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Abstract

The Riemannian geometry of covariance matrices has been essential to several successful applications, in computer vision, biomedical signal
and image processing, and radar data processing. For these applications, an important ongoing challenge is to develop Riemannian-geometric tools
which are adapted to structured covariance matrices. The present paper proposes to meet this challenge by introducing a new class of probability
distributions, Gaussian distributions of structured covariance matrices. These are Riemannian analogs of Gaussian distributions, which only sample
from covariance matrices having a preassigned structure, such as complex, Toeplitz, or block-Toeplitz. The usefulness of these distributions stems
from three features : (1) they are completely tractable, analytically or numerically, when dealing with large covariance matrices, (2) they provide
a statistical foundation to the concept of structured Riemannian barycentre (i.e. Fréchet or geometric mean), (3) they lead to efficient statistical
learning algorithms, which realise, among others, density estimation and classification of structured covariance matrices. The paper starts from the
observation that several spaces of structured covariance matrices, considered from a geometric point of view, are Riemannian symmetric spaces.
Accordingly, it develops an original theory of Gaussian distributions on Riemannian symmetric spaces, of their statistical inference, and of their
relationship to the concept of Riemannian barycentre. Then, it uses this original theory to give a detailed description of Gaussian distributions
of three kinds of structured covariance matrices, complex, Toeplitz, and block-Toeplitz. Finally, it describes algorithms for density estimation and
classification of structured covariance matrices, based on Gaussian distribution mixture models.
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I. INTRODUCTION

Data with values in the space of covariance matrices have become unavoidable in many applications (here, the term covariance matrix is
taken to mean positive definite matrix). For example, these data arise as “tensors” in mechanical engineering and medical imaging [1]–[3], or as
“covariance descriptors” in signal or image processing and computer vision [4]–[6][7]–[10]. Most often, the first step in any attempt to analyse these
data consists in computing some kind of central tendancy, or average : the Riemannian barycentre [1][3][11] (i.e. Fréchet or geometric mean), the
Riemannian median [5][6], the log-det or Stein centre [12][13], etc. Therefore, an important objective is to provide a rigorous statistical framework
for the use of these various kinds of averages. In the case of the Riemannian barycentre, this objective was recently realised, through the introduction
of Gaussian distributions on the space of covariance matrices [14][15].

Gaussian distributions on the space of covariance matrices were designed to extend the useful properties of normal distributions, from the
usual context of Euclidean space, to that of the Riemannian space of covariance matrices equipped with its affine-invariant metric described in [3].
Accordingly, they were called “generalised normal distributions” in [14] and “Riemannian Gaussian distributions” in [15]. The most attractive
feature of these Gaussians distributions is that they verify the following property, which may also be taken as their definition,

defining property of Gaussian distributions : maximum likelihood is equivalent to Riemannian barycentre (1)

This is an extension of the defining property of normal distributions on Euclidean space, dating all the way back to the work of Gauss [16].
Indeed, in a Euclidean space, the concept of Riemannian barycentre reduces to that of arithmetic average. By virtue of Property (1), efficient
algorithms were developed, which use Riemannian barycentres in carrying out prediction and regression [14][17], as well as classification and
density estimation [18]–[20], for data in the space of covariance matrices.

The present paper addresses the problem of extending the definition of Gaussian distributions, from the space of covariance matrices to certain
spaces of structured covariance matrices. The motivation for posing this problem is the following. The structure of a covariance matrix is a
highly valuable piece of information. Therefore, it is important to develop algorithms which deal specifically with data in the space of covariance
matrices, when these are known to possess a certain structure. To this end, the paper introduces a new class of probability distributions, Gaussian
distributions of structured covariance matrices. These are Gaussian distributions which only sample from covariance matrices having a certain
preassigned structure. Using these new distributions, it becomes possible to develop new versions of the algorithms from [14][17][18]–[20], which
deal specifically with structured covariance matrices.

In the following, Gaussian distributions of structured covariance matrices will be given a complete description for three structures : complex,
Toeplitz, and block-Toeplitz. This is achieved using the following observation, which was made in [14][15]. The fact that it is possible to use
Property (1), in order to define Gaussian distributions on the space of covariance matrices, is a result of the fact that this space, when equipped
with its affine-invariant metric, is a Riemannian symmetric space of non-positive curvature. Starting from this observation, the following new
contributions are developed below, in Sections III, IV and V. These employ the mathematical background provided in Section II and Appendix I.

— In Section III : Gaussian distributions on Riemannian symmetric spaces of non-positive curvature are introduced. If M is a Riemannian
symmetric space of non-positive curvature, then a Gaussian distribution G(x̄, σ) is defined on M by its probability density function, with respect
to the Riemannian volume element of M,

p.d.f. of a Gaussian distribution : p(x| x̄, σ) =
1

Z(σ)
× exp

[
−
d 2(x, x̄)

2σ 2

]
x̄ ∈M , σ > 0 (2)

where d :M×M→ R+ denotes Riemannian distance in M. In all generality, as long as M is a Riemannian symmetric space of non-positive
curvature, Proposition 1 provides the exact expression of the normalising factor Z(σ), and Proposition 2 provides an algorithm for sampling
from the Gaussian distribution G(x̄, σ). Also, Propositions 3 and 4 characterise the maximum likelihood estimates of the parameters x̄ and σ. In
particular, Proposition 3 shows that definition (2) implies Property (1).
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— In Section IV : as special cases of the definition of Section III, Gaussian distributions of structured covariance matrices are described for
three spaces of structured covariance matrices : complex, Toeplitz, and block-Toeplitz. Each one of these three spaces of structured covariance
matrices becomes a Riemannian symmetric space of non-positive curvature, when equipped with a so-called Hessian metric [21]–[24],

Riemannian metric = Hessian of entropy (3)

where the entropy function, for a covariance matrix x, is H(x) = − log det(x), as in the case of a multivariate normal model [25]. For each one
of the three structures, the metric (3) is given explicitly, the normalising factor Z(σ) is computed analytically or numerically, and an algorithm for
sampling from a Gaussian distribution with known parameters is provided, (these algorithms are described in Appendix II).

— In Section V : efficient statistical learning algorithms are derived, for classification and density estimation of data in a Riemannian symmetric
space of non-positive curvature, M. These algorithms are based on the idea that any probability density on M, at least if sufficiently regular, can
be approximated to any desired precision by a finite mixture of Gaussian densities,

mixture of Gaussian densities : p(x) =

K∑
κ=1

ωκ × p(x| x̄κ, σκ) (4)

where ω1, . . . , ωK > 0 satisfy ω1 + . . .+ωK = 1 and where each density p(x| x̄κ, σκ) is given by (2). A BIC criterion for selecting the mixture
order K, and an EM (expectation-maximisation) algorithm for estimating mixture parameters {(ωκ, x̄κ, σκ)} are provided. Applied in the setting
of Section IV, these lead to new versions of the algorithms in [15][18]–[20], which deal specifically with structured covariance matrices, and which
perform, with a significant reduction in computational complexity, the same tasks as the recent non-parametric methods of [26]–[28].

Table 1. below summarises some of the new contributions of Sections III and IV. The table is intended to help readers navigate directly to
desired results.

The main geometric ingredient in the defining Property (1) of Gaussian distributions is the Riemannian barycentre. Recall that the Riemannian
barycentre of a set of points x1, . . . , xN in a Riemannian manifold M is any global minimiser x̂N of the variance function

variance function : EN (x) =
1

N

N∑
n=1

d 2(x, xn) (5)

where x̂N exists and is unique whenever M is a Riemannian space of non-positive curvature [29][30]. The Riemannian barycentre of covariance
matrices arises when M = Pn , the space of n × n covariance matrices, equipped with its affine-invariant metric. Its existence and uniqueness
follow from the fact that Pn is a Riemannian symmetric space of non-positive curvature [14][15].

Due to its many applications, the Riemannian barycentre of covariance matrices is the subject of intense ongoing research [11][31][32]. Recently,
attention has been directed to the problem of computing the Riemannian barycentre of structured covariance matrices [23][24][33]. This problem
arises because if Y1, . . . , YN ∈ Pn are covariance matrices which have some additional structure, then their Riemannian barycentre ŶN need not
have this same structure [33]. In order to resolve this issue, two approaches have been proposed, as follows.

Note that a space of structured covariance matrices is the intersection of Pn with some real vector space V of n× n matrices. This is here
denoted V Pn = V ∩ Pn . The vector space V can be that of matrices which have complex, Toeplitz, or block-Toeplitz structure, etc. The first
approach to computing the Riemannian barycentre ŶN of Y1, . . . , YN ∈ V Pn was proposed in [33]. It defines ŶN as a minimiser of the variance
function (5) over V Pn , rather than over the whole of Pn . This is an extrinsic approach, since it considers V Pn as a subspace of Pn . By contrast,
the second approach to computing ŶN is an intrinsic approach, proposed in [21]–[24]. It considers V Pn as a “stand-alone” Riemannian manifold
M = V Pn equipped with the Hessian metric (3). Then, ŶN is given by the general definition of the Riemannian barycentre, applied to this
Riemannian manifold M.

For the present paper, the intrinsic approach to the definition of the Riemannian barycentre of structured covariance matrices is preferred. In
this approach, a space V Pn of structured covariance matrices is equipped with the Hessian metric (3). If V Pn is the space of complex, Toeplitz, or
block-Toeplitz covariance matrices, then it becomes a Riemannian symmetric space of non-positive curvature, when equipped with this metric [21]–
[24]. In turn, this allows for the definition of Gaussian distributions, based on Section III. In general, note that V Pn is an open convex cone in
the real vector space V . If V Pn is moreover a homogeneous and self-dual cone, then it becomes a Riemannian symmetric space of non-positive
curvature, when equipped with a Hessian metric of the form (3), which is given in [21][34]. Thus, the definition of Gaussian distributions, based
on Section III, extends to any space V Pn of structured covariance matrices, whenever V Pn is a homogeneous and self-dual cone.

Throughout the following, the normalising factor Z(σ) appearing in (2) will play a major role. Proposition 1 establishes its two main properties :
(i) although (2) contains two parameters x̄ and σ, this normalising factor does not depend on x̄ but only on σ, (ii) when expressed in terms of the
“natural parameter” η = −1/2σ 2, this normalising factor is a strictly log-convex function. Proposition 3 shows these two properties are crucial
ingredients in the definition of Gaussian distributions. Precisely, if x1, . . . , xN are independent samples from a Gaussian distributions G(x̄, σ)
given by (2), then the log-likelihood function for the parameters x̄ and σ is given by

log-likelihood function of a Gaussian distribution : L(x̄, σ) = −N logZ(σ) −
1

2σ2

N∑
n=1

d 2(x̄, xn) (6)

Then, (i) guarantees that the defining Property (1) is verified. Indeed, since the first term in (6) does not depend on x̄, maximisation of L(x̄, σ)
with respect to x̄ is equivalent to minimisation of the sum of squared distances appearing in its second term. However, this is the same as the
variance function (5). On the other hand, (ii) guarantees that maximisation of L(x̄, σ) with respect to σ is equivalent to a one-dimensional convex
optimisation problem, (expressed as a Legendre transform in equation (28)). Note the exact expression of Z(σ) is given by formulae (19) and
(22) in the Proof of Proposition 1. In [35], a Monte Carlo integration technique was designed which uses these formulae to generate the graph of
Z(σ). In Section IV, this technique is shown to effectively compute Z(σ) when the space M is a space of large structured covariance matrices.

In conclusion, it is expected that Gaussian distributions on Riemannian symmetric spaces of non-positive curvature will be valuable tools in
designing statistical learning algorithms which deal with structured covariance matrices. Such algorithms would combine efficiency with reduced
computational complexity, since the main requirement for maximum likelihood estimation of Gaussian distributions is computation of Riemannian
barycentres, a task for which there exists an increasing number of high-performance routines. As discussed in Section V, this is the essential
advantage of the definition of Gaussian distributions adopted in the present paper, over other recent definitions, also used in designing statistical
learning algorithms, such as those considered in [26]–[28].
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Table 1. : Gaussian distributions on symmetric spaces and spaces of structured covariance matrices

Notation Riemannian metric Normalising factor Z(σ) Sampling algorithm

Section III :
symmetric space M

(19) and (22)
in Proposition 1

Algorithm 1.
based on Proposition 2

Paragraph IV-A : n×n
complex covariance
matrices

Monte Carlo
integration from (34h)

Algorithm 2.
in Appendix IIM = Hn Hessian metric (34b)

Paragraph IV-B : n×n
Toeplitz covariance
matrices

Algorithm 3.
in Appendix IIM = Tn Hessian metric (37a) Analytic expression (37h)

Paragraph IV-C : n×n
block-Toeplitz
covariance matrices
with N ×N blocks

Monte Carlo
integration from
(40i) and (40j)

Algorithm 4.
in Appendix IIM = T Nn Hessian metric (40a)

II. MATHEMATICAL BACKGROUND ON RIEMANNIAN SYMMETRIC SPACES

This section gives five facts about Riemannian symmetric spaces, Facts 1–5 below, which will be essential for the following. These are here
stated in their general form, but three concrete examples are presented in Section IV.

