum
density power divergence estimators can be interpreted as a particular case
of M-estimators [14], Basu et al. [2] have shown that the L2 estimator (L2E)
corresponding to L2 distance is superior to MLE in terms of robustness. Scott [24]
also exploited the applicability of L2E to parametric modeling and demonstrated
its robustness behavior and nice properties of practical importance.

In the parametric case, given the random variable ε ∈ R with unknown density
g(ε), and a model f(ε|θ), with a parameter vector θ, we can write the L2E criterion
as, L2(f, g) =

∫
[f(ε|θ)−g(ε)]2 dε. Note that, in the expansion of this integral, the

term
∫
g(ε)2 dε does not depend on θ and

∫
f(ε|θ) g(ε) dε = Eg[f(ε|θ)] is the so

called expected height of the density which can be approximated by the estimator
1
N

∑N
i=1 f(εi|θ). Hence, the proposed estimator minimizing the L2 distance will

be,

θ̂L2E = arg min
θ

(∫
f(ε|θ)2dε− 2

N

N∑
i=1

f(εi|θ)
)
. (1)

In the case of model being a Gaussian or mixture of Gaussians, we have a closed
form expression for the integral in the bracketed quantity in (1) and hence can
avoid numerical integration which severely limits the practical applications not
only in computation time but also in accuracy.

Noting that the L2E criterion does not require that the model f(ε|µ) be a
density, Scott [25] suggested a method for outlier detection and clustering by
partial mixture modeling. A partial mixture model basically advocates the use
of a small number of components in a “full” N -component Gaussian mixture
model, thereby under fitting the outlier-corrupted data. One of the advantages
of this model is that the weight w provides us the fraction of the data to which
the component has been fitted. For example, using just a single component,
this model will account for the largest fraction (cluster) of the data and thus
accounting for the inliers (assuming that the outliers correspond to a smaller
fraction). This is appropriate in our work because, our focus is on finding the
FM (and later, PGA) of a single cluster of data possibly corrupted with outliers.

In our context, ε = d(µ, x) ∈ [0,∞). Note that, ε ∈ R depends on the FM,
µ ∈M. Inspired by the ideas describe above, to model the density of the geodesic
distances from the FM to the data, we chose a partial mixture of half-normal
densities with mean

√
2σ/
√
π, and variance, σ2(1 − 2/π) (here σ is unknown

parameter of the half-normal density), i.e., f(ε(µ)) = wφ(ε(µ)|σ2). For simplicity
of notation, we will drop the µ from ε(µ) in the rest of the paper. Here, φ(ε|σ2)
is the half-normal density and w denotes the weight of the partial mixture.

Lemma 1. If the model density f(ε|µ) = wφ(ε|σ2), then the L2E criterion is
given by,

L2E(µ,w, σ2) = w2
√
πσ2

− 2
√

2w√
πNσ

N∑
i=1

exp
{
−d

2(µ, xi)
2σ2

}
. (2)
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Proof. ∫
f(ε|µ)2 dε =

∫
w2 φ2(ε|σ2) dε = w2

∫ [
exp

(
− ε2

2σ2

)]2

dε

= w2
∫ [

exp
(
− ε

2

σ2

)]
dε = w2

√
πσ2

. (3)

Substituting εi = d(µ, xi), we get f(εi|µ) =
√

2w√
πσ

exp
{
−d

2(µ,xi)
2σ2

}
. Now, using

Eq. 1, we get the desired result in Eq. 2. �

Estimation of the parameters is then achieved by minimizing this L2E criterion
with respect to the parameters. We derived an analytic expression for gradient
of the L2E cost (not shown here due to lack of space) and employed it in a
variant of the accelerated gradient descent (AGD) [10] adopted to Riemannian
manifolds. This leads to the optimal set of parameters, µ̂L2E ∈M, ŵ > 0, σ̂2 > 0.
In addition to the robust FM estimate, µ̂L2E , the partial weight ŵ also indicates
the fraction of the data being treated as outliers. In the following, we state and
prove the robustness of the FM estimator formulated above.

Theorem 1. The L2E formulation to compute FM in Eq. 2 is robust to outliers.

