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Abstract Computing the Riemannian center of mass or the finite sample Fréchet
mean has attracted enormous attention lately due to the easy availability of data that
are manifold-valued. Manifold-valued data are encountered in numerous domains
including but not limited to Medical Image Computing, Computer Vision, Machine
Learning etc. It is common practice to estimate the finite sample Fréchet mean by
using a gradient descent technique to find the minimum of the Fréchet function
when it exists. The convergence rate of this gradient descent method depends on
many factors including the step size and the variance of the given manifold-valued
data etc. As an alternative to the gradient descent technique, we propose a recur-
sive (incremental) algorithm for estimating the Fréchet mean/expectation (iFEE) of
the distribution from which the sample data are drawn. The proposed algorithm
can be regarded as a geometric generalization of the well known incremental algo-
rithm for computing arithmetic mean, since it reinterprets this algebraic formula in
terms of geometric operations on geodesics in the more general manifold setting.
In particular, given known formulas for geodesics, iFEE does not require any opti-
mization in contrast to the non-incremental counterparts and offers significant im-
provement in efficiency and flexibility. For the case of simply connected, complete
and non-positively curved Riemannian manifolds, we prove that iFEE converges to
the true expectation in the limit. We present several experiments demonstrating the
efficiency and accuracy of iFEE in comparison to the non-incremental counterpart
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for, computing the Fréchet mean of symmetric positive definite matrices, k-means
clustering and diffusion tensor image segmentation tasks respectively.

Key words: Incremental algorithm, Fréchet expectation, law of large numbers, DTI
Segmentation

1 Introduction

In computer vision and machine learning, statistical analysis of features often re-
quires them to be considered as random variables. Although features are always
represented as collections of real numbers, their idiosyncratic origins and indige-
nous constraints often can best be interpreted not as vectorial features in Rn but as
manifold features, features belonging to some embedded submanifold M of Rn. In
this sense, manifold-valued random variables abound in vision and machine learn-
ing literature: Popular image features such as SIFT and HOG, due to normalization,
are often features defined on spheres. For applications involving directional and ge-
ometric data, important features can often be found in Lie groups that model their
underlying symmetries (e.g., [1]). From Lie groups, one is naturally led to their ho-
mogeneous and symmetric spaces, and not surprisingly, the homogeneous and sym-
metric spaces of classical Lie groups such as (complex) projective spaces, Stiefel
manifolds (of which spheres form an important family) and Grassmannians are es-
pecially rich domains for generating useful features, making their appearances in a
wide range of vision problems, including shape and procrustean analysis [2], sub-
space clustering [3], dynamic texture classification [4], object recognition [5,6] and
many others. In particular, as a symmetric space of the general linear group GL(n)
(n-by-n nonsingular matrices), the manifold P(n) of n-by-n symmetric positive-
definite matrices has featured prominently in many vision and learning problems,
from the relatively simple image structure tensors [7] that has been the traditional
workhorse in vision algorithms to the more refined covariance features used in track-
ing [8,9] and recognition [10], and from the application domain of Diffusion Tensor
MRI (DT-MRI) in medical imaging (e.g., [11–14]) to the more esoteric domain of
information geometry using Fisher-Rao metric [15]. While manifolds identify the
domains on which the features are defined, probability and metric then furnish the
tools for analyzing and characterizing their uncertainty and similarity respectively.
In the general manifold setting, the union of probability and geometry (metric) nat-
urally leads to the notion of Fréchet mean/expectation [16] of a random variable,
whose definition requires the specifications of both a distribution and a Rieman-
nian metric. Consequently, an important computational problem is to estimate the
Fréchet mean using samples of the distribution. However, in this era of massive and
continuous streaming data, samples are often given either as a whole that are difficult
to utilize due to their size or in parts with availability depending on other external
factors. Therefore, from an application viewpoint, the desired algorithm should be
incremental in nature in order to maximize computational efficiency and account
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for data availability, requirements that are seldom addressed in more theoretically
oriented domains. In this chapter, we propose iFEE, a novel incremental algorithm
for computing the Fréchet mean of manifold-valued random variables, and establish
its convergence for simply connected, complete Riemannian manifolds with non-
positive sectional curvature.

Let M denote a (complete) Riemannian manifold and dω its canonical Rieman-
nian volume measure. We will consider a probability measure dP on M that is
absolutely continuous with respect to dω , i.e., its density function P(x) exists with
dP = P(x)dω as the measure. The Fréchet expectation (or Fréchet mean) of the
probability measure dP is defined as

m = arg min
z∈M

∫
M

d2
M (z,x)P(x)dω, (1)

where dM (z,x) is the Riemannian geodesic distance between z,x ∈M . Note that
the expectation m is a point in M (or a set in general), and it requires the specifi-
cations of the Riemannian metric d2

M (z,x) and the probability measure dP. In gen-
eral, the existence and uniqueness of Fréchet expectation for an arbitrary probability
measure defined on a Riemannian manifold is a subtle and technical issue; however,
for simply connected and complete Riemannian manifolds with non-positive sec-
tional curvature, a theorem of E. Cartan (see section 6.1.5 in [17]) shows that the
Riemannian center of mass (Fréchet expectation) always exists and is unique for
any probability measure absolutely continuous with respect to ω . Therefore, in this
chapter, we will focus exclusively on such Riemannian manifolds and in particular,
we will define an estimator mk of m for any sequence x1,x2, ...,xk of i.i.d. samples
drawn from the distribution dP and show that mk converges asymptotically to m as
k→ ∞.