A Riemannian symmetric space is a Riemannian manifold M such that, for each point x ∈ M, there exists an isometry transformation
Ix :M→M whose effect is to reverse geodesic curves passing through x [36] (Chapter IV, Page 170). Any Riemannian symmetric space is a
Riemannian homogeneous space, although the converse is not true. In particular, Riemannian symmetric spaces share in two important properties
of Riemannian homogeneous spaces, given in Facts 1 and 2 below : invariance of distance, and invariance of integrals.

To say that M is a Riemannian homogeneous space means a Lie group G acts transitively and isometrically on M [36] (Chapter II, Page
113). Each element g ∈ G defines a geometric transformation of M which maps each point x ∈ M to its image g · x. These transformations
satisfy the group action property,

( g1g2) · x = g1 · ( g2 · x) (7)

Then, transitivity of group action means that for any two points x and y of M, there exists g ∈ G such that g · x = y.
When G acts onM transitively, one says thatM is a homogeneous space. Homogeneous spaces admit a general description, as the quotient of

G by a compact Lie subgroup H . Precisely, choose some point o ∈M as origin, and let H be the subgroup of all h ∈ G such that h · o = o [36]
(Chapter II, Page 113). Then, M is identified with the quotient G/H .

When G acts on M isometrically, the transformations x 7→ g · x preserve the Riemannian metric and Riemannian distance of M. This
is expressed in Fact 1 below, which uses the following notation [37]. The Riemannian metric of M is denoted ds2. For x ∈ M, this defines
a quadratic form : ds2

x(dx) = squared length of a displacement dx away from x. The Riemannian distance corresponding to the metric ds2 is
denoted d(x, y) for x, y ∈M. Fact 1 is not a theorem, but really part of the definition of a Riemannian homogeneous space [36].
I Fact 1 (Invariant distance): For g ∈ G and x, y ∈M,

preservation of metric : z = g · x ⇒ ds2
z(dz) = ds2

x(dx) (8a)

preservation of distance : d( g · x, g · y) = d(x, y) (8b)
Turning to Fact 2, recall that the Riemannian metric ds2 defines a Riemannian volume element dv [37]. Fact 1 states that the transformations

x 7→ g · x preserve the metric ds2. Therefore, these transformations must also preserve the volume element dv. This leads to the invariance of
integrals with respect to dv, as follows [36] (Chapter X, Page 361).
I Fact 2 (Invariant integrals): For any integrable function f :M→ R and g ∈ G,

preservation of volume :
∫
M

f(g · x) dv(x) =

∫
M

f(x) dv(x) (9)

Facts 1 and 2 above hold for any Riemannian homogeneous space. The following fact 3 requires that M should have non-positive curvature. This
guarantees the existence and uniqueness of Riemannian barycentres in M [29].

Let π be a probability distribution on M. The Riemannian barycentre of π is a point x̂π defined as follows. Consider Eπ :M→ R+ ,

variance function : Eπ(x) =

∫
M

d 2(x, z) dπ(z) (10)

The Riemannian barycentre x̂π is then a global minimiser of Eπ . Fact 3 states that x̂π exists and is unique [29] (Theorem 2.1., Page 659).
I Fact 3 (Riemannian barycentre): Assume that M has non-positive curvature. For any probability distribution π on M, the Riemannian

barycentre x̂π exists and is unique. Moreover, x̂π is the unique stationary point of the variance function Eπ .
Fact 2 above states that integrals with respect to the Riemannian volume element dv are invariant. However, it does not show how these integrals
can be computed. This is done by the following Fact 4, which requires that M should be a Riemannian symmetric space of non-compact type.
This means that the group G is a semisimple Lie group of non-compact type [36] (Chapter V). It should be noted that this property implies that
M has (strictly) negative curvature, so that Fact 3 holds true.

To state Fact 4, assume that G is a semisimple Lie group of non-compact type. Recall that H is a compact Lie subgroup of G. Let g and h
denote the Lie algebras of G and H respectively, and let g have the following Iwasawa decomposition [36] (see details in Chapter VI, Page 219),

Iwasawa decomposition : g = h + a + n (11)

where a is an Abelian subalgebra of of g, and n is a nilpotent subalgebra of g. Each x ∈ M can be written in the following form [36] (Chapter
X),

polar coordinates : x = exp (Ad(h) a) · o a ∈ a , h ∈ H (12)

where exp : g → G is the Lie group exponential, and Ad is the adjoint representation. Here, it will be said that (a, h) are polar coordinates of
x, which is then written x = x(a, h) (this is an abuse of notation, since (a, h) are not unique, but it will provide useful intuition).

The following integral formula holds [36] (Chapter X, Page 382). It makes use of the concept of roots. These are linear mappings λ : a→ R,
which characterise the Lie algebra g. For a minimal, introduction to this concept, see Appendix I.
I Fact 4 (Integration in polar coordinates): For any integrable function f :M→ R,∫

M
f(x) dv(x) = C×

∫
H

∫
a

f(a, h)D(a) da dh (13)
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where C is a constant which does not depend on the function f , dh is the normalised Haar measure on H and da is the Lebesgue measure on a.
The function D : a→ R+ is given by

D(a) =
∏
λ>0

sinhmλ (|λ(a)|) (14)

where the product is over positive roots λ : a→ R, and mλ is the dimension of the root space corresponding to λ.
Fact 5 provides a geometric interpretation of the polar coordinates (a, h) introduced in (12). Just like usual polar coordinates, these give a direct
description of geodesics and distance, with respect to the origin o [36] (Chapter IV).
I Fact 5 (Geometric interpretation of polar coordinates): The two following properties hold true.

(i) Geodesic curves passing through the origin o ∈M are exactly the curves x : R→M given by x(t) = x(t a, h) where a and h are constant.
(ii) The Riemannian distance between the origin o ∈M and x(a, h) is given by

distance to origin : d 2(o, x) = B(a, a) (15)

where B : g× g→ R is the Killing form, an Ad-invariant symmetric bilinear form on g, which is positive definite on a [36] (Chapter II).

III. GAUSSIAN DISTRIBUTIONS ON RIEMANNIAN SYMMETRIC SPACES

This section introduces Gaussian distributions on Riemannian symmetric spaces, and studies maximum likelihood estimation of their parameters.
These distributions establish a connection between the statistical concept of maximum likelihood estimation, and the geometric concept of
Riemannian barycentre.

Here, M is a Riemannian symmetric space of non-positive curvature. Recall d(x, y) denotes Riemanniain distance between x, y ∈ M, and
dv denotes the Riemannian volume element of M. A Gaussian distribution is one that has the following probability density with respect to dv,

p(x| x̄, σ) =
1

Z(σ)
× exp

[
−
d 2(x, x̄)

2σ 2

]
(16)

where x̄ ∈M and σ > 0. This distribution will be denoted G(x̄, σ).
The main feature of the probability density (16) is that the normalising factor Z(σ) does not depend on the parameter x̄. This will be proved as

part of Proposition 1 below, and is the key ingredient in the relationship between Gaussian distributions and the concept of Riemannian barycentre.
In [14][15], this relationship was developed in the special case where M = Pn , the symmetric space of real n × n covariance matrices. The
present paper considers the general case where M is any symmetric space of non-positive curvature. This allows for Gaussian distributions of the
form (16) to be extended to spaces of structured covariance matrices, such as complex, Toeplitz, and block-Toeplitz covariance matrices, as done
in Section IV below.

In the following, Paragraph III-A gives Proposition 1 which characterises the normalising factor Z(σ), and Proposition 2 which explains how
to sample from a Gaussian distribution with given parameters. Paragraph III-B is concerned with maximum likelihood estimation of the parameters
of a Gaussian distribution. In particular, it contains Proposition 3 which shows that the maximum likelihood estimate x̂N of the parameter x̄
is precisely the Riemannian barycentre of available observations x1, . . . , xN . Finally, Proposition 4 can be used to obtain the consistency and
asymptotic normality of x̂N .

A. Definition : the role of invariance
This paragraph shows how the invariance properties of the Riemannian symmetric spaceM, described in Section II, can be used to characterise

Gaussian distributions onM. Precisely, for a Gaussian distribution G(x̄, σ), it is possible to obtain a) an exact expression of the normalising factor
Z(σ) appearing in (16), and b) a generally applicable method for sampling from this distribution G(x̄, σ).

Proposition 1 is concerned with the normalising factor Z(σ). A fully general expression of Z(σ) is given by (19) and (22) in the proof of
this proposition. To state Proposition 1, consider the following notation,

f(x| x̄, σ) = exp

[
−
d 2(x, x̄)

2σ 2

]
Z(x̄, σ) =

∫
M

f(x| x̄, σ) dv(x) (17)

In other words, f(x| x̄, σ) is the “profile” of the probability density p(x| x̄, σ).
Proposition 1 (Normalising factor): The two following properties hold true.

(i) Z(x̄, σ) = Z(o , σ) for any x̄ ∈M, where o is some point chosen as origin of M.
(ii) Z(σ) = Z(o , σ) is a strictly log-convex function of the parameter η = −1/2σ 2.
Proof : the proof of (i) follows from Facts 1 and 2. Since G acts transitively on M, any x̄ ∈ M is of the form x = g · o for some g ∈ G.
Applying (8b) from Fact 2 to (17), it then follows that f(x| x̄, σ) = f(g−1 · x| o , σ). Accordingly,

Z(x̄, σ) =

∫
M

f(x| x̄, σ) dv(x) =

∫
M

f(g−1 · x| o , σ) dv(x)

Now, by Fact 2, (and using g−1 instead of g in (9)),∫
M

f(g−1 · x| o , σ) dv(x) =

∫
M

f(x| o , σ) dv(x) = Z(o , σ)

so that (i) is indeed true. The proof of (ii) is based on Facts 4 and 5. Assume first thatM is a Riemannian symmetric space of non-compact type.
By (13) and (15),

Z(σ) =

∫
M

f(x| o , σ) dv(x) = C×
∫
H

∫
a

exp

[
−
B(a, a)

2σ 2

]
D(a) da dh (18)

But the function under the integral does not depend on h. Since dh is the normalised Haar measure on H ,

Z(σ) = C×
∫
a

exp

[
−
B(a, a)

2σ 2

]
D(a) da (19)

In general, a Riemannian symmetric spaceM of non-positive curvature decomposes into a product Riemannian symmetric space [36] (Chapter V,
Page 208),

M =M1 × . . .×Mr (20)
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where each Mp is either a Euclidean space or a Riemannian symmetric space of non-compact type. Now, each x ∈ M is an r-tuple x =
(x1, . . . , xr) where xp ∈Mp. Moreover, for x, y ∈M,

d 2(x, y) =
r∑
p=1

d 2
p (xp , yp) (21)

where dp(xp , yp) is the Riemannian distance in Mp between xp and yp (where y = (y1, . . . , yr)). Replacing (21) in (17), it follows that,

Z(σ) = Z1(σ)× . . .× Zr(σ) (22)

where Zp(σ) is the normalising factor for the space Mp. Recall that a product of strictly log-convex functions is strictly log-convex. If Mp is
a Euclidean space of dimension q, then Zp(σ) = (2πσ2)−q/2, which is a strictly log-convex function of η. If Mp is a Riemannian symmetric
space of non-compact type, Zp(σ) is given by (19). Let ρ = B(a, a) and µ(dρ) the image of D(a)da under the mapping a 7→ ρ. It follows that

Z(σ) = C ×
∫ ∞

0

eη ρ µ(dρ) (23)

As a function of η , this is the moment-generating function of the positive measure µ(dρ), and therefore a strictly log-convex function [38], (Chapter
7, Page 103). Thus, Z(σ) is a product (22) of strictly log-convex functions of η, and therefore itself strictly log-convex. This proves (ii). �

The following Proposition 2 shows that polar coordinates (12) can be used to effectively sample from a Gaussian distribution G(x̄, σ). This
proposition is concerned with the special case where M is a Riemannian symmetric space of non-compact type. However, the general case where
M is a Riemannian symmetric space of non-positive curvature can then be obtained using decomposition (20). This is explained in the remark
following the proposition.