Proof. Let xj be an outlier, for some j, i.e., d(µ, xj) is very large. The influence
function [14] of L2E(µ,w, σ2) is proportional to ∂L2E(µ,w,σ2)

∂d(µ,xj) . If we can show that

as d(µ, xj) → ∞, ∂L2E(µ,w,σ2)
∂d(µ,xj) → 0, we can then claim that our formulation to

compute FM, i.e., the L2E criterion L2E(µ,w, σ2) is robust. Now, ∂L2E(µ,w,σ2)
∂d(µ,xj) =

−4
√

2w√
πNσ

exp
{
−d

2(µ,xj)
2σ2

}
Logxj

µ. So, in the limit as d(µ, xj)→∞, ∂L2E(µ,w,σ2)
∂d(µ,xj) →

0, i.e., our formulation is robust. �

2.2 Principal Geodesic Analysis (PGA)

The goal of PGA is to find a set of r < m orthogonal basis vectors of TµM,
called principal vectors {vj}rj=1, such that the data variance along the geodesic
submanifold spanned by these principal vectors is maximized [3,7]. An alternative
definition of PGA [26] involves minimizing the reconstruction error,

∑
d2(xi, x̂i),

where x̂i is the ith reconstructed data point in the principal submanifold spanned
by the basis vectors {vj}rj=1. These two formulations result in the same solution
in Rn but not so on a general Riemannian manifold. In [3], the principal vectors
{vj} are defined recursively by,

vj = argmin
‖v‖=1,v∈V ⊥

j−1

1
N

N∑
i=1

d2(xi, ΠSj
(xi)), Sj = Expµ(span{Vj−1,vj}), (4)

where, Vj−1 = {v1, · · · ,vj−1}. Sj is the submanifold spanned by Vj = {Vj−1,vj},
and ΠSj

(x) is the point in Sj closest to x ∈M. In this paper, we will use this
alternative formulation to define a robust formulation of PGA on a Riemannian
manifold.



6 Banerjee, Jian and Vemuri

2.3 Robust PGA on a Riemannian manifold: Using L2E
Equipped with a robust FM formulation and the basic PGA, we are now ready to
propose a formulation for the robust PGA. Let the ith reconstructed data point
be denoted by x̂i, then using an approach analogous to the one used to define
robust FM, we model the density for the distance between x and x̂ by a partial
mixture of half-normal density with

√
2σ′/
√
π mean and variance σ′2(1− 2/π)

(here σ′ is unknown). Let ε′ = d(x, x̂), using the same notation as in Eq. 4,
x̂ = ΠSj

(x) and Sj = Expµ(span{Vj−1,vj}). Now to get the set of parameters
{v̂j}, ŵ′ > 0, σ̂′2 > 0, we minimize the following L2E criterion:

L2E({vj}, w′, σ′
2) = w′

2
√
πσ′2

− 2
√

2w′√
πNσ′

N∑
i=1

exp
{
−d

2(x̂i, xi)
2σ′2

}
, (5)

with an added constraint to ensure that the principal vectors {vj} are mutually
orthogonal. In order to minimize the above function, we need an analytic expres-
sion for the projection, ΠSj

(x). This analytic expression can either be exact or
an approximation. We now present the derivations of the projection operator
ΠSj (x).

Various Forms of the Projection Operator In this section, we present a
method to approximate ΠSj (x) on a Riemannian manifold M. On manifolds
with constant sectional curvature, we resort to the exact analytic form of ΠSj

(x)
derived in [3]. Let x̂ = ΠSj

(x), then x̂ can be expressed as Expµ(
∑
j c(x,vj) vj)

where the coefficient function c :M× TµM→ R can be defined as c(x,vj) =
sgn(gµ(vj , Logµx)) d(µ,Πspan{vj}(x)), where Πspan{vj}(x) returns the closest
point of x on the geodesic of dim-1 submanifold spanned by vj . We use sgn(gµ(vj ,
Logµx)) to define c(x,vj), as the coefficient can be negative as well. Since, on a
general Riemannian manifold, Πspan{vj}(x) is the solution of a hard optimization
problem [26], here we approximate c(x,vj) by c(x,vj) = gµ(Logµx,vj).

Moving on to the case of non-zero constant curvature manifolds, it is possible to
derive the exact analytic expression of the projection operator as was shown in [3].
These analytic expressions will considerably reduce the computational complexity
involved in computing the projection operator. Equipped with these closed form
expressions for Πspan{vj}(x) on constant curvature manifolds, we can compute
c(x,vj) analytically as c(xi,vj) = sgn(gµ(vj , Logµxi)) d(µ,Πspan{vj}(xi)) on
constant curvature manifolds. Thus, we get x̂i = Expµ

(∑
j c(xi,vj) vj

)
, for all

i.
Theorem 2. The L2E formulation to compute the PGs in Eq. 5 is robust to
outliers.
Proof. We first observe that the minimization of L2E({vj}, w′, σ′2) in Eq. 5 is
equivalent to the maximization of