In the Euclidean domain, the estimator mk is well-known and it is simply the
average of the (finite) samples

mk =
x1 + ...+xk

k
. (2)

The validity of the estimator of course is guaranteed by the (weak) law of large
numbers, which states that the estimator mk converges in probability to the true
mean m. For practitioners in computer vision and machine learning (and others),
this well-known result is so deeply ingrained that many times we use it without
immediate awareness of it. In particular, mk can be computed incrementally using
the formula

mk+1 =
k mk +xk+1

k+1
, (3)

and in Rn, the two formulas above are in fact equivalent. However, due to their
algebraic appearances, the underlying geometry of the two formulas are often over-
looked, and on non-Euclidean manifolds where the relations between geometry and
algebra are no longer as transparent, proper generalizations of these two formulas
must rely on their geometric interpretations rather than their algebraic forms.
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Specifically, Equation 2 can be generalized geometrically to any Riemannian
manifold M as the center-of-mass of the finite samples, according to

mk = arg min
z∈M

k

∑
i=1

d2
M (z, xi), (4)

and computationally, it can be solved as an optimization problem on M for each
k. On the other hand, the incremental form in Equation 3 involves only two points
and in a Euclidean space Rn, we can interpret it geometrically as moving an ap-
propriate distance away from mk towards xk+1 on the straight line joining xk+1 and
mk. This geometric procedure can be readily extended to any Riemannian mani-
fold using geodesics, and for classical spaces such as the aforementioned examples,
there are often closed-form formulas for geodesics joining two given points. This
readily yields an algorithm for computing mk that does not require any function
optimization, a considerable advantage often realized as gains in computation time
of several orders in magnitude over non-incremental algorithms based on Equa-
tion 4. However, because the presence of curvature, generalizations of Equations 2
and 3 are no longer equivalent as in the Euclidean case, and the incremental com-
putation of mk will also depend on the ordering of the sequence x1,x2, ...xk, with
the latter non-commutative property marking the qualitative divergence between the
Euclidean and non-Euclidean cases. In particular, it is not immediately clear that mk
will indeed converge asymptotically to the true expectation m.

In this chapter, we establish the convergence of the incremental algorithm for
simply connected complete Riemannian manifolds with non-positive sectional cur-
vature, and the proof presented in Section 2 is geometric in nature and elementary
in detail. The basic idea is to use the Riemannian exponential and logarithm maps
to transfer the problem from the manifold M to the tangent space Tm at m, and in
the tangent space, we can compare the magnitudes of the incremental mean mk+1
computed by iFEE and the Euclidean mean computed by Equation 3. An important
geometric consequence of the non-positive sectional curvature assumption is that
the former is always not larger than the latter, and this provides the desired contrac-
tion that can be deployed in an inductive argument similar to the one for proving the
law of large numbers in the Euclidean domain. In particular, the proof illustrates and
illuminates the effect of curvature on the convergence of the incremental estimator,
with the convergence in the Euclidean case (zero curvature) implicitly implying the
convergence for all negative curvature cases. Furthermore, the convergence result
also provides a geometric generalization of the law of large numbers in that the
well-known sample average in the Euclidean law of large numbers is now replaced
by the geometric operation of moves on geodesics.

In the statistics literature, manifold-valued random variables, or more general
metric space-valued random variables have been studied quite extensively, e.g., [18–
23]. However, their focus has always been on establishing and characterizing con-
vergence of finite-sample means, and the attention is on extending Equation 2 to
more general domains. However, in our more application-oriented context, the fo-
cus is instead on generalizing the incremental form in Equation 3, and this provides
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a context that is qualitatively different from the aforementioned works in statis-
tics. Perhaps the most well-known example is the incremental Principal Component
Analysis (PCA) [24] and its various applications in Computer Vision and Image
Processing (e.g., [25]) that demand and hence motivate the incrementalization of a
well-known method originated from pure statistics. In particular, computation of the
mean from sample data plays an important role in a variety of applications such as
clustering, segmentation and atlas construction in medical imaging, and the perfor-
mances of these algorithms are often determined by how efficiently and accurately
can the mean be computed. As an incremental algorithm, iFEE provides a far more
computationally efficient alternative to the standard non-incremental algorithms that
compute the Fréchet mean based on minimizing Equation 4. The (asymptotic) ac-
curacy and efficiency of iFEE have been thoroughly evaluated using experiments
with synthetic and real data, and in the experiment section of this chapter, we report
the significant gains in running time achieved by iFEE over other non-incremental
methods without any noticeable degradation in its accuracy.

2 Algorithm and Convergence Analysis

In this section, we present the incremental algorithm for computing the Fréchet ex-
pectation on general Riemannian manifolds and provide a convergence proof of the
incremental algorithm for simply connected and complete Riemannian manifolds
with non-positive sectional curvature. Although phrased in the context of Rieman-
nian geometry, the incremental algorithm and most of the convergence proof do not
require much beyond the elementary notions such as Riemannian exponential and
logarithm maps that are familiar to a large section of the Computer Vision and Med-
ical Image Computing audience. For simplicity of exposition, we will assume M is
a simply connected and complete Riemannian manifold with non-positive sectional
curvature such that the Riemannian exponential map Expx and its inverse, the Rie-
mannian logarithm map Logx, based at every x ∈M are diffeomorphisms between
the tangent space Tx and M . In particular, M is assumed to have the Rn topology1

and by Hopf-Rinow Theorem [26], any two points x,y in M can be joined by a
unique geodesic whose length gives the Riemannian distance dM (x,y) between x
and y. An important example of a complete Riemannian manifold with non-positive
sectional curvature topologically equivalent to Rk for some k is the space P(n) of
n-by-n symmetric positive matrices equipped with the affine-invariant Riemannian
metric.