In the statement of Proposition 2, the following usual notation is used. If X is a random variable and P is a probability distibution, X ∼ P
means that X follows the probability distribution P .

Proposition 2 (Gaussian distribution via polar coordinates): LetM be a Riemannian symmetric space of non-compact type. LetM = G/H
where g has Iwasawa decomposition (11). Let h and a be independent random variables in H and a, respectively. Assume h is uniformly distributed
on H , and a has probability density, with respect to the Lebesgue measure da on a,

p(a) ∝ exp

[
−
B(a, a)

2σ 2

]
D(a) (24)

where ∝ indicates proportionality. The following hold true.
(i) If x = x(a, h) as in (12), then x ∼ G(o, σ).
(ii) If x ∼ G(o, σ) and x̄ = g · o , then g · x ∼ G(x̄, σ).
Proof : the proof of (ii) is a direct application of Fact 2, (compare to [15], proof of Proposition 5). Only the proof of (i) will be detailed. This
follows using Fact 4. Recall that a uniformly distributed random variable h in H has constant probability density, identically equal to 1, with
respect to the normalised Haar measure dh. Let h and a be as in the statement of the proposition. Since h and a are independent, (24) implies
that for any function ϕ : H × a→ R, the expectation of ϕ(h, a) is equal to∫

H

∫
a

ϕ(h, a) p(a) da dh ∝
∫
H

∫
a

ϕ(h, a) exp

[
−
B(a, a)

2σ 2

]
D(a) da dh

Then, if x = x(a, h) as in (12) and ϕ̃ :M→ R, the expectation of ϕ̃(x) is proportional to,∫
H

∫
a

ϕ̃(x(h, a)) exp

[
−
B(a, a)

2σ 2

]
D(a) da dh ∝

∫
M

ϕ̃(x) p(x| o, σ) dv(x)

as follows from (13), (15) and (16). Since the function ϕ̃ is arbitrary, this shows that the probability density of x with respect to dv is equal to
p(x| o, σ). In other words, x ∼ G(o, σ). �

I Remark 1 : Proposition 2 only deals with the special case whereM is a Riemannian symmetric space of non-compact type. The general case
whereM is a Riemannian symmetric space of non-positive curvature is obtained as follows. LetM have decomposition (20) and x = (x1, . . . , xr)
be a random variable in M with distribution G(x̄, σ). If x̄ = (x̄1, . . . , x̄r), then it follows from (16) and (21) that

p(x| x̄, σ) = p(x1| x̄1, σ) × . . . × p(xr| x̄r, σ) (25)

Therefore, x1, . . . , xr are independent and each xp has distribution G(x̄p , σ). Conversely, (25) implies that if x1, . . . , xr are independent and
each xp has distribution G(x̄p , σ), then x has distribution G(x̄, σ). �

Proposition 2, along with the subsequent remark, provides a generally applicable method for sampling from a Gaussian distribution G(x̄, σ)
on a Riemanniain symmetric space of non-positive curvature M. This proceeds as follows, using decomposition (20).

l1. for p = 1, . . . , r do

l2. ifMp is a Euclidean space
l3. sample xp from a multivariate normal distribution N (x̄p, σ)

l4. end if

l5. ifMp = G/H is a Riemannian symmetric space of non-compact type
l6. sample h from a uniform distribution on H
l7. sample a from the multivariate density (24)
l8. put xp = x(a, h) as in (12)
l9. reset xp to g · xp where x̄ = g · o as in (ii) of Proposition 2.
l10. end if ALGORITHM 1. : SAMPLING FROM A GAUSSIAN

l11. end for DISTRIBUTION ON A SYMMETRIC SPACEM
l12. put x = (x1, . . . , xr)
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The above steps are completely general, and their concrete implementation depends on the specific space M at hand. When M = Pn , the
symmetric space of real n × n covariance matrices, this was described in [15] (Page 8). Three new implementations, for spaces of structured
covariance matrices, will be given in Appendix II.

B. Maximum likelihood estimation
The current paragraph studies maximum likelihood estimation of the parameters x̄ and σ of a Gaussian distribution G(x̄, σ), on a Riemannian

symmetric space of non-positive curvature M. Proposition 3 characterises the resulting maximum likelihood estimates, and Proposition 4 yields
their asymptotic behavior. Let x̂N and σ̂N be maximum likelihood estimates, based on independent samples x1, . . . , xN from G(x̄, σ). Proposition
3 shows that x̂N and σ̂N provide a geometric description of these samples. Indeed, the proposition states that x̂N is the Riemannian barycentre
of x1, . . . , xN , and that σ̂N measures the dispersion (that is, mean squared distance) of x1, . . . , xN away from this Riemannain barycentre.

For Proposition 3, recall the Riemannian barycentre of x1, . . . , xN is a global minimiser of the function EN :M→ R, defined as follows[29],

empirical variance function : EN (x) =
1

N

N∑
n=1

d 2(x, xn) (26)

This is called an empirical variance function, since it is a special case of the variance function (10), corresponding to the empirical distribution
π = N−1 ∑N

n=1 δxn , where δx denotes the Dirac distribution concentrated at x ∈M. Accordingly, existence and uniqueness of the Riemannian
barycentre of x1, . . . , xN follow from Fact 3.

Proposition 3 (MLE and Riemannian barycentre): Let x1, . . . , xN be independent samples from G(x̄, σ). The maximum likelihood estimates
x̂N and σ̂N , based on these samples, exist and are unique. Precisely,
(i) x̂N is the Riemannian barycentre of x1, . . . , xN .
(ii) There exists a strictly increasing bijective function Φ : R+ → R+, such that

σ̂N = Φ
(

1
N

∑N
n=1d

2(x̂N , xn)
)

(27)

Proof : from (16), the log-likelihood function for the parameters x̄ and σ is given by

L(x̄, σ) = −N logZ(σ) −
1

2σ2

N∑
n=1

d 2(x̄, xn)

By definition, x̂N and σ̂N are found by maximising this function. The sum in the second term on the right hand side does not depend on σ.
Therefore, x̂N can be found separately, by minimising this sum over the values of x̄ (minimisation instead of maximisation is due to the minus
sign ahead of the sum). However, this is the same as minimising the empirical variance function (26). Now, the unique global minimiser of the
empirical variance function is the Riemannian barycentre of x1, . . . , xN , whose existence and uniqueness follow from Fact 3 as noted before the
proposition. This proves (i). Now, assume x̂N has been found. Then, to find σ̂N , it is convenient to maximise L(x̂N , σ) over the values of the
parameter η = −1/2σ 2 , which was already used in Proposition 1. Indeed, note that

1

N
L(x̂N , σ) = η ρ̂− ψ(η)

where ρ̂ = N−1 ∑N
n=1 d

2(x̂N , xn) and ψ(η) = logZ(σ). Thus, the maximum likelihood estimate η̂N is given by

η̂N = argmaxη {η ρ̂− ψ(η)} (28)

Recall that (ii) of Proposition 1 states that ψ is a strictly convex function, so its derivative ψ′ is strictly increasing. But, from (28), η̂N is given
by ψ′(η̂N ) = ρ̂. It follows that η̂N exists and is unique, whenever ρ̂ is in the range of ψ′. It is possible to show, using (23), that this range is
equal to R+, which implies existence and uniqueness of η̂N in general. Now, to complete the proof of (ii), it is enough to perform the change of
parameter from η̂N back to σ̂N . �

Proposition 3 shows how the maximum likelihood estimates x̂N and σ̂N can be computed, based on the samples x1, . . . , xN . Since x̂N is the
Riemannian barycentre of these samples, x̂N can be computed using a variety of existing algorithms for computation of Riemannian barycentres.
These include gradient descent [39][40], Newton method [41][42], recursive estimators [43][44], and stochastic methods [45][46]. Some of these
algorithms are specifically adapted to Riemannian symmetric spaces of non-positive curvature (that is, to the context of the present paper) [42]–[44].
Least computationally expensive are the recursive estimators [43][44]. On the other hand, the most computationally expensive, involving exact
calculation of the Hessian of squared Riemannian distance, is the Newton method of [42]. Computation of σ̂N amounts to solving the equation
ψ′(η̂N ) = ρ̂. This is a scalar non-linear equation, which can be solved using standard methods, such as the Newton-Raphson algorithm.

I Remark 2 : the entropy of a Gaussian distribution G(x̄, σ) is directly related to the function ψ introduced in the proof of Proposition 1.
By definition, the entropy of G(x̄, σ) is [25],

h(x̄, σ) =

∫
M

log p(x| x̄, σ)× p(x| x̄, σ) dv(x)

Using Fact 2 as in the proof of (i) in Proposition 1, it follows h(x̄, σ) = h(o, σ), so the entropy does not depend on x̄. Evaluataion of h(o, σ)
gives, in the notation of (23),

h(o, σ) = C ×
∫ ∞

0

(η ρ− ψ(η))× eη ρ−ψ(η) µ(dρ)

Following [38] (Chapter 9), let ψ∗ be the Legendre transform of ψ and ρ̄ = ψ′(η). Then, the entropy h(o, σ) is equal to

entropy of a Gaussian distribution : ψ∗(ρ̄) = η ρ̄− ψ(η) (29)

Essentially, this is due to the fact that, when x̄ is fixed, G(x̄, σ) takes on the form of an exponential distribution with natural parameter η and
sufficient statistic ρ. �

The following Proposition 4 clarifies the significance of the parameters x̄ and σ of a Gaussian distribution G(x̄, σ). This Proposition is an
asymptotic counterpart of Proposition 3. In particular, it can be used to obtain the consistency and asymptotic normality of x̂N . This is explained
in the remark after the proposition. For the statement of Proposition 4, recall the definition (10) of the variance function Eπ : M → R+ of a
probability distribution π on M. If π = G(x̄, σ), denote Eπ(x) = E(x| x̄, σ).

Proposition 4 (significance of the parameters): The parameters x̄ and σ of a Gaussian distribution G(x̄, σ) are given by,

x̄ is the Riemannian barycentre of G(x̄, σ) : x̄ = argminx∈M E(x| x̄, σ) (30a)
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σ = Φ
(∫
M
d 2(x̄, z) p(z| x̄, σ) dv(z)

)
(30b)

where Φ : R+ → R+ is the strictly increasing function introduced in Proposition 3.
Proof : the proof can be carried out by direct generalisation of the one in [15] (proof of Proposition 9). An alternative, shorter proof of (30a),
based on the definition of a Riemannian symmetric space, can be obtained by generalising [14] (proof of Theorem 2.3.). �

I Remark 3 : Proposition 4 yields the consistency and asymptotic normality of the maximum likelihood estimate x̂N . Precisely,

consistency of x̂N : lim
N

x̂N = x̄ (31a)

asymptotic normality of x̂N :
√
N Logx̄(x̂N )⇒ Nd(0 , C−1) (31b)

where Log denotes the Riemannian logarithm mapping [37], and Nd a normal distribtuion in d dimensions, (d being the dimension of M). Here,

C =
∫
M

(
σ−2 Logx̄(z)

)
⊗
(
σ−2 Logx̄(z)

)
p(z| x̄, σ) dv(z) (32)

where ⊗ denotes exterior product of tangent vectors to M. Indeed, (31a) follows from Propositions 3 and 4. According to [47] (Theorem 2.3.,
Page 8), the Riemannian barycentre x̂N of independent samples x1, . . . , xN from G(x̄, σ) converges to the Riemannien barycentre of G(x̄, σ).
But this is exactly x̄. As for (31b), it can be proved by direct generalisation of the proof in [15] (Proposition 11). �

IV. APPLICATION TO SPACES OF STRUCTURED COVARIANCE MATRICES

The previous Section III introduced the notion of a Gaussian distribution on a Riemannian symmetric space of non-positive curvature,M. In the
present section, the development of Section III is applied to the special case whereM is a space of structured covariance matrices. Three variants
are considered : M = space of complex covariance matrices, M = space of Toeplitz covariance matrices, and M = space of block-Toeplitz
covariance matrices. In [14][15], Gaussian distributions were studied for M = space of real covariance matrices. Here, they are extended to
spaces of covariance matrices with additional structure.

