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ABSTRACT

Fully labeled manual segmentation—a cornerstone of neuro-
anatomical structure segmentation, is known to be a tedious,
time-consuming and error-prone task even for trained experts.
In this paper, we propose a novel partially labeled multiple
atlas-based segmentation algorithm which can simultane-
ously segment multiple structures from a given image. Intra-
and Inter- structural constraints are imposed to preserve spa-
tial relationships and to propagate the segmentation from the
labeled regions to the unlabeled regions. We present several
experiments on real data sets which show that our approach
yields accurate segmentations of the test data even in the
absence of a large percentage of the atlas labels. Further, our
approach has the ability to refine the given partially labeled
atlases via a supervised learning stage.

Index Terms— Partially Labeled Multiple Atlases, MRI
Segmentation, Structural Constraints

1. INTRODUCTION

Neuroimage analysis and its associated application to the
diagnosis and treatment of brain disorders has attracted im-
mense attention in the past two decades. Automated segmen-
tation of neuroanatomical structures from 3D MR scans is one
of the key steps in Neuroimage analysis tasks. In the context
of brain MRI segmentation, there is ample literature on seg-
menting structures such as the hippocampus, amygdala, cau-
date, nucleus, ventricles, etc. Multi-atlas based segmentation
is the most popular approach used to achieve the aforemen-
tioned tasks. Global, semi-global or local weights are learned
to propagate the voxel-wise labels from the warped atlas to
the subject, as described in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

Most of the multi-atlas based segmentation algorithms re-
quire fully (manually) labeled atlases as input. However, the
manual segmentation of neuroanatomical structures is known
to be an error-prone, tedious, and time-consuming procedure.
A partially labeled atlas based segmentation algorithm could
greatly help to reduce this excessive manual workload. There
are a few partially labeled multi-atlas based segmentation al-
gorithms. In [12], authors use partially labeled atlases as a
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Fig. 1. Framework for voxel-wise combination of M warped atlas
segmentations and label vectors
prior in an expectation maximization (EM) based estimator.
More recently, in [13], Koch et al. proposed an algorithm
called ”GLa”, where they pose the multi-atlas based segmen-
tation problem in a graph-cuts framework, where unlabeled
nodes are disconnected to the rest of graph. In this paper,
we propose a novel partially labeled multi-atlas based seg-
mentation (PL-MAS) algorithm which is different from all
of the aforementioned methods. In the following, we present
a brief summary. We develop a supervised learning frame-
work to learn the optimal voxel-wise weighted combination
of warped, partially labeled, atlas segmenters. In the training
stage, the optimal weights are learned through the minimiza-
tion of the error between the weighted combination of warped
atlas segmentations and the ground-truth segmentation within
the labeled region. Further, we impose intra- and inter- struc-
tural constraints to regularize the weights within the labeled
region and infer the weights of the unlabeled region. The re-
sulting optimal weighted combination of the warped atlas seg-
mentations for each training data set automatically leads to
a refinement of the given partially labeled ground-truth seg-
mentation. In the testing phase, we use the warped optimal
weights associated with the most relevant data from the train-
ing set to achieve the segmentation of a test image.

The rest of the paper is organized as follows: In sec-
tion 2, we present details of the segmentation methodology
of our partially labeled multi-atlas based segmentation algo-
rithm. The algorithms are validated experimentally in sec-
tion 3 and conclusions are presented in section 4.

2. METHODOLOGY

Given the partially labeled atlas Latlas and its corresponding
intensity image Iatlas, a general nonrigid-deformation based
segmentation method can be used to create a weak segmenter
Φ = Latlas ◦ fIatlas→I of a given intensity image, which we
will henceforth refer to as a ”warped atlas segmenter” or a
”weak segmentation”. Here, f is the nonrigid deformation
(symmetric diffeomorphic transformation) from the intensity



image of the atlas to the image to be segmented.
The problem can be described as follows. Given M

warped atlas (partially labeled) based segmentations {Latlast◦
fIatlast→I , t = 1, . . . ,M} for a test image I , we seek to form
a final strong segmentation from these weak segmentations.
As shown in Figure 1, we use a voxel-wise weighted combi-
nation of the weak segmentations to achieve the goal. Here,
we assume that all the data have already been affinely reg-
istered to a reference image so that they are approximately
aligned to the same coordinate system. Prior to delving into
the details of the training and testing stages, we first introduce
the label representation used in this paper.