L2Ẽ({vj}, w′, σ′
2) = w′

2
√
πσ′2

− 2
√

2w′√
πNσ′

N∑
i=1

exp
{
−d

2(x̂i, µ)
2σ′2

}



Robust Statistics on Riemannian Manifolds 7

This follows from the fact that minimization of reconstruction error is equivalent
to maximization of variance of the reconstructed point. This equivalence relation
is exploited in literature [26,3]. Now, assume that xj is an outlier for some j, i.e.,
d(xj , µ) is very large. We can see that, for all v, c(xj ,v) = gµ(Logµxj ,v) is very
large as norm of Logµxj is very large. So, d(x̂j , µ) = ‖ (

∑
k c(xj ,vk) vk) ‖ is also

very large, where ‖.‖ is taken with inner product gµ. Now, the influence func-
tion of L2Ẽ({vj}, w′, σ′2) is proportional to ∂L2Ẽ({vj},w′,σ′2)

∂d(x̂j ,µ) . Using calculations
analogous to those in the proof of Theorem 1, we can see that as d(x̂j , µ)→∞,
∂L2Ẽ({vj},w′,σ′2)

∂d(x̂j ,µ) → 0, i.e., our formulation to compute the PGs is robust. �

Similar to the L2E FM, we derived an analytic gradient for equation 5, and
employed the manifold extension of a variant of AGD in [10]. However, due to
lack of space, we do not include them here.

3 Experiments

In this section, we present results for data lying on two Riemannian manifolds
namely: the hypersphere, Sm (with canonical metric), and the symmetric pos-
itive definite matrix manifold, SPD(m) (with GL(m) invariant metric). In all
experiments, we randomly perturb some fraction of the data points in order to
create outliers. We performed two sets of experiments for each data set which
are described below:

– We compared our Robust L2E-FM, µ∗, with the conventional FM, µ̄, and
the Fréchet Median (FMe), µ̃, [9,8] of the outlier added data set. Let the
FM of the original data, i.e., without the outliers, be denoted by µ. Then,
we compared d(µ, µ∗) with d(µ, µ̃) and d(µ, µ̄) respectively, where d is the
geodesic distance on the manifold where the data reside. We also computed
and compared the sample variances (s2) with µ∗, µ̃ and µ̄ using the same
geodesic distance.

– We compared the proposed L2E-PGA, with a robust extension of the PGA
algorithm in [7], where instead of PCA in the tangent space anchored at the
FM, we use a robust PCA on the Log-mapped data in the tangent space
anchored at the FMe, µ̃, of the given data. The specific robust PCA algorithm
used in this context is the one in [12], which uses trimmed-Grassmann averages
to compute the principal components in the PCA algorithm. Robustness is
achieved via the use of `1-norm. Hence, we call this the Grassmann-median
PGA or simply GMPGA. We measured the reconstruction error, Er, to assess
performance of the methods. The original data without the outliers was used
to compute the reconstruction error using just the leading principal vector.
For the sake of completeness, a similar comparison with PGA [7] is also
reported.

In both the above cases, we also report the computation time for each method.
Now, we will separately discuss the results for the two commonly encountered
manifolds namely, the Sm and the SPD(m).
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3.1 Robust FM and PGA for Data on the Hypersphere Sm

In this section, we first present the results for a synthetic data set on S2. In this
data, we first generated 1000 samples on S2 by perturbing points along a chosen
direction (0, 1, 0)t, with the perturbation following a log-normal distribution in
the tangent space at the north pole. This created a band of points along the
aforementioned direction (see Fig. 1). Then we randomly select 5%, 10%, 15%
and 20% of the data (percentage of outliers is denoted by ς), and overwrite them
with points similarly generated but along a different direction vector anchored at
the north pole, specifically the vector (0, 1, 1)t. This produces the said amount of
outliers as shown in Fig. 1. We then compared the performances of L2E-PGA,
GMPGA and PGA on this data set.

Fig. 1. Robust FM computation for the syn-
thetic data on S2 with, Left: 10% and Right:
20% outliers.

From the plots, it is evident
that the L2E-PGA outperforms the
competition. The conventional PGA
fails to detect outliers as expected.
The detailed comparison results with
GMPGA and PGA are shown in Ta-
ble 1 (right). In table 1 (on the left),
we also present the comparative per-
formances of L2E-FM and µ̃. We can
see that for FM computation, L2E-FM
outperforms the non-robust FM, µ̃. In the case of L2E-PGA, it takes comparable
time but gives the best performance compared to the two competitors.