It seems that [21][22], in general, a space of structured covariance matrices becomes a Riemannian symmetric space of non-positive curvature,
when it is equipped with a so-called Hessian metric. Roughly, a Hessian metric is a Riemannian metric arising from the entropy function,

Riemannian metric = Hessian of entropy (33)

where, ifM is a space of structured covariance matrices, the entropy of x ∈M is minus its log-determinant, H(x) = − log det(x) [25] (Chapter
8, Page 254), as in the usual formula for the entropy of a multivariate normal distribution, with covariance x.

For each of the three variants mentioned above, the following development will be carried out. First, (33) is used to obtain a Riemannian metric
ds2 on M. It turns out that, as intended, this metric makes M into a Riemannian symmetric space of non-positive curvature. Second, Gaussian
distributions onM are characterised, as in Section III. Precisely, the graphs of the functions logZ : R+ → R and Φ : R+ → R+ are given based
on Propositions 1 and 3. Further, the reader is referred to Appendix II, for algorithms which provide samples from a Gaussian distribution on M.

A. Complex covariance matrices
Here, M = Hn , the space of n× n complex covariance matrices. Precisely, each element Y ∈ Hn is an n× n Hermitian positive definite

matrix. This space Hn is equipped with a Hessian metric as follows.
– Hessian metric : application of the general prescription (33) leads to a Riemannian metric on Hn which is identical to the well-known

affine-invariant metric, used in [48][3]. Indeed, the Hessian of the entropy function H(Y ) = − log det(Y ) has the following expression,

Hessian of entropy : D2H(Y )[v, w] = tr
[
Y −1v Y −1w

]
Y ∈ Hn

for any complex matrices v and w, where tr denotes the trace. This expression can be found using the matrix differentiation formulae, as in [49]
(Appendix A, Page 196),

D log det(Y )[w] = tr
[
Y −1w

]
DY −1[v] = −Y −1v Y −1 (34a)

Replacing in (33), gives the affine-invariant metric of Hn,

ds2
Y (dY ) = D2H(Y )[dY, dY ] = tr

[
Y −1dY Y −1dY

]
Y ∈ Hn (34b)

The Riemannian distance corresponding to the metric (34b) has the following expression [48][3],

d 2(X,Y ) = tr
[
log
(
X−1/2Y X−1/2

)]2
X,Y ∈ Hn (34c)

where all matrix functions, (matrix power and logarithm), are Hermitian matrix functions [50]. Moreover, the Riemannian volume element dv is
given by, (this can be checked using [51], Lemma 2.1),

dv(Y ) = det(Y )−n
∏
i≤j

Re dYij
∏
i<j

Im dYij (34d)

where subscripts denote matrix elements, and Re and Im denote real and imaginary parts.
– Symmetric space : equipped with the Riemannian metric (34b), Hn is a Riemannian symmetric space of non-positive curvature [36].

Accordingly, it is possible to apply Facts 1–5. To do so, note that G = GL(n,C), the Lie group of n × n invertible complex matrices, acts on
Hn transitively and isometrically by congruence transformations [48],

g · Y = g Y gH g ∈ G , Y ∈ Hn (34e)

where H denotes the conjugate transpose. Then, Facts 1 and 2 state that definitions (34b)–(34d) verify the general identities (8) and (9). Furthermore,
Fact 3 states the existence and uniqueness of Riemannian barycentres in Hn.

The application of Facts 4 and 5 to Hn leads to the two following formulae, which are proved in Example 1 of Appendix I,∫
Hn

f(Y ) dv(Y ) = C×
∫
U(n)

∫
Rn

f(r, U)
∏
i<j

sinh2(|ri − rj |/2) dr dU (34f)

d 2(I, Y ) = ‖r‖2 =

n∑
j=1

r2
j (I = n× n identity matrix) (34g)
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(a) Graph of logZ : R+ → R (b) Graph of Φ : R+ → R+

Fig. 1: logZ and Φ for 20 × 20 complex covariance matrices

For Hn, formulae (34f) and (34g) play the same role as formulae (13) and (15), for a general symmetric space M. Here Y = UerUH is the
spectral decomposition of Y , with U ∈ U(n), the group of n × n unitary matrices, and er = diag(er1 , . . . , ern ) for r = (r1, . . . , rn) ∈ Rn.
Moreover, dr denotes the Lebesgue measure on Rn and dU denotes the normalised Haar measure on U(n).

– Gaussian distributions : the functions logZ : R+ → R and Φ : R+ → R+, for Gaussian distributions on Hn, can be obtained using
formulae (34f) and (34g). These yield the following expression for Z(σ), similar to (18) in the proof of Proposition 1,

Z(σ) =

∫
Hn

exp

[
−
d 2(I, Y )

2σ 2

]
dv(Y ) = C×

∫
U(n)

∫
Rn

exp

[
−
‖r‖2

2σ 2

] ∏
i<j

sinh2(|ri − rj |/2) dr dU

Since the function under the double integral does not depend on U , this integral simplifies to a formula similar to formula (19) in the proof of
Proposition 1,

Z(σ) = C×
∫
Rn

exp

[
−
‖r‖2

2σ 2

] ∏
i<j

sinh2(|ri − rj |/2) dr (34h)

For any moderate value of n, (in practice, up to n ≈ 40 has been considered), this formula can be numerically evaluated on a desktop computer,
using a specifically designed Monte Carlo technique [35], leading to the graph of Z(σ). Then, obtaining the graphs of logZ : R+ → R and
Φ : R+ → R+ is straightforward. In particular, it follows from (28) in the proof of Proposition 3 that the function Φ is obtained by solving, for
each ρ ∈ R+, the equation ρ = ψ′(η). Denoting η̂ the unique solution of this equation, it follows that Φ(ρ) = σ̂ where η̂ = −1/2σ̂2.

Figure 1 shows the graphs of logZ and Φ when n = 20. The constant factor C appearing in (34h), which depends on n through an involved
expression (compare to [15], Proposition 4), is ignored in these graphs. This has no influence on the graph of Φ.

I Remark 4 : the space H2 of 2 × 2 complex covariance matrices plays a central role in polarimetric synthetic aperture radar (PolSAR)
image analysis [52][53]. Each pixel in a PolSAR image is given by a covariance matrix Y ∈ H2, which is the coherency matrix of a polarised
lightwave. For the special case of the space H2, the analytic expression of the function Z(σ) can be found by integrating (34h),

Z(σ) = C × πσ2
(
eσ

2 − 1
)

(34i)

Formula (34i) gives the same behavior as the function represented in Figure 3a. Indeed, it is clear from this formula that logZ(σ)→ −∞ when
σ → 0 and that logZ(σ)→ +∞ when σ → +∞. �

B. Toeplitz covariance matrices
Here, M = Tn , the space of n × n Toeplitz covariance matrices. Precisely, each element T ∈ Tn is an n × n Hermitian positive definite

matrix, which also has Toeplitz structure. Toeplitz covariance matrices are of fundamental importance in signal processing, since they are the
autocovariance matrices of wide-sense stationary random signals [54]. A Hessian metric on Tn was introduced in [21][22]. This metric is expressed
in terms of so-called reflection or partial autocorrelation coefficients, as given by (37a) below.

It should be noted that Tn is a subspace of the space Hn of complex covariance matrices, studied in IV-A. As suggested in [33], this means
Tn can be equipped with a Riemannian metric which is simply the restriction of the Riemannian metric (34b) from Hn . Unlike the Hessian metric
of [21][22], this metric does not make Tn into a Riemannian symmetric space. Therefore, it cannot be used in the present paper.

I Remark 5 : in signal processing, reflection coefficients arise naturally in linear prediction problems [54] (Chapter 8). Equivalently, they
also arise from the study of orthogonal polynomials on the unit circle [55]. Here, it is suitable to recall their definition from this analytical point
of view [55] (see Chapter 1, Page 55). Recall each element T ∈ Tn has Toeplitz structure. That is, there exist r0 > 0 and r1, . . . , rn−1 ∈ C
such that Tij = T ∗ji = ri−j , (where ∗ denotes the complex conjugate). Since T is positive definite, it can be used to define a scalar product on
polynomials of degree ≤ n− 1, which depend on a complex variable z on the unit circle, |z|2 = zz∗ = 1. This scalar product is given by

(zi, zj) = (zj , zi)∗ = ri−j (35a)

Let φ0, . . . , φn−1 be orthogonal monic polynomials with respect to this scalar product (monic means the leading degree coefficient is equal to 1).
Reflection coefficients are the complex numbers α1, . . . , αn−1 defined by the Szegö-Levinson recursion,

αj = −(1, zφj−1)/δj−1 φj = zφj−1 + αj φ̃j−1 δj = δj−1(1− |αj |2) (35b)

where φ0 = 1 and δ0 = r0 , and φ̃ is the polynomial obtained from φ by conjugating and reversing the order of its coefficients. The significance of
the numbers δj is that δj = (φj , φj), so δj must be strictly positive. From the third formula in (35b), this implies that each reflection coefficient
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αj verifies |αj | < 1. Reflection coefficients allow a useful expression of the determinant of the matrix T . Indeed, since the polynomials φj are
orthogonal with respect to the scalar product defined by T ,

det(T ) =

n−1∏
j=0

(φj , φj) = r0

n−1∏
j=1

δj = rn0

n−1∏
j=1

(1− |αj |2 )n−j (35c)

This will be useful in obtaining the Hessian metric (37a) below. �

– Hessian metric : consider now the Hessian metric on Tn, introduced in [21][22]. This is based on the following identification,

Tn = R+ × D × . . . × D (n factors) (36)

where D denotes the set of complex α which verify |α| < 1. Precisely [56][57], Tn is diffeomorphic to the product space on the right hand side,
and the required diffeomorphism is given in the notation of (35) by T 7→ (r0, α1, . . . , αn−1). The advantage of parameterising T by means of
(r0, α1, . . . , αn−1) instead of (r0, r1, . . . , rn−1) is that the latter are subject to a complicated set of non-linear constraints, expressing the fact
that T is positive definite, whereas the former are subject to no constraints, except r0 ∈ R+ and αj ∈ D. In the following, r0 is denoted r, since
there is no risk of confusion.

Using (36), the Hessian metric on Tn can be found directly. Note first the entropy function H(T ) = − log det(T ) follows from (35c),

entropy function : H(T ) = −n log r −
n−1∑
j=1

(n− j) log(1− |αj |2)

Note the following elementary calculations,

∂2H

∂r2
= n

1

r2

∂2H

∂αj ∂α∗j
= (n− j)

[
1− |αj |2

]−2

These immediately yield the Riemannian metric [21][22],

ds2
T (dr, dα) = n

(
dr

r

)2

+

n−1∑
j=1

(n− j) ds2
αj

(dαj) (37a)

where ds2
α(dα) = |dα|2

/[
1− |α|2

] 2
α ∈ D

Here, ds2
α is recognised as the Poincaré metric on D [58] (Chapter III). Accordingly, the Riemannian distance and Riemannian volume element

on Tn have the following expressions,

d2(T (1), T (2)) = n
∣∣log

(
r(2)

)
− log

(
r(1)

) ∣∣2 +

n−1∑
j=1

(n− j) d 2
D (α

(1)
j , α

(2)
j ) (37b)

where dD(α, β) = atanh

∣∣∣∣ α− β1− α∗β

∣∣∣∣ α, β ∈ D

dv(T ) =
√
n
∏n−1
j=1 (n−j) ×

dr

r

n−1∏
j=1

dv(αj) (37c)

where dv(α) =
Re dα Im dα

[1− |α|2 ] 2 α ∈ D

Here, d 2
D (α, β) and dv(α) denote the Riemannian distance and Riemannian volume element on D, corresponding to the Poincaré metric ds2

α

appearing in (37a) [58].
– Symmetric space : to see that the Riemannian metric (37a) makes Tn into a Riemannian symmetric space of non-positive curvature, it is

enough to notice that decomposition (36) is of the form (20), as in the proof of Proposition 1 in III-A. Indeed, in this decomposition, R+ appears
as a one-dimensional Euclidean space, by identification with R through the logarithm function, while each copy of D appears as a scaled version
of the Poincaré disc, with the scale factor (n − j)1/2 , and therefore as a Riemannian symmetric space of non-compact type [58] (Chapter III),
(the Poincaré disc is the set D with the Poincaré metric ds2

α , and is a space of constant negative curvature).
To apply Facts 1–5 to Tn , consider the group G = R+ × SU(1, 1) × . . . × SU(1, 1), where SU(1, 1) is the group of 2 × 2 complex

matrices u such that

u =

(
a b
c d

)
: uT

(
0 −1
1 0

)
u =

(
0 −1
1 0

)
, uH

(
−1 0
0 1

)
u =

(
−1 0
0 1

)
(37d)

with a, b, c, d ∈ C and T denotes the transpose. This group acts transitively and isometrically on Tn in the following way,

g · T = (s r, u1 · α1, . . . , un−1 · αn−1) , g = (s, u1, . . . , un−1) (37e)

where u · α =
aα+ b

c α+ d
u ∈ SU(1, 1) , α ∈ D

Then, Facts 1 and 2 state that definitions (37a)–(37c) verify the general identities (8) and (9). Furthermore, Fact 3 states the existence and uniqueness
of Riemannian barycentres in Tn.