Let x denote an M -valued random variable and dP its associated probability
measure (distribution) on M that is absolutely continuous with respect to the Rie-
mannian volume measure dx with density function P(x). Since Expx is a diffeo-
morphism between Tx and M , we can use Expx to pull the distribution dP (and its

1 This topological assumption is not particularly restrictive since by Cartan-Hadamard Theo-
rem [17], any simply connected complete d-dimensional Riemannian manifold with non-positive
sectional curvature can be constructed topologically from Rd .
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density function) back to Tx, essentially using Expx to identify distributions on M
and Tx. When there is no possibility of confusion, we will use the same notation for
such a pair of distributions2. By a theorem of E. Cartan (see page 256 and proposi-
tion 60 on page 234 in [17]), dP has a unique (Fréchet) expectation m defined by
Equation 1, and as the minimum, the first-order stationary condition gives∫

M
Logm(x)P(x)dx = 0. (5)

Using Expm and Logm to identify distributions on M and Tm, the integral above
can be transferred onto Tm ∫

Tm
xP(x)dx = 0, (6)

where the distribution P(x)dx on Tm in Equation 6 is the pull-back of the distribution
P(x)dx on M in Equation 5 using Expm.

2.1 The Incremental Fréchet Expectation Estimator (iFEE)

Let x1,x2, .... be a sequence of i.i.d. samples of the probability distribution dP. The
incremental Fréchet expectation estimator mk,k = 1,2, ... is defined as follows:

1. m1 = x1.
2. For k > 1, let γk(t) denote the unique geodesic joining mk−1 and xk such that

γk(0) = mk−1 and γk(1) = xk; mk = γk(
1
k ).

Since the geodesic γk(t) is constant speed [26], it follows from the definition of mk
that dM (xk,mk) = (k− 1)dM (mk−1,mk). In particular, when k = 2, m2 is simply
the midpoint on the geodesic joining x1 and x2. For k > 2, the estimator mk is
closer to the previous estimator mk−1 than to the new sample xk by a factor of
k− 1, a direct generalization of the Euclidean formula in Equation 3, interpreted
geometrically. The incremental estimator mk is also a M -valued random variable,
and xi being independent samples implies that mk is also independent of x j for j > k.
We will denote dP(mk) its probability measure and P(mk)dmk its density function
with respect to the Riemannian volume measure (mk in dmk indicates the variable
of integration).

The convergence result established below is a particular type of convergence
called the convergence in probability of the random variables mk to the expectation
m (see [27]). Specifically, for this particular type of convergence, we need to show
that for sufficiently large k, the probability that d2

M (mk, m) is larger than any ε > 0
can be made arbitrary small: for ε,δ > 0, there exists an integer K(ε,δ ) depending
on ε,δ such that

Pr{d2
M (mk, m)> ε }< δ , (7)

2 Points in M are denoted by boldface font and their corresponding points in the tangent space are
denoted by regular font.
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for k > K(ε,δ ). A simple application of the Markov’s inequality then shows that
it is sufficient to demonstrate that the mean squared error MSEm(mk) of mk with
respect to m defined by

MSEm(mk) =
∫

M
d2

M (mk, m)P(mk)dmk, (8)

converges to zero as k→ ∞. Recall that for a nonnegative real-valued random vari-
able X, Markov’s inequality states that

Pr{X > ε } ≤ E[X]

ε
, (9)

where E[X] is the expectation of X. In our context, X = d2
M (mk, m), and E[X] =

MSEm(mk). Therefore, if MSEm(mk)→ 0 as k→ ∞, Equation 7 is true for any
ε,δ > 0 with k > K(ε,δ ): since MSEm(mk)→ 0 as k→ ∞, there is a K(ε,δ ) such
that for all k > K(ε,δ ), MSEm(mk) = E[X] < εδ , and Equation 7 follows readily
from Equation 9.

The convergence proof will also rely on the variance of the random variable x
defined by Var(x) =

∫
M d2

M (x, m)P(x)dx. In general, the integrals in Var(x) and
MSEm(mk) are difficult to evaluate directly on M . However, considerable simpli-
fication is possible if the integrals are pulled back to the tangent space at m. Specif-
ically, since d2

M (mk, m) can be determined as the squared L2-norm of the tangent
vector Logm(mk) in Tm, the integral above has a much simpler form on Tm

MSEm(mk) =
∫

Tm
‖mk‖2P(mk)dmk. (10)

We remind the reader that the measures P(mk)dmk,P(mk)dmk in the two equations
above, although defined on different domains, are identified via Expm.

2.2 The Example of P(n)

From an application viewpoint, P(n) equipped with the affine (GL) invariant metric
is certainly the most important example of complete Riemannian manifold of non-
positive sectional curvature. Specifically, the general linear group GL(n) (n-by-n
non-singular matrices) acts on P(n) according to the formula: ∀g ∈ GL(n),∀M ∈
P(n), g∗(M) = gMg>. The action is not only transitive but for any pair of M,N
∈ P(n), there exists a g ∈ GL(n) such that gMg> is the identity matrix and gNg>
is a diagonal matrix, a geometric interpretation of the well-known algebraic fact
that a pair of symmetric positive-definite matrices can be simultaneously diag-
onalized. The tangent space at each point in P(n) is identified with the vector
space of n-by-n symmetric matrices, and a GL-invariant Riemannian metric [28]
can be specified by the inner product for the tangent space TM of M ∈ P(n):
< U,V >M= tr(M−1UM−1V), where U,V are tangent vectors considered as sym-
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metric matrices and tr denotes the trace of a matrix. The differential geometry of
P(n) has been studied extensively by the differential geometer Helgason [28], and
the invariance of the metric under GL-action makes many aspects of its geometry
tractable. For example, P(n) is a complete Riemannian manifold with negative sec-
tional curvature, and there is a closed-form formula for the Riemannian distance
between M,N ∈ P(n)

d2
P(n)(M,N) = tr(Log(M−1N)2) (11)

where Log denotes the matrix logarithm. Furthermore, there is also a closed-form
formula for the (unique) geodesic joining any pair of points M,N in P(n). Because
of the invariance, the geodesic paths in P(n) originate from geodesic curves joining
the identity matrix to diagonal matrices. Specifically, let D denote a diagonal matrix
with positive diagonal entries d1,d2, ...,dn > 0. The geodesic path γ(t) joining the
identity matrix and D is given by

γ(t) =

 et log(d1) 0
. . .