ς µ∗ µ̄ µ̃
(%) d(µ, µ∗) s2 t(s) d(µ, µ̄) s2 t(s) d(µ, µ̃) s2 t(s)

5 0.04 0.24 2.01 0.06 0.25 0.01 0.05 0.25 0.32
10 0.07 0.24 2.84 0.12 0.26 0.01 0.08 0.25 0.37
15 0.12 0.25 3.15 0.17 0.27 0.01 0.14 0.26 0.23
20 0.16 0.26 3.35 0.23 0.29 0.01 0.19 0.27 0.31

L2E-PGA GMPGA PGA
Er t(s) Er t(s) Er t(s)

0.01 3.63 0.01 2.65 0.09 1.67
0.01 3.56 0.01 4.71 0.10 1.69
0.01 4.92 0.02 4.81 0.10 1.71
0.01 9.62 0.04 7.07 0.11 3.90

Table 1. Synthetic data results on S2 for, Left: FM and Right: PGA.

The poor performance of conventional PGA in the presence of outliers is
not at all surprising because it can not cope with outliers. GMPGA however
demonstrates comparable performance to our L2E-PGA in the case of a small
fraction of outliers but not for larger fractions.

OASIS data [18]: We now compare the performance of the L2E based FM
and PGA with the competing methods on publicly available OASIS data. This
dataset consists of T1-MR brain scans of subjects with ages in the range from 18
to 96 including individuals with early Alzheimer’s Disease. We have identified
an individual to be Young (with age between 10 to 40), Middle Aged (with age
between 40 to 70) and Old (with age between 70 to 100).

ς µ∗ µ̄ µ̃
(%) d(µ, µ∗) s2 t(s) d(µ, µ̄) s2 t(s) d(µ, µ̃) s2 t(s)

5 0.09 1.13 4.69 0.19 1.16 0.01 0.16 1.14 0.07
10 0.14 1.14 6.83 0.26 1.17 0.01 0.23 1.15 0.07
15 0.25 1.15 21.76 0.47 1.26 0.01 0.37 1.19 0.08
20 0.35 1.19 22.11 0.48 1.27 0.01 0.43 1.25 0.08

L2E-PGA GMPGA PGA
Er t(s) Er t(s) Er t(s)

1.08 1.04 1.11 0.85 1.11 0.78
1.08 3.91 1.13 0.93 1.13 0.80
1.10 4.60 1.24 0.97 1.13 0.80
1.11 4.60 1.25 2.63 1.13 0.81

Table 2. OASIS data results on CP 250 for, Left: FM and Right: PGA
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We randomly picked 4 brain scans from within each decade, totalling 36 brain
images. From each brain scan, we segmented the corpus callosum (CC) region.
Then, we take a set of landmark points from the boundary of the CC shape and
map it to Kendall’s shape space [16], which is a complex projective space, CP 250.
The results are shown in the Table 2. Similar to before, this result indicates a
superior performance of the L2E-FM in comparable time. In the case of PGA,
L2E-PGA yields a smaller reconstruction error compared to GMPGA and the con-
ventional (non-robust) PGA. This superior performance could be attributed to the
fact that unlike in GMPGA, there is no linearization operation in the L2E-PGA.

Fig. 2. Reconstruction results from the OA-
SIS data

Further, the L2E formulation has no
tuning parameters and is less prone to
local minima due to the presence of a
natural scale parameter σ′ which is au-
tomatically adjusted starting at a large
initial value permitting global search
and gradually decreasing to small σ′
that permits a precise approximation.
For each of the three classes of indi-
viduals, i.e., Young, Middle aged and
Old, we also present the reconstructed
shape using first 34 principal geodesics
in Fig. 2. In terms of shape reconstruc-
tion, PGA performs the worst, and L2E-PGA performs the best. The last column
of this figure depicts the mean shape computed using L2E-FM, the conventional
FM and FMe. As expected, FMe is better than FM but our L2E-FM results in
the “best” mean shape.

3.2 Robust FM and PGA on SPD(m)

Movement disorder data: In this experiment, the data consists of HARDI
acquisitions from patients with Parkinsons disease (PD), essential tremor (ET).
The goal here is to perform robust PGA and demonstrate the power of this
representation via a depiction of the reconstruction error. All the HARDI data
for full brain were acquired on a 3T Phillips MR scanner using a single-shot
spin echo EPI sequence, with the following acquisition parameters: repetition
time=7748ms, echo time=86ms, flip angle=90, # of diffusion gradients: 64, field
of view = 224 224 mm, in-plane resolution = 2 mm iso-tropic, slice-thickness=2
mm, SENSE factor=2. Data from 22 control and 26 PD patients were acquired
using the above HARDI acquisition protocol. Distortions due to eddy currents
and head motion was corrected by using the FSL software.