The application of Facts 4 and 5 to Tn leads to the two following formulae, which are proved in Example 2 of Appendix I,∫
Tn

f(T ) dv(T ) = C×
∫ +∞

−∞

∫
D
. . .

∫
D
f(t, α1, . . . , αn−1) dv(α1) . . . dv(αn−1) dt (37f)∫

D
f(α) dv(α) = C×

∫ 2π

0

∫ +∞

−∞
f(ρ, θ) sinh(|ρ|)dρ dθ
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(a) Graph of logZ : R+ → R
(b) Graph of Φ : R+ → R+

Fig. 2: logZ and Φ for 20 × 20 Toeplitz covariance matrices

d 2(I, T ) = n t2 +

n−1∑
n=1

(n− j)ρ 2
j (I = n× n identity matrix) (37g)

For Tn, formulae (37f) and (37g) play the same role as formulae (13) and (15), for a general symmetric space M. Here r = et and αj =
tanh(ρj) e

iθj for j = 1, . . . , n− 1, where i =
√
−1.

– Gaussian distributions : using formulae (37f) and (37g), it is possible to find the exact analytic expression of the function logZ : R+ → R
for Gaussian distributions on Tn. From this expression, which is given in (37i) below, the function Φ : R+ → R+ is found in the same way
discussed in IV-A.

Unlike Gaussian distributions on Hn, for which the function logZ cannot be found analytically, but only using the Monte Carlo technique
of [35], Gaussian distributions on Tn admit an exact analytic expression of logZ for any value of n. This means there is no computational
limitation on the size (given by n) of Toeplitz covariance matrices which can be modelled using Gaussian distributions.

Consider the calculation of Z(σ) using (37f) and (37g). Recall from (18) in the proof of Proposition 1,

Z(σ) =

∫
Tn

exp

[
−
d 2(I, T )

2σ 2

]
dv(T )

Upon replacing (37f) and (37g), this becomes,

Z(σ) = C×
∫ +∞

−∞
exp

[
−
n t2

2σ2

]
dt ×

n−1∏
j=1

∫ 2π

0

∫ +∞

−∞
exp

[
−

(n− j) ρ2
j

2σ2

]
sinh(|ρj |)dρj dθj

by computing each integral in the product, it follows that

Z(σ) = C×
√

2π/n σ ×
n−1∏
j=1

ZD

(
σ
/√

n− j
)

(37h)

ZD(σ) = (2π)2/3 σ e
σ2

2 × erf

(
σ
√

2

)
where erf denotes the error function [59]. Finally, this yields the analytic expression of logZ,

logZ(σ) = C + log
(
σ
/√

n
)

+

n−1∑
j=1

logZD
(
σ
/√

n−j
)

(37i)

Using (37h) and (37i), Figure 2 shows the graphs of logZ and Φ when n = 20. These graphs ignore the constant C appearing in (37i).

C. Block-Toeplitz covariance matrices
Here,M = T Nn , the space of n×n block-Toeplitz covariance matrices which have N ×N Toeplitz blocks. Precisely, each element T ∈ T Nn

is an nN × nN Hermitian positive definite matrix, which has a block structure of the following form

T =



T0 T∗1 . . . T∗n−1

T1 T0 T∗1 . . . T∗n−2

T1 T0

...
...

...
Tn−1 Tn−2 . . . T0

 T0, . . . , Tn−1 ∈ TN

Block-Toeplitz covariance matrices which have Toeplitz blocks play a fundamental role in signal and image processing, where they arise in multi-
channel and two-dimensional linear prediction and filtering problems [60][61]. A Hessian metric on T Nn was considered in [23], see (40a) below.
This generalises the Hessian metric (37a) on the space Tn of Toeplitz covariance matrices, considered in the previous Paragraph IV-B. Precisely,
in the same way as the metric (37a) was expressed in terms of scalar reflection coefficients α1, . . . , αn−1 which belong to the complex unit disc
D, the metric (40a) will be expressed in terms of matrix reflection coefficients Ω1, . . . ,Ωn−1 which belong to the matrix unit disc DN : the set
of N × N symmetric complex matrices Ω which verify I − Ω∗Ω � 0, where I denotes the N × N identity matrix and � the Loewner order,
(X � Y means that X − Y is positive definite) [48].
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I Remark 6 : in signal and image processing, matrix reflection coefficients arise naturally in multi-channel and two-dimensional linear
prediction problems [60][61]. Here, they are introduced through the formalism of orthogonal matrix polynomials on the unit circle [62][63]
(compare to Remark 5, Paragraph IV-B). A matrix polynomial P on the unit circle is an expression P (z) = P0 + . . . + Pm zm, where z is a
complex variable on the unit circle, and P0, . . . , Pm are complex N × N matrices (here, m ≤ n − 1). Following [62] (Section 3, Page 43),
consider for a fixed T ∈ T Nn the so-called left and right matrix scalar products of matrix polynomials. These are given by,

〈P zi , Qzj 〉L = P Ti−j Q
H 〈P zi , Qzj 〉R = PH Ti−j Q (38a)

for any complex N × N matrices P and Q , where Ti−j = T ∗j−i . Let ϕL0 , . . . , ϕ
L
n−1 and ϕR0 , . . . , ϕ

R
n−1 be orthonormal matrix polynomials

with respect to these matrix scalar products. Matrix reflection coefficients Ω1, . . . ,Ωn−1 are given by the generalised Szegö-Levinson recursion,

zϕLj−1 − ρjϕLj = ϕ̃Rj−1Ωj zϕRj−1 − ϕRj ρ∗j = Ω̃jϕLj−1 (38b)

where ρj = (I−Ω∗j Ωj )1/2, and where P̃ , for a matrix polynomial P , denotes the polynomial obtained by taking the conjugate transposes of the
coefficients of P and reversing their order. It follows from [63] (Definition 2.3., Page 1615), that Ω1, . . . ,Ωn−1 ∈ DN . Moreover, Ω1, . . . ,Ωn−1

allow a useful expression of the determinant of the matrix T [23] (Page 10),

det(T ) = det(T0)n
n−1∏
j=1

det(I − Ω∗jΩj )n−j (38c)

This will be useful in obtaining the Hessian metric (40a) below. �

– Hessian metric : consider now the Hessian metric on T Nn , introduced in [23]. This is based on the following identification,

T Nn = TN × DN × . . . × DN (n factors) (39)

where, as already stated, DN denotes the set of N × N symmetric complex matrices Ω which verify I − Ω∗Ω � 0. Precisely [23], T Nn is
diffeomorphic to the product space on the right hand side, and the required diffeomorphism is given by T 7→ (T0,Ω1, . . . ,Ωn−1), in the notation
of (38). In the following, T0 is denoted P , in order to avoid the unnecessary subscript.

Using (39), the Hessian metric on Tn can be found directly [23]. Note first the entropy function H(T ) = − log det(T ) follows from (38c),

entropy function : H(T ) = −n log det(P )−
n−1∑
j=1

(n− j) log det(I − Ω∗jΩj )

Then [23] (Page 10), applying the matrix differentiation formulae (34a) yields the required Hessian metric

ds2
T (dP, dΩ) = nds2

P (dP ) +

n−1∑
j=1

(n− j) ds2
Ωj

(dΩj) (40a)

where ds2
Ω(dΩ) = tr

[
(I − ΩΩ∗)−1 dΩ (I − Ω∗Ω)−1 dΩ∗

]
Ω ∈ DN

Here, ds2
P is the Riemannian metric (37a) of the space TN , evaluated at P ∈ TN . On the other hand, ds2

Ω is recognised as the Siegel metric on
DN [64]. Accordingly, the Riemannian distance and Riemannian volume element on Tn have the following expressions,

d 2(T (1), T (2)) = nd2
TN

(P (1), P (2)) +

n−1∑
j=1

(n− j) d 2
DN

(Ω
(1)
j ,Ω

(2)
j ) (40b)

where d 2
DN

(Φ,Ψ) = tr
[
atanh2

(
R1/2

)]
R = (Ψ− Φ)(I − Φ∗Ψ)−1(Ψ∗ − Φ∗)(I − ΦΨ∗)−1 Φ,Ψ ∈ DN

Here, d2
TN

(P (1), P (2)) is the Riemannian distance (37b) between P (1), P (2) ∈ TN .

dv(T ) =
√
n
∏n−1
j=1 (n−j) × dvTN (P )

n−1∏
j=1

dv(Ωj) (40c)

where dv(Ω) =

∏
i≤j Re dΩij Im dΩij

det (I − ΩΩ∗)N+1
Ω ∈ DN

Here, dvTN (P ) is the Riemannian volume element (37c) computed at P ∈ TN . In expressions (40b) and (40c), d 2
DN

(Φ,Ψ) and dv(Ω) denote
the Riemannian distance and Riemannian volume element on DN , corresponding to the Siegel metric ds2

Ω appearing in (40a). These may be found
in [23] (Page 10) and [65] (Chapter IV, Page 84), respectively.

– Symmetric space : to see that the Riemannian metric (40a) makes T Nn into a Riemannian symmetric space of non-positive curvature, it
is enough to notice that decomposition (39) identifies T Nn with a product of Riemannian symmetric spaces of non-positive curvature. The first
factor in this decomposition is the space TN of Toeplitz covariance matrices. This was seen to be a Riemannian symmetric space of non-positive
curvature in the previous Paragraph IV-B. Each of the remaining factors is a copy of DN , equipped with a scaled version of the Siegel metric ds2

Ω,
as in (40a). With this metric, DN is a Riemannian symmetric space of non-compact type, known as the Siegel disc [36] (Exercice D.1., Page 527).

To apply Facts 1–5 to T Nn , consider the group G = GTN × Sp(n,R) × . . . ×Sp(n,R), where GTN = R+ × SU(1, 1) × . . . × SU(1, 1),
as in (37d)–(37e) of Paragraph IV-B, and where Sp(n,R) is the group of 2N × 2N complex matrices U such that [64] (Page 10),

U =

(
A B
C D

)
: UT

(
0 −I
I 0

)
U =

(
0 −I
I 0

)
, UH

(
−I 0
0 I

)
U =

(
−I 0
0 I

)
(40d)

with A,B,C,D complex N ×N matrices. This group G acts transitively and isometrically on T Nn in the following way,

g · T = (S · P ,U1 · Ω1, . . . , Un−1 · Ωn−1) , g = (S,U1, . . . , Un−1) (40e)

where U · Ω = (AΩ +B)(C Ω +D)−1 U ∈ Sp(n,R) , Ω ∈ DN

where S · P is given by (37e) for S ∈ GTN and P ∈ TN . Then, Facts 1 and 2 state that definitions (40a)–(40c) verify the general identities (8)
and (9). Furthermore, Fact 3 states the existence and uniqueness of Riemannian barycentres in T Nn .
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The application of Facts 4 and 5 to T Nn leads to the two following formulae, which are proved in Example 3 of Appendix I,∫
TNn

f(T ) dv(T ) = C×
∫
TN

∫
DN

. . .