0 et log(dn)

 or γ(t) =

 dt
1 0

. . .
0 dt

n

 . (12)

It is evident that γ(0) = In is the identity matrix and γ(1) = D. In particular,
γ(t) = Dt , as the fractional power of the diagonal matrix. For a general symmetric
positive-definite matrix M, its fractional power can be defined knowing its eigen-
decomposition: M = UDU> with D diagonal and U orthogonal, its power Mt for
t ≥ 0 is Mt = UDtU>. These matrix operations provide the steps for computing
the geodesic joining any pairs of M,N ∈ P(n): using g = M−

1
2 , (M,N) can be

transformed simultaneously to (In,M−
1
2 NM−

1
2 ), and the geodesic path γ(t) joining

M,N is the transform under M
1
2 of the geodesic path ¯γ(t) joining (I,M−

1
2 NM−

1
2 ).

Let M−
1
2 NM−

1
2 = UDU> denote the eigen-decomposition of M−

1
2 NM−

1
2 , and the

geodesic path joining (I,M−
1
2 NM−

1
2 ) is the transform under U of the geodesic path

joining I,D, with the latter being Dt . Working backward, this gives the simple for-
mulas γ(t) = (M−

1
2 NM−

1
2 )t , and γ(t) = M

1
2 (M−

1
2 NM−

1
2 )tM

1
2 . Using the above

formula, the iFEE has a particularly simple form: given the i.i.d. samples x1,x2, ....
in P(n), the incremental estimator is given by

m1 = x1 (13)

mk+1 = m
1
2
k (m

− 1
2

k xk+1m−
1
2

k )
1

k+1 m
1
2
k . (14)

We remark that the computation of mk+1 requires the eigen-decomposition of the

symmetric positive-definite matrix m−
1
2

k xk+1m−
1
2

k that can be done using many effi-
cient and robust numerical algorithms.
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2.3 Convergence Analysis

The analysis of the estimator’s convergence rests on the asymptotic behavior of
MSEm(mk) defined in Equation 8 and its equivalent form defined on the tangent
space Tm in Equation 10. In particular, mk converges to m in the L2 norm if
MSEm(mk)→ 0 as k → ∞ [27]. An important element in the proof of the latter
is a crucial upper bound for the geodesic distance dM (mk+1,m) between mk+1 and
m using the Euclidean distance in Tm, which is a consequence of the non-positive
curvature assumption. The specific detail is illustrated in Figure 1 and given in the
Proposition below. The basic idea is that by lifting mk and xk+1 back to Tm using
the Riemannian logarithm map Logm. A triangle Σ can be formed in Tm using the
three points mk,xk+1 and o, the origin. The geodesic distance dM (mk+1,m) is then
bounded by the Euclidean distance between the origin o and the corresponding point
mk on Σ . This upper bound in terms of the Euclidean length of a vector in Tm is use-
ful because the resulting integral that gives the desired upper bound for the MSE in
Equation 10 can be easily evaluated in an inductive argument using the distributions
P(mk−1) and P(x) instead of P(mk). Specifically, we have

Proposition 1. Let x,y,z be three points on a complete Riemannian manifold M
with non-positive sectional curvature and γ(t) the unique geodesic path joining x,y
such that γ(0) = x,γ(1) = y. Furthermore, let x = Logz(x),y = Logz(y), and γ(t)
denote the straight line joining x,y such that γ(0)= x,γ(1)= y. Then, dM (γ(t), z)≤
‖γ(t)‖.

The proposition is a consequence of the non-positive assumption on curvature. Ge-
ometrically, it asserts that the geodesic distance between m and any point on the
geodesic γ(t) cannot be greater than the Euclidean distance in Tm between the origin
and the corresponding point on the line joining x and y. The proof of the proposition
is relegated to the appendix.

Armed with the above proposition, the proof of the convergence of the iFEE is
straightforward and essentially follows from the law of large numbers in the Eu-
clidean case.

Theorem 1. The incremental Fréchet expectation estimator mk converges to the
true Fréchet expectation m in probability, i.e., as k→ ∞,

MSEm(mk)→ 0.

Proof. We will inductively show that

MSEm(mk)≤
1
k

Var(x). (15)

Since MSEm(m1) = Var(x), the inequality clearly holds for k = 1. For k+ 1 > 1,
we have, by Proposition 1,

MSEm(mk+1)≤
∫

Tm
‖k mk + x

k+1
‖2 P(mk)P(x)dmkdx.
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The integral on the right can be evaluated as∫
Tm
‖k mk + x

k+1
‖2 P(mk)P(x)dmkdx =

∫
Tm

k2

(k+1)2 ‖mk‖2P(mk)dmk

+2
k

(k+1)2

∫
Tm

∫
Tm

m>k xP(mk)P(x)dmkdx+
∫

Tm

1
(k+1)2 ‖x‖

2 P(x)dx

=
k2

(k+1)2 MSEm(mk)+
1

(k+1)2 Var(x)≤ 1
k+1

Var(x),

where the last inequality follows from the induction hypothesis, and∫
Tm

∫
Tm

m>k xP(mk)P(x)dmkdx = 0

follows from Equation 6, although
∫

Tm
mkP(mk)dmk is not guaranteed to be zero.

We remark that although Proposition-1 is valid for any other point z 6= m in M ,
the cross-term in the sum above

∫
Tm

∫
Tm

m>k xP(mk)P(x)dmkdx, when evaluated at
Tz is generally nonzero. In particular, the above argument only works for the unique
Fréchet expectation m.

Fig. 1: Geometric consequences of non-positive curva-
ture assumption. The three points mk,xk+1,mk+1 are
on a geodesic γ(t) in M . After lifting back to the tan-
gent space Tm at m, the point mk+1 = Logm(mk+1)
is closer to the origin than the corresponding point mk
on the straight line joining mk and xk+1. Note that the
Euclidean distance between the origin and mk+1 is the
same as the geodesic distance dM (mk+1,m).