From previous studies, it is well known that, the basal ganglia region of
the brain is significantly affected by Parkinson’s disease, we chose our ROI for
analysis to be this region in the brain. The image volume size we work with here
is (112× 112× 60) for each diffusion gradient direction.
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ς µ∗ µ̄ µ̃
(%) d(µ, µ∗) s2 t(s) d(µ, µ̄) s2 t(s) d(µ, µ̃) s2 t(s)

5 1.40 0.01 3.11 31.63 998.32 1.99 16.26 264.14 4.07
10 1.47 0.01 10.64 42.94 1841.98 2.39 25.91 672.47 4.16
15 1.57 0.01 12.41 65.24 4294.63 2.70 53.97 2916.183 4.01
20 1.66 0.01 26.72 88.79 7889.97 2.88 73.74 4543.60 4.23

L2E-PGA GMPGA PGA
Er t(s) Er t(s) Er t(s)

0.19 151.96 1.93 43.47 8.26 10.50
0.22 153.74 7.96 51.82 6.63 22.49
0.22 156.50 13.74 59.39 13.06 43.00
0.22 157.21 14.96 62.68 16.79 58.99

Table 3. Movement disorder data results on the product
manifold of SPD(3) for, Top: FM and Bottom: PGA

Along with the dif-
fusion images, for each
data, we also have a
mask defining the fol-
lowing region of inter-
ests (ROIs) in basal
ganglia: left and right
anterior substantia ni-
gra, left and right pos-
terior substantia nigra,
left and right thala-
mus, and left and right putamen. We first constructed an atlas of the control
population [5], and then affinely registered all the s0 images, with the s0 image
of the atlas, to bring them to a common co-ordinate system. For each image, we
used the rotation, computed from the affine matrix, to re-orient the 64 gradient
directions. We also used the affine matrices to warp the ROI masks, so that they
will match the registered images. We then non-rigidly registered each image to the
atlas using [4]. From this, we computed the Cauchy Deformation Tensor (CDT)
in each voxel as

√
JJT , where J is the Jacobian from the non-rigid registration.

Fig. 3. CDT reconstruction results for the Movement disorder data

Since CDT is a symmetric positive definite (SPD) matrix, the CDT field of
each image lies on a product SPD manifold. We constructed a combined ROI
mask, from the 22 initial ROI masks of the control population. In this combined
ROI mask, a voxel value is set to 1, if there is more than η% overlap of the initial
ROIs, else it is set to 0. To emphasize the effect of the PD in the basal ganglia,
among the 112× 112× 60 voxels in each image, we considered the CDTs only
in the voxels of the combined ROI mask. We chose η = 50 to get 864 voxels.
It is not uncommon to misclassify between patients with essential tremor (ET)
and PD patients, hence, we naturally have data samples from ET patients as an
outlier. As before, we have reported results in Table 3 by varying the percentage
of outliers present in the data, i.e., varying mis-labelled samples with ET. The
results in Table 3 indicates superior Er values from our formulation compared to
the competitors. In Fig. 3, we have shown comparison results of reconstructed
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CDTs (with 20% outliers) of a 5× 5 region inside the ROI (region colored red in
the figure). Our visualization of the CDT (3× 3 SPD matrices) presented here is
as follows: eigen values are used as lengths of the axis of the ellipsoid and eigen
vectors give the orientation of each ellipsoid. It is clear from the figure that our
robust PGA formulation yields a better reconstruction.

4 Conclusions

In this paper, we presented novel algorithms to compute the robust FM, dubbed
the L2E-FM, and robust PGA, dubbed the L2E-PGA, for data on Riemannian
manifolds. In both these problems, we formulated the minimizations involved
using an M-estimator called the L2E. One of the key advantages of the proposed
L2E based formulation is that it is free of tuning parameters. Further, unlike
the conventional PGA which uses a linear approximation of the manifold in the
neighborhood of the FM, L2E-PGA uses the exact-PGA cost function which
yields more accurate results even in the case of data with large variance. Through
an extensive set of synthetic and real experiments, we showed that our L2E
formulation achieves robustness in computing both the FM and PGA. Further,
since there are no other robust PGA methods in literature to compare with, we
developed the GMPGA method, which performs GMPCA (Grassmann averaging
to compute PCA) [12] in the tangent space anchored at the FM. Finally, we
presented experiments on MRI data from the publicly available OASIS database
and diffusion MRI scans of movement disorder patients as well as synthetic
data on the sphere with varying amounts of outliers to demonstrate superior
performance of our robust algorithms in comparison to the competing methods.

Acknowledgements: Authors thank Drs. Vaillancourt, Okun and Ofori of
the University of Florida, for providing us the movement disorder data used here.
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