∫
DN

f(P,Ω1, . . . ,Ωn−1) dv(Ω1) . . . dv(Ωn−1) dvTN (P ) (40f)

∫
DN

f(Ω) dv(Ω) = C×
∫
SU(N)

∫
RN

f(r,Θ)
∏
i<j

sinh(|ri − rj |)
∏
i≤j

sinh(|ri + rj |) dr dΘ

d 2(I, T ) = nd2
TN

(I, P ) +

n−1∑
j=1

(n− j) d 2
DN

(I,Ωj) (I = nN × nN identity matrix) (40g)

d 2
DN

(I,Ω) = ‖r‖2 =

n∑
j=1

r2
j

For T Nn , formulae (40f) and (40g) play the same role as formulae (13) and (15), for a general symmetric spaceM. Here, dvT (P ) and d2
TN

(I, P )
are given by (37f) and (37g). Moreover, Ω ∈ DN is written in the form,

Ω = Θ tanh(r) ΘT tanh(r) = diag (tanh(r1), . . . , tanh(rn)) (40h)

where Θ ∈ SU(N), the group of unitary N × N matrices which have unit determinant, and r ∈ RN (this is called the Takagi factorisation
in [66]). In (40f), dr denotes the Lebesgue measure on RN and dΘ denotes the normalised Haar measure on SU(N).

– Gaussian distributions : using formulae (40f) and (40g), it is possible to construct the functions logZ : R+ → R and Φ : R+ → R+ for
Gaussian distributions on T Nn . Computation of logZ, based on these two formulae, leads to a similar structure to the one found in (37i) of IV-B,
for the case of Gaussian distributions on Tn .

To see this, recall according to (18) in the proof of Proposition 1,

Z(σ) =

∫
TNn

exp

[
−
d 2(I, T )

2σ2

]
dv(T )

Upon replacing (40f) and (40g), this becomes,

Z(σ) = C×
∫
TN

exp

[
−
nd2
TN

(I, P )

2σ2

]
dvTN (P ) ×

n−1∏
j=1

∫
DN

exp

[
−

(n− j) d 2
DN

(I,Ωj)

2σ2

]
dv(Ωj)

This formula states that Z(σ) is the product of n integrals. The first of these integrals, which extends over TN , is of the form ZTN
(
σ
/√

n
)
,

where ZTN (σ) is the function given by (37h) of IV-B. On the other hand, each one of the remaining n− 1 integrals, which extend over DN , is
of the form ZDN (σ/

√
n−j ), where ZDN (σ) is given by

ZDN (σ) =

∫
DN

exp

[
−
d 2
DN

(I,Ω)

2σ2

]
dv(Ω) (40i)

Using these definitions of ZTN (σ) and ZDN (σ), it follows that,

Z(σ) = C× ZTN
(
σ
/√

n
)
×
n−1∏
j=1

ZDN

(
σ
/√

n−j
)

(40j)

Then, by taking logarithms, the following expression of logZ is found,

logZ(σ) = C + logZTN
(
σ
/√

n
)

+

n−1∑
j=1

logZDN

(
σ
/√

n−j
)

(40k)

Now, this expression indeed has a similar structure to the one in (37i) of IV-B. Formally, it is obtained from (37i) after two substitutions :
log(σ)  logZTN (σ) and logZD(σ)  logZDN (σ). Referring to decompositions (36) and (39), it is seen that, on a geometric level, these
correspond to replacing the Euclidean space R+ by the space TN , and replacing the Poincaré disc D by the Siegel disc DN .

The function logZ lends itself to numerical evaluation from expression (40k). In this expression, the function logZTN can be computed
analytically, using (37h) and (37i) of IV-B. On the other hand, the function logZDN can be evaluated from (40i) using (40f) and (40g). Precisely,
by replacing the second line of each one of these formulae in (40i), it follows that,

ZDN (σ) = C×
∫
SU(N)

∫
RN

exp

[
−
‖r‖2

2σ2

] ∏
i<j

sinh(|ri − rj |)
∏
i≤j

sinh(|ri + rj |) dr dΘ

and since the function under the integral does not depend on Θ,

ZDN (σ) = C×
∫
RN

exp

[
−
‖r‖2

2σ2

] ∏
i<j

sinh(|ri − rj |)
∏
i≤j

sinh(|ri + rj |) dr (40l)

Using this result, the function logZDN can be evaluated by means of the Monte Carlo technique of [35]. Then, complete evaluation of logZ is
achieved by substitution in (40k).

In addition to being useful in the evaluation of logZ, the function ZDN is interesting in its own right, since it gives the normalising factor
for Gaussian distributions on the Siegel disc DN . Figure 3 presents the graph of the function logZDN and of the corresponding function ΦDN ,
(defined as in (27) from Proposition 3 of III-B), for N = 20.

I Remark 7 : the Siegel disc DN is isometric to the Siegel half-plane HN , the set of N × N symmetric complex matrices Z such that
ImZ � 0 [64][67]. The Siegel half-plane HN , (in addition to its usefulness in analytical mechanics and number theory), provides a geometric
setting which leads to deep results with regard to linear filtering and linear control theory [68]–[70]. In particular, both the discrete and the
continuous forms of the Riccati equation are equivalent to invariant dynamical systems on HN , which have remarkable geometric properties. This
provides a geometric means of studying the asymptotic behavior of the Riccati equation, and therefore of linear filters and control systems. �
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(a) Graph of logZDN : R+ → R (b) Graph of ΦDN : R+ → R+

Fig. 3: logZDN and ΦDN for the Siegel disc DN with N = 20

V. DENSITY ESTIMATION WITH FINITE MIXTURES OF GAUSSIAN DENSITIES

The present section introduces finite mixtures of Gaussian densities, as a tool for dealing with the problem of density estimation in a Riemannian
symmetric space of non-positive curvature, M. A finite mixture of Gaussian densities on M is a probability density of the form

p(x) =

K∑
κ=1

ωκ × p(x| x̄κ, σκ) (41)

where the weights ω1, . . . , ωK > 0 are such that ω1 + . . .+ ωK = 1, and where each density p(x| x̄κ, σκ) is a Gaussian density given by (16)
of Section III. Definition (41) is directly based on the standard definition of a finite mixture of probability densities [71][72].

The problem of density estimation in M is the following [73][74]. Assume a population of data points x1, . . . , xN ∈ M is under study.
Assume further this population was generated from some unknown probability density q(x). The problem is to approximate this unknown density
using the data x1, . . . , xN .

Concretely, this problem arises in the following manner [18]–[20] [26]–[28]. As in Section IV, the spaceM is a space of structured covariance
matrices. For example, M = Hn, M = Tn, or M = T Nn , (recall these notations from Table 1. in the introduction). A database of signals
or images is under study, and each object in this database is represented by a covariance descriptor. This descriptor is taken to be a structured
covariance matrix x ∈ M. The database of signals or images is thus mapped into a population x1, . . . , xN ∈ M. In a real-world setting, it is
hopeless to attempt any simplifying hypothesis with regard to the probability density q(x) of this population. Rather, one attempts to approximate
q(x) within a sufficiently rich class of candidate densities p(x).

The use of mixtures of Gaussian densities as a tool for solving this problem is founded on the idea that the probability density q(x), at least
if sufficiently regular, can be approximated to any precision by a density p(x) of the form (41). Accordingly, consider the mathematical problem
of finding a density p(x) of the form (41) which best approximates the unknown density q(x), in the sens of Kullback-Leibler divergence. Recall
this is given by [25],

p̂ = argminp D(q ‖ p) D(q ‖ p) =

∫
M

q(x) log

[
q(x)

p(x)

]
dv(x) (42)

where dv is the Riemannian volume element of M. Here, the minimum is over all densities p(x) of the form (41). Following the general idea of
“empirical risk minimisation” [73] (Page 32), the above integral with respect to the unknown density q(x) is replaced by an empirical average.
The minimisation problem (42) is then replaced by

p̂N = argminp
1

N

N∑
n=1

log

[
q(xn)

p(xn)

]
= argminp −

1

N

N∑
n=1

log p(xn) (43)

This new minimisation problem is equivalent to the problem of maximum likelihood estimation of the parameters {(ωκ, x̄κ, σκ) ; κ = 1, . . . ,K}
of the finite mixture of Gaussian densities p(x), under the assumption that the data x1, . . . , xN are independently generated from p(x).

In [15], an original EM (expectation maximisation) algorithm was proposed for solving this problem of maximum likelihood estimation. This
algorithm was derived in the special case whereM = Pn , the space of n×n covariance matrices. It was successfully applied to real data, mainly
from remote sensing, with the aim of carrying out density estimation as well as classification [18]–[20]. This algorithm generalises directly from
M = Pn to any M which is a Riemannian symmetric space of non-positive curvature, and its derivation remains formally the same as in [15]
(Paragraph IV.A., Page 13).

In the present general setting, it can be described as follows. The algorithm assumes that K, the number of mixture components in (41),
has already been selected. It iteratively updates an approximation θ̂ = {(ω̂κ, x̂κ, σ̂κ)} of the maximum likelihood estimates of the parameters
{(ωκ, x̄κ, σκ)}. The required update rules (45a)–(45c), as given below, are repeated as long as this leads to a sensible increase in the joint likelihood
function of (ω̂κ, x̂κ, σ̂κ). These update rules involve the two quantities πκ(xn, θ̂) and Nκ(θ̂), defined as follows,

πκ(xn, θ̂) ∝ ω̂κ × p(xn| x̂κ, σ̂κ) Nκ(θ̂) =

N∑
n=1

πκ(xn, θ̂) (44)

where the constant of proportionality, corresponding to “∝” in the first expression, is chosen so ∑
κ πκ(xn, θ̂) = 1. Each iteration of the EM

algorithm consists in an application of the updatte rules,

EM update rules for mixture estimation :

ω̂new
κ = Nκ(θ̂)

/
N (45a)
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x̂newκ = argminx∈M Eκ(x) Eκ(x) = N−1
κ (θ̂)

N∑
n=1

πκ(xn, θ̂) d
2(x, xn) (45b)

σ̂new
κ = Φ(Eκ(x̂newκ )) Φ given by (27) of Proposition 3 (45c)

Realisation of update rules (45a) and (45c) is straightforward. On the other hand, realisation of update rule (45b) requires minimisation of
the function Eκ(x) over x ∈ M. It is clear this function is a variance function of the form (10), corresponding to the probability distribution
π∝

∑N
n=1 πκ(xn,θ̂)×δxn where δx denotes the Dirac distribution concentrated at x ∈ M. Therefore, existence and uniqueness of x̂newκ follow

from Fact 3, and computation of x̂newκ can be carried out using existing routines for the computation of Riemannian barycentres [40][42][44][45].
The EM algorithm just described requires prior selection of the number K of mixture components. When this EM algorithm was applied

in [18]–[20], (for the special case M = Pn) , K was selected by maximising a BIC criterion. In general, this criterion is given following [75],

BIC criterion : K∗ = argmaxK BIC(K) BIC(K) = `(K) −
1

2
DF × ln(N) (46)

Here, `(K) is the maximum value of the joint likelihood function of (ωκ, x̄κ, σκ) for given K, and DF is the number of parameters to be
estimated, or number of degrees of freedome. This is DF = K × [ 2 + dim(M) ] − 1. For the three spaces of structured covariance matrices
considered in Section IV, the dimension of M is given by,

dim(Hn) = n2 dim(Tn) = 2n− 1 dim(T Nn ) = 2N − 1 + (n− 1)× (N2 +N) (47)

The EM algorithm given by update rules (45a)–(45c), and the BIC criterion (46), together provide a complete programme for solving the problem
of density estimation in M, using finite mixtures of Gaussian densities. The output of this programme is an approximation of the finite mixture
of Gaussian densities p̂N defined by (43). Then, with a slight abuse of notation, it is possible to write,

p̂N (x) =

K∑
κ=1

ω̂κ × p(x| x̂κ, σ̂κ) (48)

In [15][18]–[20], an additional problem of classification was addressed, whose aim is to use (48) as an explicative model of the data x1, . . . , xN ,
revealing the fact that these data arise from K disjoint classes, where the κth class is generated from a single Gaussian distribution G(x̂κ, σ̂κ).
In [15] (Paragraph IV.B., Page 15), this problem was solved in the special case M = Pn . In general, the proposed solution remains valid as
long as M is a Riemannian symmetric space of non-positive curvature. It is based on a Bayes optimal classification rule. This is a function
κ∗ :M→ {1, . . . ,K} , obtained by minimising the a posteriori probability of classification error [74] (Section 2.4., Page 21),

κ∗(x) = argminκ=1,...,K [ 1− P (κ|x) ] (49)

where P (κ|x) is found from Bayes rule, P (κ|x) ∝ p(x|κ)×P (κ), after replacing p(x|κ) = p(x| x̂κ, σ̂κ) and P (κ) = ω̂κ , where p(x| x̂κ, σ̂κ)
is given by (16). Carrying out the minimisation (49) readily gives the expression,

κ∗(x) = argminκ=1,...,K

[
− log ω̂κ + log Z(σ̂κ) +

d 2(x, x̂κ)

2σ̂2
κ

]
(50)

This is a generalisation of the so-called minimum-distance-to-mean classification rule, which corresponds to all ω̂κ and all σ̂κ being constant, (in
the sense that they do not depend on κ). In [4], the minimum-distance-to-mean classification rule was shown to give very good performance in
the area brain-computer interface decoding. Ongoing work, started in [35], examines the application of (50) in this same area.