3 Related Work

Manifold-valued random variables or more generally, random variables taking val-
ues on general metric spaces have been studied quite extensively in probability and
statistics literature since the seminal work of Fréchet [16]. In the context of Rie-
mannian manifolds, the notion of center of mass that is equivalent to the Fréchet
expectation as defined by Equation 1 was initially introduced by E. Cartan (see sec-
tion 6.1.5 in [17]), who established, among many other things, the uniqueness of
Riemannian center of mass for complete manifolds of non-positive sectional cur-
vature. For general Riemannian manifolds, the Fréchet expectation is unique only
for distributions with some special properties, for example, when their supports are
contained in convex geodesic balls. In statistics literature, the primary interest and
focus are on establishing the convergence of finite-sample means to the true expec-
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tation. With random variables taking values in general metric spaces and the non-
uniqueness of expectation, characterizations of convergence require more elaborate
machinery to account for the marked increase in the topological and geometric com-
plexity. The basic form of the general law of large numbers for metric space-valued
random variables was first established in [18,19] under different assumptions on the
metric spaces and the types of convergence. This abstract framework has been ap-
plied to study concrete statistical problems such as procrustean shape analysis [29],
and several recent works [22, 23] have substantially extended the scope of these
earlier works, both in abstraction and in application. In the context of Riemannian
manifolds, the pair of papers [20, 21] provide some of the basic results, including a
very general central limit theorem and several concrete examples concerning both
the intrinsic and extrinsic means of several classical manifolds such as the complex
projective spaces used in procrustean analysis. We remark that the idea of comput-
ing the mean incrementally and the question of its convergence do not seem to have
been discussed nor studied in these works.

In the conference version of this chapter [30] we proved the convergence of the
incremental estimator under the assumptions that the distribution is symmetric and
the Riemannian manifold M is the space of symmetric positive-definite matrices
P(n) equipped with the GL-invariant Riemannian metric. This result and its proof
were later extended to general distributions on P(n) in our second conference pa-
per [31]. The proofs presented in both papers rely on an inequality that is valid only
for Riemannian manifolds with non-positive sectional curvature, and this makes the
method ill-suited for further extension to manifolds with positive curvature that in-
cludes important examples in computer vision applications such as Grassmannians,
Stiefel manifolds and most compact Lie groups. In particular, the connection be-
tween the Euclidean and non-Euclidean cases were not made explicit in these two
earlier approaches, and the proof presented in this chapter that uses geometric com-
parisons is considerably more flexible in its potential for future extensions.

After the publication of [30] [31], we were made aware of the paper by Sturm
[32] wherein he formulated and proved a substantially stronger convergence re-
sult for length spaces, a more general class of spaces than Riemannian mani-
folds. Specifically, length spaces are metric spaces that determine the distance be-
tween two points using the minimal length of a path joining them, and compared
with Riemannian manifolds, length spaces retain the notion of geodesics (distance-
minimizing paths) but forsake the manifold structure as well as the exponential
and logarithm maps. Surprisingly, it is still possible, in the absence of a manifold
structure, to define a useful notion of non-positive curvature for length spaces, and
Strum [32] has formulated and proved a convergence result for length spaces of
non-positive curvature, of which complete Riemannian manifolds of non-positive
curvature are special cases. Although Sturm’s result subsumes ours, the convergence
theorem and its proof presented in [32] require considerably more machinery and
longer exposition to compensate for the loss of familiar structures such as the Rie-
mannian exponential and logarithm maps. From this perspective, our present expo-
sition offers three important contributions: First, we present a significantly shorter
and more accessible convergence proof using only elementary Riemannian geom-
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etry that is familiar to general readership of the Computer Vision and Medical Im-
age Computing communities. Second, our proof provides a more transparent and
clear connection between the convergence in the Euclidean domain (the law of large
numbers) and the non-Euclidean manifolds. Third, and most importantly, our proof
method that relies heavily on the linearization provided by the Riemannian expo-
nential and logarithm maps should be better adapted for studying the convergence
problems for more general Riemannian manifolds and analyzing other related is-
sues. Although the generality provided by [32] is both reassuring and welcoming,
applications in Computer Vision and Machine Learning often require a specialized
instead of generalized mathematical context, and in particular, general results must
be sharpened and improved for special cases, perhaps in terms of shorter proofs or
more precise characterizations, for which our current work serves as an example.

There are several articles in literature on computing the finite sample Fréchet
mean on Pn. Moakher [33], Bhatia and Holbrook [34], presented methods for com-
puting this intrinsic mean. Independently, there was work by Fletcher and Joshi [35]
that presents a gradient descent algorithm for computing the finite sample Fréchet
mean of diffusion tensors (matrices in Pn). Further, Ando, Li and Mathias (ALM)
[36] presented a technique to compute the geometric mean of n ≥ 3 SPD matrices
and listed 10 properties (now called the ALM axioms) that their mean satisfied. It
is to be noted that their mean is distinct from the Fréchet mean of the given sam-
ple set. In [37] Bini et al. present an extension of the unweighted geometric mean
of two SPD matrices to higher number of SPD matrices by using “symmetriza-
tion methods” and induction, which satisfies the ALM axioms. This however is
not the Fréchet mean of the given sample set. More recently, Lim and Pálfia [38]
presented results on computing a weighted inductive mean of a finite set of SPD
matrices. In [38], authors restrict themselves to discrete probability densities on Pn
unlike the work presented in this chapter where we consider the continuous den-
sities. For other types of means, we refer the reader to the excellent discussion in
Pennec [39] wherein, a gradient descent algorithm is presented for finding the fi-
nite sample Fr’echet mean for simply connected non-positively curved Riemannian
manifolds with curvature bounded from below. In [40], Afsari et al. present a com-
prehensive set of results on the convergence of the gradient descent algorithm for
finding the Riemannian center of mass (a.k.a. finite sample Fréchet mean) on Rie-
mannian manifolds.