It is of great clinical importance to develop an algo-
rithm for the simultaneous segmentation of multiple struc-
tures within a shape complex—a collection of neighboring
neuro-anatomical structures—since many neurological dis-
orders are diagnosed by structural abnormalities that may be
present in several brain structures rather than just a single
one. Therefore, our label field representation needs to be
able to describe multi-class segmentation. Furthermore, since
the given atlases are only partially segmented/labeled, our
label field representation is also required to depict unlabeled
regions. Assume that there are K structures within a shape
complex. We use a K + 1 dimensional vector to store the
label information where the (K + 1)th structure refers to the
background. A standard 1-of-K encoding approach is used
to represent the label field. More specifically, a (K + 1)-
dimensional label vector is associated with each voxel and
if the voxel is labeled as belonging to the kth structure, the
kth entry of the vector will be set to one with the rest of the
elements set to zero. If a voxel is unlabeled, the associated
label vector is set to the zero vector. As shown in Figure 1,
the voxel is labeled as belonging to the 2nd (blue) structure,
so the vector associated with that voxel is [0, 1, 0, 0, 0]t. This
label representation facilitates in formalizing the supervised
learning objective function as a least squares problem, which
we will show subsequently. To simplify the presentation, we
make use of some notation which is introduced now:
• C = {1, . . . ,K + 1} denotes the label class set.
• The subscript t denotes the index to atlases.
• {I1, . . . , IN} denotes the training subjects. Superscript n de-

notes the index to the training subjects.
• Φt = {Lt◦fIt→I} represents the tth warped atlas segmenta-

tion of the image to be segmented. Φt(i) is the label vector of
the ith voxel. Notice that the ith voxel is unlabeled if Φt(i)
is a zero vector.

• Θ(i) = [Φ1(i),Φ2(i), . . . ,ΦM (i)](K+1)×M represents the
M atlas warped segmentation results to be combined for the
ith voxel. Θ(i, k), k ∈ C is the M warped atlas segmentation
results for the kth class.

• w(i) = [w1(i), . . . , wM (i)] is the weight vector used to
combine the warped atlas segmentation for the ith voxel.

• S(i) = Θ(i)w(i) is the weighted combination of multi-atlas
warped segmentation for the ith voxel. S(i, k) is the kth

entry of the label vector.

• Ωlabeled represents a labeled region, Ωunlabeled represents an
unlabeled region, Ωlabeled ∪ Ωunlabeled = Ω.

2.1. Supervised Learning Stage

In the training stage, for each given partially labeled training
subject {L, I}, we want to learn the optimal linear weighted
combination of warped atlas segmentations {Lt ◦ fIt→I , t =
1, . . . ,M} which yields the best approximation to its ground-
truth segmentation. With the above given notation, we can
represent the voxel-wise linear combination of the warped at-
las segmentations by Θ(i)w(i), i ∈ Ω. For the labeled re-
gion, since the ground-truth segmentation is known, it is nat-
ural to expect the error

∑
i∈Ωlabeled

‖Θ(i)w(i)−L(i)‖2 to be
minimized. However, the optimal weights resulting from this
simple regression model are limited to the labeled regions.
Besides, the assumption of independent voxel weights leads
to loss of spatial relationships within and across the structures.
Therefore, we introduce Intra- and Inter- Spatial Constraints
to preserve the within/across structure/s spatial relationships
and propagate the weights from the labeled regions to the ad-
jacent unlabeled regions.

2.1.1. Intra- Spatial Constraint

Strong spatial dependencies exist within regions in most
real images. It is therefore well-justified to assume that the
weights are smooth within each structure. A Local Neigh-
borhood Graph G is constructed from each partially labeled
ground truth training dataset to capture the spatial depen-
dency information within each structure. For each voxel i,
G(i, j), j ∈ O(i) is defined as follows:

G(i, j)
def
=

{
L(i) ·L(j), if i, j ∈ Ωlabeled

H(δ − |vj→i · n(i)|), else.
(1)

where vj→i is the normalized vector from voxel j to voxel i,
n(i) is the unit surface normal at the ith voxel and H is the
Heaviside (step) function. δ is a threshold which is set to be
0.5. In 3D, the neighborhood of the ith voxel O(i) used is
6, 18 or 26 reflecting standard nearest neighbor relationships.
This neighborhood graph is used to regularize the distances
between weight vectors of adjacent voxels. When the ith and
the jth voxels are both labeled, the graph entry G(i, j) = 1,
if the two voxel are located in the same structure, otherwise
G(i, j) = 0. When either of the two voxels’ labels is miss-
ing, we can infer the spatial dependency from the geometric
properties. If the ith voxel is a point on the surface (con-
structed by the partially labeled ground-truth segmentation),
G(i, j) = 1, when the angle between vj→i and the normal is
larger than across(δ), else G(i, j) = 0. If the ith voxel is a
point within the structure where n(i) = 0, G(i, j) = 1, since
all of its neighbors are within the structure. It is natural to
expect the weights corresponding to the neighboring voxels
within the same structure or residing along the tangent direc-
tion to be the similar. To this end, we use the regularization
term G(i, j)‖wi − wj‖2 to preserve intra-structural smooth-
ness.