Comparison to kernel density estimation
In recent literature [26]–[28], a fully non-parametric method for density estimation inM was developed. This is based on the method of kernel

density estimation on Riemannian manifolds, first outlined in [76]. This non-parametric method is alternative to the method of the present section,
based on finite mixtures of Gaussian distributions. Currently, no practical comparison of these two methods is available, as they have not yet been
tested side-by-side on real or simulated data. However, it is interesting to compare them from a theoretical point of view.

The main idea of kernel density estimation on Riemannian manifolds is the following [76] : classical performance bounds for kernel density
estimation on a Euclidean space can be immediately transposed to any Riemannian manifold M, provided the kernel function K : R → R+ is
adjusted to the Riemannian volume element of M.

In the present context, where M is a Riemannian symmetric space of non-positive curvature, consider the case of a Gaussian kernel K(x) =
(2π)−1/2 exp(−x2/2). When this Gaussian kernel is adjusted to the Riemannian volume element of M, the result is a family of Riemannian
Gaussian kernels K(x| x̄, σ) on M, which provides the following method.

Kernel density estimation on M :

K(x| x̄, σ) = (2πσ2)−dim(M)/2 × J(x, x̄) × exp

[
−
d 2(x, x̄)

2σ 2

]
(51a)

where the “adjusting factor” J(x, x̄) is expressed in [27] (Page 11), The kernel density estimate q̂N (x) of the unknown density q(x) of the data
x1, . . . , xN is then defined by [27] (Formula (7), Page 8)

q̂N (x) =
1

N

N∑
n=1

K(x|xn, σ) (51b)

and the integrated mean square error between q̂N (x) and q(x) can be made to decrease as a negative power of N , by a suitable choice of
σ = σ(N), under the condition that q(x) is twice differentiable [76] (Theorem 3.1., Page 302).

The EM algorithm (45a)–(45c) and the kernel density estimation method (51a)–(51b) provide two approaches to the problem of density
estimation in M, which differ in the following ways,
A–Cost in memory : for the EM algorithm, evaluation of the output p̂N from (48) requires bounded memory, essentially independent of N . For
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kernel density estimation, evaluation of q̂N from (51b) requires storing N data points, each of dimension dim(M), which can be found in (47).
B–Computational cost : each iteration of the EM algorithm involves computing K Riemannian barycentres of N data points. For kernel density
estimation, computing q̂N (x) at a single point x ∈M requires computing N factors J(x, xn) and N Riemannian distances d(x, xn). Concretely,
Riemannian distances on M are found from highly non-linear formulae, such as (34c), (37b) and (40b).
C–Rate of convergence : EM algorithms are known to be slow, and to get trapped in local minima or saddle points. However, stochastic versions
of EM, such as the SEM algorithm [77], effectively remedy these problems. For kernel density estimation, (51b) is an exact formula which can be
computed directly. However, it should be kept in mind, the precision obtained using this formula suffers from the curse of dimensionality.
D–Free parameters : running the EM algorithm requires fixing the mixture order K. The BIC criterion (46) proposed to this effect may be difficult
to evaluate. Kernel density estimation requires choosing the kernel width σ = σ(N). This also seems to be a difficult task, especially when the
dimension of M is high.

In conclusion, the EM algorithm (45a)–(45c) provides an approach to the problem of density estimation inM, which can be expected to offer
a suitable rate of convergence and which is not greedy in terms of memory. The main computational requirement of this algorithm is the ability to
find Riemannian barycentres, a task for which there exists an increasing number of high-performance routines [42][44][45][11][31][32]. The fact
that the EM algorithm reduces the problem of probability density estimation in M to one of repeated computation of Riemannian barycentres is
due to the unique connection which exists between Gaussian distributions in M and the concept of Riemannian barycentre. This connection is
stated in the defining Property (1) of these Gaussian distributions, and was a guiding motivation for the present paper.

I Remark 8 : a Riemannian Gaussian kernel K(x| x̄, σ) is a probability density with respect to the Riemannian volume element ofM. That
is, it is positive and its integral with respect to this volume element is equal to one. Precisely, K(x| x̄, σ) is the probability density of a random
point x inM, given by x = Expx̄(v) where v is a tangent vector toM at x̄ with distribution v ∼ N (0, σ), and where Expx̄ is the Riemannian
exponential mapping [37]. This probability density K(x| x̄, σ) is not a Gaussian density and therefore is not compatible with Property (1). �
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de Poitiers, 2011, arnaudon, M. and Barbaresco, F. (supervisors). [Online]. Available: https://tel.archives-ouvertes.fr/tel-00664188
[7] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi, “Kernel methods on the Riemannian manifold of symmetric positive definite

matrices,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013, pp. 73–80.
[8] L. Zheng, G. Qiu, J. Huang, and J. Duan, “Fast and accurate nearest neighbor search in the manifolds of symmetric positive definite matrices,”

in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 3804–3808.
[9] O. Tuzel, F. Porikli, and P. Meer, “Pedestrian detection via classification on Riemannian manifolds,” IEEE Trans. Pattern Anal. and Mach.

Intell., vol. 30, no. 10, pp. 1713–1727, 2008.
[10] R. Caseiro, J. F. Henriques, P. Martins, and J. Batista, “A nonparametric Riemannian framework on tensor field with application to foreground

segmentation,” Pattern Recognition, vol. 45, no. 11, pp. 3997 – 4017, 2012.
[11] B. Jeuris, R. Vandebril, and B. Vandereycken, “A survey and comparison of contemporary algorithms for computing the matrix geometric

mean,” Electron. Trans. Numer. Anal., vol. 39, pp. 379–402, 2012. [Online]. Available: http://etna.mcs.kent.edu/volumes/2011-2020/vol39/
abstract.php?vol=39&pages=379-402

[12] H. Salehian, G. Cheng, B. C. Vemuri, and J. Ho, “Recursive estimation of the stein center of spd matrices and its applications,” in IEEE
International Conference on Computer Vision (ICCV), 2013, pp. 1793–1800.

[13] A. Cherian, “Similarity search in visual data,” Ph.D. dissertation, University of Mnnesota, 2013, Papanikolopoulos, N. (supervisor). [Online].
Available: https://lear.inrialpes.fr/people/cherian/papers/

[14] G. Cheng and B. C. Vemuri, “A novel dynamic system in the space of SPD matrices with applications to appearance tracking,” SIAM J.
Imaging Sci., vol. 6, no. 1, pp. 592–615, 2013.

[15] S. Said, L. Bombrun, Y. Berthoumieu, and J. H. Manton, “Riemannian Gaussian distributions on the space of symmetric positive definite
matrices (under review),” IEEE Trans. Inf. Theory, 2016. [Online]. Available: http://arxiv.org/abs/1507.01760

[16] S. Stahl, “The Evolution of the Normal Distribution,” Mathematics Magazine, vol. 79, pp. 96–113, 2006.
[17] M. Banerjee, R. Chakraborty, E. Ofori, D. Vaillancourt, and B. C. Vemuri, “Nonlinear regression on Riemannian manifolds and its applications

to neuro-image analysis,” in Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015, pp. 719–727.
[18] R. Rosu, M. Donias, L. Bombrun, S. Said, O. Regniers, and J. P. Da Costa, “Structure tensor Riemannian statistical models for CBIR and

classification of remote sensing images (accepted),” IEEE Trans. Geosci. Remote Sens., 2016.
[19] I. Ilea, H. Hajri, S. Said, L. Bombrun, C. Germain, and Y. Berthoumieu, “An M-estimator for robust centroid estimation on the manifold of

covariance matrices: performance analysis and application to image classification,” in European Signal Processing Conference (EUSIPCO),
2016, pp. 2196–2200.

[20] R. Rosu, L. Bombrun, S. Said, O. Regniers, M. Donias, and J. P. Da Costa, “Modèles probabilistes Riemanniens de tenseurs de structure
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APPENDIX I
THE CARTAN DECOMPOSITION, KILLING FORM, AND ROOTS

This appendix provides additional details on the mathematical facts, concerning Riemannian symmetric spaces, which were introduced in
Section II. It also justifies the application of these facts to spaces of structured covariance matrices, which was made in Section IV.

In Section II, Facts 4 and 5 introduced roots in formula (13) and the Killing form in formula (15), in order to express i) integrals of functions
overM, and ii) distances between pairs of points inM, whereM is a Riemannian symmetric space of non-compact type. In Section IV, formulae
(13) and (15) were specified to spaces of structured covariance matrices, according to the following scheme,

Section II Section IV

Facts
4 & 5

IV-A : Complex covariance matrices formulae (34f) and (34g)
IV-B : Toeplitz covariance matrices formulae (37f) and (37g)
IV-C : Block-Toeplitz covariance matrices formulae (40f) and (40g)

Here, the definitions of roots and of the Killing form are briefly recalled, and the specific formulae of Section IV are accordingly proved. The
starting point will be the Cartan decomposition.

THE CARTAN DECOMPOSITION AND KILLING FORM : A Riemannian symmetric space of non-compact type M may always be expressed in
the formM = G/H , where G is a semisimple Lie group of non-compact type and H a compact Lie subgroup of G [36] (Chapter VI). Let g and
h denote the Lie algebras of G and H , respectively. The local geometric properties of M are equivalent to algebraic properties of the pair (g, h).
This equivalence is expressed in terms of the Cartan decomposition, the Killing form, and roots. The Cartan decomposition is the following [36]
(Chapter III, Page 156),

Cartan decomposition : g = h + p (52)

where p is a subspace of g , which is complementary to h , and such that : [h, p] ⊂ p and [p, p] ⊂ h. For the geometric meaning of these conditions,
see [37] (Chapter 4, Page 186). In particular, for any point o ∈M there exists a Cartan decomposition (52) such that ToM is identified with p,
and the isotropy algebra of ToM is identified with h. Here, ToM denotes the tangent space to M at o. The Killing form B : g× g→ R is an
Ad-invariant symmetric bilinear form on g, given by

Killing form : B(v, w) = tr (ad(v) ad(w)) v, w ∈ g (53)

where ad(v) : g→ g is the linear mapping ad(v)u = [v, u]. The Killing form is negative definite on h and positive definite on p [36] (Proposition
7.4., Page 158).

The Cartan decomposition and Killing form provide an algebraic expression for the local Riemannian geometry ofM. Precisely, when ToM
is identified with p, the Riemannian metric and the Riemannian curvature tensor of M can be written as follows [36] (Theorem 4.2., Page 180),

Riemanniain metric : ‖v‖2o = B(v, v) v ∈ ToM∼= p (54a)

Riemanniain curvature : Ro(v, w)u = − [ [v, w] , u ] v, w, u ∈ ToM∼= p (54b)

where ‖v‖o denotes the Riemannian length of v ∈ ToM and Ro the Riemannian curvature tensor at o ∈M.
ROOTS : It is clear that application of expressions (54a) and (54b) requires an efficient means of computing the linear mapping ad(v) for

v ∈ p. This is nicely done using the roots of the Lie algebra g. A root λ of g is a linear mapping λ : a → R, where a is a maximal Abelian
subspace of p (Abelian means commutative, so [a1, a2] = 0 for a1, a2 ∈ a). Precisely, λ : a→ R is called a root of g if there exists a non-trivial
subspace gλ ⊂ g such that ad(a)w = λ(a)w for all w ∈ gλ, see [36] (Chapter III).