In Medical Image Computing, an impetus for developing efficient algorithms for
computing means from samples is provided by the prominent role played by the
mean tensor (using various kinds of distances/divergences) in solving a wide range
of important problems that include diffusion tensor image (DTI) as well as struc-
ture tensor field segmentation, interpolation, clustering and atlas construction. For
example, authors in [41] generalize the geometric active contour based piece-wise
constant segmentation [42, 43] to segmentation of DTIs using the Euclidean dis-
tance to measure the distance between two SPD tensors. Authors in [44] present
a geometric active contour-based approach [45, 46] for tensor field segmentation
that used information from the diffusion tensors to construct the so-called structure
tensor which was a sum of structure tensors formed from each component of the
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diffusion tensor. A Riemannian metric on the manifold of SPD matrices was used
in [11, 47, 48] for DTI segmentation and for computing the mean interpolant of dif-
fusion tensors respectively. In [14,49,50] and [47], the symmetrized KL-divergence
(KLs) was used for DTI segmentation and interpolation, respectively. Other appli-
cations of computing mean diffusion tensor field from a finite sample of diffusion
tensor fields (structure tensor fields) can be found in [51, 52]. However, none of the
above methods for computing the mean of SPD matrices (or SPD fields) used within
the segmentation or the dictionary learning algorithms or in their own right for inter-
polation are in recursive form, even though it is evident that a recursive formulation
would be more desirable in designing a more efficient algorithm.

4 Experiments

In this section, we empirically demonstrate the accuracy and efficiency of the pro-
posed iFEE algorithm using a set of experiments. The distributions studied in these
experiments are all defined on P(n), the space of n-by-n symmetric positive-definite
(SPD) matrices equipped with the GL-invariant Riemannian metric. All experiments
reported in this section were performed on an Apple laptop with a 2.5GHz Intel Core
i5 CPU and 4GB DDR3. All reported timings are on the aforementioned CPU.

4.1 Performance of the Incremental Fréchet Expectation Estimator

Symmetric Distributions: We illustrate the performance of iFEE on a set of ran-
dom samples on P(n) drawn from a symmetric distribution, and compare the accu-
racy and computational efficiency of iFEE and the non-incremental (batch-mode)
gradient descent algorithm for computing the finite sample Fréchet mean (FM) of
the given dataset. To this end, a set of 100 i.i.d samples from a log-Normal distri-
bution [53] on P(6) are generated, and the Fréchet mean is computed using iFEE as
well as the batch-mode (gradient descent) method. We set the expectation and the
variance of log-Normal distribution to the identity matrix and one, respectively. The
error in estimation is measured by the geodesic distance from each estimated point
to the identity. Further, for each new sample, the computation time for each method
is recorded. Figure 2a illustrates the significant difference in running time between
iFEE and the batch mode method denoted using the legend, FM, in this figure and
figures to follow. It can be seen that the time taken by iFEE is considerably shorter
than the batch mode (FM) method.

The accuracy errors of the two estimators are shown in Figure 2b. It can be seen
that the incremental estimator provides roughly the same accuracy as the batch-
mode counterpart. Furthermore, for large numbers of samples, the incremental es-
timation error clearly converges to zero. Therefore, the algorithm performs more
accurately as the number of data samples grows.
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(a) (b) (c) (d)

Fig. 2: (a) and (b): Time and error comparison of iFEE (blue) vs. batch-mode (red)
Fréchet mean computation for data from a symmetric distribution on P(6). (c) and
(d): Similar experiment for data from an asymmetric distribution on P(4).

Asymmetric Distributions: For asymmetric distributions, we use a mixture of two
log-Normal distributions on P(4) and repeat the same experiment as above. The first
distribution in the mixture is centered at the identity matrix with the variance 0.1,
and the second component is centered at a randomly-chosen matrix with variance
0.2. A set of 500 samples are drawn from this distribution for the experiment. To
measure the error, we compute the gradient vector of the objective function in Equa-
tion 4 (k = 500) and its norm. Figure 2c depicts the timing plot for convergence of
the two algorithms for samples drawn from this asymmetric distribution. The plot
shown is an average over 500 runs. As evident, iFEE shows superior computational
efficiency. Figure 2d depicts the error of iFEE vs. its counterpart batch mode algo-
rithm for this asymmetric distribution. Note that the accuracy of both the algorithms
are as expected similar.

4.2 Application to K-means Clustering

In this section, we evaluate the performance of our proposed incremental algorithm
within the K-means clustering framework. K-means clustering is of fundamental
importance for many applications in computer vision and machine learning. Due to
the lack of a closed-form formula for computing the Fréchet mean, mean computa-
tion is the most time consuming step in applying K-means to SPD matrices, since
at the end of each iteration the mean for each estimated cluster needs to be recom-
puted. The experimental results in this section demonstrate that, for SPD matrices,
our iFEE algorithm can significantly speed up the clustering process – when com-
pared with the batch-mode – without any observable degradation in its accuracy.

For comparisons, we use the two different ways to compute the cluster centers:
(i) the iFEE algorithm and (ii) the batch-mode algorithm for computing the Fréchet
mean (FM). iFEE is applied to the K-means clustering for SPD matrices as follows.
At the end of each iteration of the K-means algorithm, we only consider matrices
whose cluster assignments have changed. For each of these “moving” samples, the
source cluster center is updated by removing the sample, and the destination cluster
center is updated by adding the new sample matrix. Both these updates can be effi-
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ciently performed using our incremental formula given in Equation 14, with appro-
priate weights. A set of experiments are presented here using different scenarios to
illustrate the effectiveness of our method. In each experiment, a set of random sam-
ples from mixtures of log-Normal distributions on P(n) are generated and used as
inputs to the K-means algorithm. In the first experiment, we increase the number of
samples and compare the accuracy and running time of incremental and batch-mode
estimates for each case. In the second experiment, we evaluate the performance of
each algorithm with respect to the matrix dimension. To measure the clustering er-
ror, the geodesic distance between each estimated cluster center and its true value is
computed and these are summed over all cluster centers and reported.