2.1.2. Inter- Spatial Constraint

In addition to intra-structural smoothness, we also pro-
pose a novel spatial constraint to avoid the overlapping of
neighboring structures in the final segmentation. Given a
shape complex with K structures in it, we first construct
a Global Neighborhood Graph N containing spatial in-
formation about the neighboring structures. Here, N is a
(K + 1)× (K + 1) matrix.

N (k, l)
def
=

{
1, if k 6= l, k, l ∈ {C\(K + 1)}
0, else.

(2)

We expect that each structure does not intersect any of the
other structures with the exception of the background which
can intersect any other structure. More specifically, for each
voxel, we expect the linear combination S(i) to satisfy the
conditionN (k, l)S(i, k)S(i, l) = 0 to prevent structure over-
lap. While there are many different ways in which one can
enforce competition between different structures attempting
to claim each voxel as their own, we adopt an approach with
scalability in mind. That is, we would prefer a sparse linear
solver for classification due to its attractive scalability prop-
erties. Scalability is important in this context due to the pres-
ence of multiple weight vectors—with variation over both the
voxels and the training set. It is due to this variability that we
seek a sparse linear system solution.

2.1.3. Objective Function

In order to obtain a classifier with a sparse linear solver,
we construct an objective function which is quadratic in the
weight vectors with the spatial constraints enforced. Based
on these considerations, the overall optimization problem is
given by,

w? = arg minw
∑
i∈Ωlabeled

‖Θ(i)w(i)− L(i)‖2+
λ1

∑
i∈Ω

∑
j∈O(i) G(i, j)‖w(i)−w(j)‖2+

λ2

∑
k,l∈C

∑
i∈ΩN (k, l)(w(i) ·Θ(i, k))(w(i) ·Θ(i, l)).

(3)
Where, w = {w(i)}, λ1 and λ2 are regularization parame-
ters. The optimization problem can be posed as the solution
to a sparse linear system that results in a closed form solution
after some algebra which we omit here due to lack of space.
As shown in the objective function, weights of the unlabeled
regions will be propagated from the connecting labeled re-
gions. The non-overlap constraint forces the weighted com-
bination (segmentation estimation) of unlabeled regions to be
discriminative.

2.2. Testing Stage

When a test image Ĩ is required to be labeled, we first ob-
tain its warped atlas based weak segmentations {Φ̃t(i), t =
1, . . . ,M, i ∈ Ω}. During testing, we assume that images
with similar features result in similar segmentations, which is
also assumed in many label fusion methods. In other words,

images with similar features result in similar generative mod-
els. In order to utilize w resulting from the training stage, we
first warp the training intensity images and the associatedw to
the test image, then use the “deformed”w from ”similar train-
ing images” to combine the warped multi-atlas segmentations
of the test image. Therefore, the final strong segmentation
Ŝ(i) for the test image can be constructed as follows,

Ŝ(i) =

N∑
n=1

T∑
t=1

γnΦ̃t(i)(w
n
t (i) ◦ fIn→Ĩ(i)). (4)

where, fIn→Ĩ is the deformation from the training intensity
image In to the test image. wnt is the learned weight matrix
associated with the nth training image for the tth weak seg-
menter. γn performs the role of weighting the trained weight
matrices. For each voxel i, the label is assigned based on
the structure with the largest value (probability) in the strong
segmentation Ŝ(i) with the exception that when Ŝ(i) = 0,
we classify the voxel as background. To avoid overfitting, in
the testing stage, not all the warped training results are used.
Several techniques can be used to find the ”similar” training
images related to an incoming test image. A popular approach
to achieve this is to find the K Nearest Neighbors. Formally,
let {Y n, n = 1, . . . , N} be the feature vector for each warped
training image. (We need to warp each training image to the
test image’s coordinate system in order to evaluate the sim-
ilarity.) Let Ỹ be the features for the given test image. We
use the normalized variation of information to measure the
dissimilarity between two feature vectors, so that γn can be
defined as γn = exp(−αV I(Y n,Ỹ ))∑N

n=1 exp(−αV I(Y n,Ỹ ))
. By tuning the value

of α, we can automatically control the number of the near-
est neighbors. In this paper, we use the vectorized intensity
image as the feature.