First, roots provide an efficient means of computing ad(a) when a ∈ a. Note that the subspace gλ is called the root space corresponding to λ.
Its dimension is denoted mλ, (as in (14) of Section II). The various subspaces gλ are in direct sum, so that the linear mappings ad(a) for a ∈ a
are jointly diagonalisable, and equal to λ(a) times the identity mapping on each subspace gλ. Second, any v ∈ p is of the form v = Ad(h) a for
some a ∈ a and h ∈ H . Then, ad(v) = Ad(h) ◦ ad(a) ◦Ad(h−1 ), so that the linear mappings ad(v) and ad(a) are the same up to similarity.

Note finally that the system of roots λ of g possesses a distinct symmetry, which is described by a discrete group of permutations, called the
Weyl group. Here, it is only mentioned that if λ is a root, then so is −λ. Moreover, the set of non-zero roots can be split into two disjoint subsets,
called positive roots and negative roots, in such a way that the positive roots span the dual space of a [36] (Chapter VI). To indicate that a root λ
is positive, one writes λ > 0, (again, as in (14) of Section II).
I Example 1: here, it is shown that formulae (34f) and (34g) follow from Facts 4 and 5, applied to the case where M = Hn as in IV-A.

Precisely, (34f) and (34g) can be obtained from Facts 4 and 5, by substitution from the following table [36][67].

Table 2. : Data for the symmetric space Hn

Group action : G = {n× n complex invertible matrices} action given by (34e)

Quotient space : Hn = G/H H = {n× n unitary matrices}

Lie algebra
of G : g = {n× n complex matrices}

Lie algebra
of H : h = {n× n skew-Hermitian matrices}
Cartan decom-
position (52) : p = {n× n Hermitian matrices} TIHn ∼= p, (I = n× n identity matrix)

Abelian sub-
space a : a = {n× n real diagonal matrices} r ∈ a is written r = diag(r1, . . . , rn)

Positive roots : λij(r) = ri − rj ; i < j with mλij
= 2

Killing form : B(r, r) = 1
2n

∑
ij (ri−rj)2 for r ∈ a

The data in this table can be substituded into (13) and (15), to obtain (34f) and (34g). While (34f) follows immediately, additional care is required
for (34g). This is because Hn is not a Riemannian symmetric space of non-compact type, but only a Riemannian symmetric space of non-positive
curvature [67] (Page 262). Therefore, (34g) does not follow directly from (15), but rather from (15) and (21), after noticing Hn = R × SHn ,
where SHn is the subset of Y ∈ Hn such that det(Y ) = 1. This implies that r ∈ a should be considered as a couple r = (tr(r), r̄) where
r̄ = r − 1

n
tr(r) I ∈ a. Then, using the notation of (54a), it follows from (21) that ‖r‖2I = 1

n
tr2(r) + B(r̄, r̄), which is the same as the right

hand side of (34g). �
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I Example 2: the space Tn of Toeplitz covariance matrices, treated in IV-B, is a special case of the space T Nn of block-Toeplitz covariance
matrices, treated in IV-C. Precisely, this is the special case obtained when N = 1. Therefore, in order to show that formulae (37f) and (37g) follow
from Facts 4 and 5, applied to the case where M = Tn , it is enough to replace N = 1 in the argument of the following example. �

I Example 3: here, it is shown that formulae (40f) and (40g) follow from Facts 4 and 5, applied to the case where M = T Nn as in IV-C.
Recall that T Nn admits the decomposition (39). Through (40b) and (40c), this decomposition implies the first line in each of the two formulae
(40f) and (40g). The second line in each of these two formulae can be found from Facts 4 and 5, by substitution from the following table [36][67].
In this table, U , J , C, w, and v, denote 2N × 2N complex matrices, where

U =

(
A B
C D

)
, J =

(
0 −I
I 0

)
, C =

(
−I 0
0 I

)
(I = N ×N identity matrix)

Table 3. : Data for the Siegel disc DN

Group action : G = {U |UTJ U = J , UHC U = C} action given by (40e)

Quotient space : DN = G/H H = {U |A = DH , A unitary}

Lie algebra
of G : g = {w |wTJ + J w = 0 , wHC + C w = 0}

Lie algebra
of H : h =

{
w =

(
ω 0

0 ωH

) ∣∣∣∣ω skew-Hermitian
}

Cartan decom-
position (52) : p =

{
v =

(
0 s

sH 0

) ∣∣∣∣ s complex symmetric
}

T0 DN ∼= p, (0 = N ×N zero matrix)

Abelian sub-
space a : a =

{(
0 r

r 0

) ∣∣∣∣ r real diagonal
}

r = diag(r1, . . . , rN )

Positive roots : λij(r) = ri − rj ; i < j with mλij
= 1 (identically zero when N = 1)

νij(r) = ri + rj ; i ≤ j with mνij
= 1 (positive for any value of N )

Killing form : B(r, r) =
∑
i r

2
i for r ∈ a

Indeed, the data in this table can be substituded into formulae (13) and (15), as these directly apply to the Siegel disc DN , which is a Riemannian
symmetric space of non-compact type, in order to obtain the second line in each of (40f) and (40g). �

APPENDIX II
SAMPLING GAUSSIAN STRUCTURED COVARIANCE MATRICES

Algorithm 1. of III-A gave a generally applicable method for sampling from a Gaussian distribution on a Riemannian symmetric space of
non-positive curvature M. Here, Algorithms 2., 3., and 4. are specific versions of Algorithm 1., which deal with the three spaces of structured
covariance matrices considered in Section IV. Precisely, Algorithms 2., 3., and 4. sample Gaussian structured covariance matrices, by implementing
the instructions of Algorithm 1., labeled l1 to l12. Accordingly, in the description below, each instruction in Algorithms 2., 3., and 4. will be
given the same label as the corresponding instruction in Algorithm 1.

I Example 1: here, Algorithm 2. samples from a Gaussian distribution on the space M = Hn , which was considered in IV-A. Precisely,
the output of Algorithm 2. is a sample Y from a Gaussian distribution G(Ȳ , σ) with parameters Ȳ ∈ Hn and σ > 0. In reference to Algorithm
1., only instructions l6 to l9 are required. In these instructions, the role of the compact group H is played by the group U(n) of n× n unitary
matrices, and the role of (12) and (24) is played by the following (55a) and (55b), respectively,

spectral decomposition : Y (r, U) = U er UH (55a)

p(r) ∝ exp

[
−
‖r‖2

2σ 2

] ∏
i<j

sinh2(|ri − rj |/2) for r = (r1, . . . , rn) ∈ Rn (55b)

In instruction l9 below, the notation Ȳ 1/2 · Y is that of (34e), so that Ȳ 1/2 · I = Ȳ , where I is the n× n identity matrix, (compare to (ii) of
Proposition 2).

l6. sample U from a uniform distribution on U(n)

l6-a. generate Z with n× n i.i.d. complex normal entries
l6-b. perform QR decomposition : Z = UT % T upper triangular with unit diagonal

% see [78] (Proposition 7.3., Page 234)
l7. sample r from the multivariate density (55b) ALGORITHM 2. : SAMPLING FROM A

l8. put Y = Y (r, U) as in (55a) GAUSSIAN DISTRIBUTION ON Hn
l9. reset Y to Ȳ 1/2 · Y % Ȳ 1/2 = Hermitian square root of Ȳ
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I Example 2: here, Algorithm 3. samples from a Gaussian distribution on the space M = Tn , which was considered in IV-B. The output
of this algorithm is a sample T from a Gaussian distribution G(T̄ , σ) with parameters T̄ ∈ Tn and σ > 0. This output sample T is obtained via
decomposition (36), in the form

T = Ψ( r , α1 , . . . , αn−1 ) r ∈ R+ and α1 , . . . , αn−1 ∈ D (56a)

where the mapping Ψ( r0 , α1 , . . . , αn−1 ) = (r0, r1, . . . , rn−1) yields the matrix entries of T , given by Tij = T ∗ji = ri−j . Concretely, Ψ is
computed by means of Verblunsky’s formula, which maps α1 , . . . , αj to r1, . . . , rj , for j = 1, . . . , n− 1 [55] (Theorem 1.5.5., Page 60).

For Algorithm 3., let T̄ = Ψ(r̄, ᾱ1, . . . , ᾱn−1). Instruction l3 of this algorithm samples r, given r̄ and σ. Then, instructions l6 to l9 sample
each one of the αj , given ᾱj and σ. Here, in reference to instructions l6 to l9 of Algorithm 1., the role of the compact group H is played by
the circle group SU(1), and the role of (12) and (24) is played by the following (56b) and (56c).

polar coordinates on D : α(ρ, θ) = tanh(ρ) eiθ (56b)

p(ρ|σ) ∝ exp

[
−
ρ2

2σ2

]
sinh(|ρ|) (56c)

In instruction l9, the notation u · α is that of (37e), and uj = u(αj), where

u(α) =

 ei θ
2 cosh(ρ) ei θ

2 sinh(ρ)

e−i θ
2 sinh(ρ) e−i θ

2 cosh(ρ)

 for α = α(ρ, θ) (56d)

so that u(α) · 0 = α.

l3. sample r from a log-normal distribution
with median r̄ and scale σ/

√
n % r = et where t ∼ N (log r̄, σ/

√
n )

. for j = 1, . . . , n− 1 do

l6. sample θj from a uniform distribution on [0, 2π] % so eiθj ∼ uniform distribution on SU(1)

l7. sample ρj from the density p ( ρj |σ/
√
n−j ) given by (56c)

l8. put αj = α(ρ, θ) as in (56b)
l9. reset αj to uj · αj where uj is given by (56d) ALGORITHM 3. : SAMPLING FROM A

l11. end for GAUSSIAN DISTRIBUTION ON Tn
l12. put T = Ψ( r , α1 , . . . , αn−1 ) as in (56a)

I Example 3: here, Algorithm 4. samples from a Gaussian distribution on the spaceM = T Nn , which was considered in IV-C. The algorithm
obtains a sample T from a Gaussian distribution G(T̄ , σ), where T̄ ∈ T Nn and σ > 0, via decomposition (39). This decomposition is expressed
in the form,

T = Ψ(P , Ω1 , . . . , Ωn−1 ) P ∈ TN and Ω1 , . . . , Ωn−1 ∈ DN (57a)

where the mapping Ψ(P,Ω1, . . . ,Ωn−1) = (T0, T1, . . . , Tn−1) yields the N ×N blocks of T . Concretely, Ψ is computed as in [23] (formula
(3.4), Page 6), which recursively gives the blocks T1, . . . , Tj in terms of Ω1, . . . ,Ωn−1 , for j = 1, . . . , n− 1.

For Algorithm 4., let T̄ = Ψ(P̄ , Ω̄1, . . . , Ω̄n−1). Instruction l3 of this algorithm samples P , given P̄ and σ. Then, instructions l6 to l9
sample each one of the Ωj , given Ω̄j and σ. Here, in reference to instructions l6 to l9 of Algorithm 1., the role of the compact group H is
played by the group SU(N) of unitary N × N matrices with unit determinant, and the roles of (12) and (24) are respectively played by (40h)
and by the following (57b),

p(r|σ) ∝ exp

[
−
‖r‖2

2σ2

] ∏
i<j

sinh(|ri − rj |)
∏
i≤j

sinh(|ri + rj |) for r = (r1, . . . , rN ) ∈ RN (57b)

In instruction l9, the notation U · Ω is that of (40e), and Uj = U(Ωj), where

U(Ω) =

(
Θ cosh(r) Θ sinh(r)

Θ∗ sinh(r) Θ∗ cosh(r)

)
for Ω = right-hand side of (40h) (57c)

so that U(Ω) · 0 = Ω, where 0 denotes the N ×N zero matrix.

l3. sample P from a Gaussian distribution G
(
P̄ , σ/

√
n
)

on TN % use Algorithm 3.
. for j = 1, . . . , n− 1 do

l6. sample Θj from a uniform distribution on SU(N) % compare to l6 in Algorithm 2.
l6-a. generate Z with n× n i.i.d. complex normal entries
l6-b. perform QR decomposition : Z = ΘT

l6-c. reset Θ to (det Θ)1/N Θ

l7. sample rj from the multivariate density p( rj |σ/
√
n−j ) given by (57b)

l8. put Ωj = Ω(rj ,Θj) % Ω(rj ,Θj) = right-hand side of (40h)

l9. reset Ωj to Uj · Ωj where Uj is given by (57c) ALGORITHM 4. : SAMPLING FROM A

l11. end for GAUSSIAN DISTRIBUTION ON T Nn
l12. put T = Ψ(P , Ω1 , . . . , Ωn−1 ) as in (56a)