Figures 3a and 3b, respectively compare the running time and the clustering ac-
curacy of each method with increasing number of samples. It is evident that the iFEE
outperforms the batch-mode method, while the accuracy for both methods are very
similar. Moreover, as the number of samples increases, iFEE improves in accuracy.
Also Figure 3c illustrates a significant difference in running time between these two
methods, while Figure 3d shows that the accuracy for both methods are roughly the
same. These experiments verify that the proposed iFEE is far more computationally
efficient the batch-mode algorithm for K-means clustering applied to SPD matrices.

(a) (b) (c) (d)

Fig. 3: Comparison of running times and accuracy for K-means clustering based on
iFEE and batch-mode estimators for, (a) and (b): varying number of samples from
3 clusters on P(4); (c) and (d): 1000 samples from 3 clusters with varying sizes.

4.3 Application to Diffusion Tensor Image Segmentation

In this section, we present results of applying our iFEE algorithm to real data seg-
mentation specifically, the diffusion tensor image (DTI) segmentation problem. Dif-
fusion tensors are symmetric positive definite (coefficient) matrices in a quadratic
approximation to the diffusivity function characterizing the water molecule diffu-
sion in sample tissue being imaged using a medical imaging technique called dif-
fusion magnetic resonance imaging [54]. Standard MRI acquisition is modified via
the application of diffusion sensitizing magnetic field gradients at each voxel of an
image grid to acquire the signal along the applied magnetic field gradient directions.
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One acquires these signals over a sphere of directions and at each voxel of an image
grid, the diffusivity function is then approximated by a zero-mean local Gaussian,
whose covariance matrix is proportional to the diffusion tensor. For more details on
DTI, we refer the reader to [54].

In [14], the classical level-set based (piece-wise constant model) segmentation al-
gorithm [42] was generalized to cope with a field of diffusion tensors. The constant
in the piece-wise constant model employed here is the mean of the tensor-valued
voxels in a region. In this section, we use this algorithm to segment DTIs, and use
different (tensor field) mean estimation techniques within this algorithm for com-
parison purposes. We applied six different methods to compute the mean diffusion
tensor (SPD matrices), and compared their accuracies and computation speed in the
task of DTI segmentation. The first two methods used here are the proposed iFEE
and the batch-mode Fréchet mean (FM) obtained from Equation 4. The next two
methods denoted henceforth by KLS and RKLS respectively are, the mean computed
using the symmetrized KL-divergence [14] and its recursive counterpart, reported
in [30]. The last two techniques are the Log-Euclidean mean (LEM) [55] and its
recursive version (RLEM) introduced in [56].

iFEE FM RKLS KLS RLEM LEM
MT 1.85 92.05 2.89 4.20 1.45 26.59
T T 52.42 147.79 54.23 59.41 66.34 117.58

Table 1: Time (in seconds) for segmentation of the
gray matter in a rat spinal cord. MT and T T denote
the mean computation time, and total segmenta-
tion time, respectively.

The diffusion tensors at
each grid point of the image
field are estimated (using the
method described in [14]) from
a diffusion MR scan of a rat
spinal cord. The data was ac-
quired using a 17.6-T Brucker
scanner, along 21 directions
with a b-value of 1000s/mm2.
Each voxel size in the scan
was 35µm× 35µm× 300µm;
and the image resolution was
128× 128. Our goal here is to
segment the gray matter from the DTI of the rat spinal cord. We used the same ini-
tialization for all the methods. We applied all of the six methods (incremental and
batch-mode versions for each of the three “distance” measures) to perform this ex-
periment. In order to compare the time efficiency, we report the run times for the
entire gray matter segmentation process, including the total time required to com-
pute the means. Table 1 shows the result of this comparison, from which we can see
that FM takes nearly two thirds of the total reported segmentation time to compute
the Fréchet mean, whereas, using the iFEE makes the computation much faster, and
also significantly reduces the total segmentation time.

The segmentation results are shown in Figure 4 for each method. For the sake
of space, we present only the segmentation results from iFEE, FM, RKLS and
RLEM algorithms, as the results from RKLS and RLEM are visually similar to their
non-incremental counterparts. The segmented region is the gray matter in the rat
spinal cord. The region surrounding the entire spinal cord shown in blue is water in
which the excised spinal cord was suspended for ex-vivo image acquisition. Each
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(3,3) diffusion tensor in the DTI data are depicted using an ellipsoid, whose axis
directions and lengths correspond to the eigen-vectors and eigen-values of the tensor
respectively. The color of each ellipsoid ranges from blue to red, demonstrating
the lowest to highest degree of anisotropy respectively. Moreover, the segmentation
result is depicted as a curve in red overlaid on the ellipsoidal visualization of the
diffusion tensor field. From the figure, we can see that the segmentation results are
visually similar to each other, while the iFEE takes far less computation time, which
would be very useful in practice.

Fig. 4: Segmentation results of
gray matter in a rat spinal cord.
(a)-(d) Results from iFEE, FM,
RKLS and RLEM respectively.