3. EXPERIMENTAL RESULTS

Fig. 2. Segmentation Example: (a) Par-
tially labeled atlas, (b) Intermediate result:
refined atlas (c) Fully labeled atlas (refer-
ence), (d) The test subject, (e) Segmentation
using our algorithm PL-MAS, (f) Ground-
truth segmentation of the test subject.

In this section,
we experimen-
tally validate
our algorithm
(PL-MAS) and
compare it with
the most recent
work on seg-
mentation using
partially labeled
atlases, called
“GLa” [13]. We
used the code
provided by the
authors of [13]
for this com-
parison1. We

1https://github.com/lmkoch/multi-atlas-graph-labelling



Fig. 3. Mean Dice Coefficient for testing when, (a) 20%, 40%, 60%
atlases’ labels are locally missing, (b) 20%, 40%, 60% atlases’ la-
bels are globally missing, (c) 20%, 40%, 60% atlases’ slices are
missing. (d) Mean Dice Coefficient for refined atlases (intermedi-
ate results from PL-MAS) when 60% labels are (locally, globally,
slice-wise) missing.

tested our algorithm on the MICCAI 2012 Grand Challenge
dataset2(Since the algorithms submitted for this challenge are
not designed to segment MR image based on partially labeled
atlases, we omit them here). There are 15 training and 20 test
subjects respectively. We chose the shape complex composed
of the Caudate, the Pallidum, and the Putamen, which are
most affected in several neurological disorders. Since the
shape complex is within a certain region of the brain, we
therefore define a bounding box that approximately encloses
the shape complex and only take this ROI from all the data
sets as the input to our segmentation algorithm PL-MAS.

In ”GLa”, we use all of the 15 training subjects as the in-
put multi-atlases. In our algorithm, for each training subject,
we use the remaining 14 training subjects as the multi-atlases
to learn the optimal weighted combination and the weights
associated with this training subject are set to zero in the su-
pervised learning stage. We created three different partially
labeled multi-atlas settings to test our algorithm on. These

2https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Main page

settings are listed below.
• Missing Local Information: For each voxel location, we ran-

domly remove 20%, 40%, 60% atlases’ labels.
• Missing Global Information: For each atlas, we randomly re-

move 20%, 40%, 60% voxels’ labels.
• Missing Slices: For each atlas, we randomly remove 20%,

40%, 60% slices.
We chose the parameter values λ1 = 100, λ2 = 1, α = 1 by
leave-one-out cross-validation solely on training data set.

Figure 2 shows an example where 40% labels are glob-
ally missing from the ground-truth atlas. It shows that PL-
MAS gives a satisfactory segmentation estimate even when a
large portion of the atlases’ labels are missing. Aside from
segmenting the novel image, our algorithm (the supervised
learning stage) automatically produces a good refinement
of the partially labeled atlas. We use the Dice’s coefficient
between the obtained segmentation result and fully labeled
ground-truth segmentation to evaluate the performance. Fig-
ure 3 shows the mean Dice’s coefficients for the 20 test cases
based on the aforementioned partially labeled atlases. Here,
the term ”Weak” represents the warped atlas segmentation.
When 20% atlases’ labels are missing, ”GLa” and PL-MAS
give comparable results in all three settings. When the per-
centage of the missing labels increases, PL-MAS outperforms
the competition. The mean Dice coefficient is approximately
0.8 for most structures even when 60% labels are missing.
Meanwhile, the mean Dice of the 15 refined atlases obtained
from PL-MAS is around 0.9 for all the structures when 60%
labels are missing.

Overall, the results show that the optimal weighted combi-
nation learning based on the geometric properties of partially
labeled atlases leads to a better generative model compared
with the combination directly learned from the intensity im-
age. However, since the geometric properties are learned from
partially labeled data, some false local geometries resulting
from the missing labels may influence the testing phase.

4. CONCLUSION

In this paper, we proposed a novel partially labeled multi-
atlas based segmentation algorithm, PL-MAS, which learns
a weighted weak segmenter combination. During the train-
ing stage, PL-MAS incorporates both non-overlap and voxel-
wise smoothness constraints to preserve the inter- and intra-
structural spatial relationships of the subcortical structures.
Furthermore , it propagates the weights from the labeled re-
gions to adjacent unlabeled regions. The training stage is for-
mulated as a least-squares optimization problem that leads to
solving a sparse linear system. In the testing stage, multiple
anatomical structures can be simultaneously segmented based
on the partially labeled multi-atlas segmentations. The exper-
imental results show that our algorithm successfully segments
the data even when a large portion of labels are missing in the
atlases. This suggests the ability of PL-MAS to significantly
reduce the workload involved in manual labeling tasks.
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