5 Conclusions

In this chapter, we have presented a novel incremental Fréchet expectation estimator
dubbed iFEE that incrementally computes the Fréchet expectation of a distribution
defined on a Riemannian manifold, and presented a proof for the algorithm’s conver-
gence for simply connected and complete Riemannian manifolds with non-positive
sectional curvature. In iFEE, the intrinsic mean update is done by moving the cur-
rent mean towards the new sample on the geodesic joining them; therefore, provided
that the geodesics are accessible, iFEE does not require optimization and is compu-
tationally very efficient. The asymptotic accuracy of iFEE is guaranteed by the con-
vergence analysis, and it provides an example of geometric generalizations of the
law of large numbers in that the well-known sample average in the Euclidean law of
large numbers is now replaced by the geometric operation of moves on geodesics.
We have presented several experiments demonstrating the efficiency and accuracy
of the iFEE algorithm.
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to BCV.
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APPENDIX

In this appendix, we prove Proposition-1 presented in Section two. The proof is
entirely elementary if we assume the general property of CAT(0)-metric spaces [57]
and Toponogov’s comparison theorem (specifically, the easier half of the theorem
on manifolds of non-positive sectional curvature) [17].

Complete Riemannian manifolds of non-positive sectional curvature form an
important subclass of CAT(0)-metric spaces [57]. For our purpose, the detailed
definition of CAT(0)-metric spaces is not necessary; instead, we will recall only
the features that are used in the proof. A geodesic triangle Γ on a complete Rie-
mannian manifold M is the union of three geodesic segments joining three points
p,q,r ∈M : γ1(0) = γ3(1) = p,γ1(1) = γ2(0) = q,γ2(1) = γ3(0) = r. Its compar-
ison triangle ∆ is a triangle in R2 with vertices p,q,r such that the lengths of the
sides pq,qr,rp equal to the lengths of the geodesic segments γ1,γ2,γ3, respectively.
Such comparison triangle always exists for any geodesic triangle in M , and it is
unique up to a rigid transform in R2. The correspondence between the three sides
and segments extends naturally to points on the triangles as well: a point x ∈ Γ cor-
responds to a point x ∈ ∆ if their associated sides correspond and their distances to
the corresponding two endpoints are the same. For example, if x ∈ γ1 and x ∈ pq, x
corresponds to x if dM (x,p) = dR2(x, p), and hence dM (x,q) = dR2(x,q) as well.
An important property enjoyed by any CAT(0)-metric space is that for any pair of
points x,y on Γ and their corresponding points x,y on ∆ , we have (see Figure 5)
dM (x,y)≤ dR2(x,y). The importance of this inequality is the upper bound given by
the Euclidean distance in R2, and it allows us to bound the integral of the squared
distance function on M by an integral involving squared Euclidean distance that is
considerably easier to manage. Finally, for the pair of triangles Γ ,∆ , Toponogov’s
comparison theorem asserts the angle ∠(rpq) on ∆ no smaller than ∠(rpq) on Γ .

Armed with these results, the proof of Proposition-1 is straightforward and it
involves comparing two triangles in the tangent space Tm. See Figure 1. We restate
proposition-1 for convenience below and now present its proof.

Fig. 5: A geodesic triangle in M and its com-
parison triangle in R2. Corresponding sides
on the triangles have the same length. By
Toponogov’s comparison theorem, the angle
∠(qpr) is not less than the angle ∠(qpr) due
the non-positive sectional curvature of M .
Furthermore, if γ(t),γ(t) denote the geodesic
and straight line joining p,q and p,q, respec-
tively, then the geodesic distance dt between
p and γ(t) is not greater than the Euclidean
distance dt between p and γ(t), i.e., dt ≤ dt .
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Proposition 1. Let x,y,z be two points on a complete Riemannian manifold M
with non-positive sectional curvature and γ(t) the unique geodesic path joining x,y
such that γ(0) = x,γ(1) = y. Furthermore, let x = Logz(x),y = Logz(y), and γ(t)
denote the straight line joining x,y such that γ(0)= x,γ(1)= y. Then, dM (γ(t), z)≤
‖γ(t)‖.

Proof. Given mk, xk+1 in M , and mk+1 determined according to the iFEE algo-
rithm, we will denote mk,xk+1 and mk+1, their corresponding points in Tm un-
der the Riemannian logarithm map Logm. Without loss of generality, we will
prove the proposition using z = mk,x = bxk+1,y = mk. Let a = dM (xk+1,m) and
b = dM (mk,m). On Tm, we have the first triangle Σ formed by the three vertices:
xk+1,mk and o the origin with the side lengths |xk+1o|= a, |mko|= b. The geodesic
triangle Γ on M spanned by m,xk+1,mk has a comparison triangle ∆ in Tm spanned
by o, p,q with |po|= a, |qo|= b, and by Toponogov’s comparison theorem,

θσ ≡ ∠(xk+1omk)≤ ∠(poq)≡ θδ ,

since, by definition, ∠(xk+1omk) = ∠(xk+1mmk).
For completing the proof, we need to show that the distance between any point

on the side pq of ∆ and the origin is not greater than the distance between its corre-
sponding point on the side xk+1mk of Σ and the origin. Specifically, a point u ∈ pq
can be written as u = t p+(1− t)q, for some 0≤ t ≤ 1 and its corresponding point
v on xk+1mk is the point v = txk+1 +(1− t)mk. Since the triangle ∆ is unique up
to a rigid transform, we can, without loss of generality, assume that the two trian-
gles ∆ ,Σ are contained in a two-dimensional subspace of Tm such that (using the
obvious coordinates) they are spanned by the following two sets of three points:

∆ : (0,0),(a,0), (bcosθδ , bsinθδ ),

Σ : (0,0),(a,0), (bcosθσ , bsinθσ ),

with θσ ≤ θδ . Consequently, u = (ta+(1− t)bcosθδ ,(1− t)bsinθδ ) and v = (ta+
(1− t)bcosθσ ,(1− t)bsinθσ ), and their lengths are, respectively,

‖u‖=
√

t2a2 +2t(1− t)abcosθδ +(1− t)2,

‖v‖=
√

t2a2 +2t(1− t)abcosθσ +(1− t)2.

Since θσ ≤ θδ , it then follows that ‖u‖ ≤ ‖v‖.


