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Abstract Images are often considered as functions defined
on the image domains, and as functions, their (intensity) val-
ues are usually considered to be invariant under the image
domain transforms. This functional viewpoint is both influ-
ential and prevalent, and it provides the justification for
comparing images using functional Lp-norms. However,
with the advent of more advanced sensing technologies
and data processing methods, the definition and the vari-
ety of images has been broadened considerably, and the
long-cherished functional paradigm for images is becoming
inadequate and insufficient. In this paper, we introduce the
formal notion of covariant images and study two types of
covariant images that are important in medical image analy-
sis, symmetric positive-definite tensor fields and Gaussian
mixture fields, images whose sample values covary i.e.,
jointly vary with image domain transforms rather than being
invariant to them. We propose a novel similarity measure
between a pair of covariant images considered as embed-
ded shapes (manifolds) in the ambient space, a Cartesian
product of the image and its sample-value domains. The
similarity measure is based on matching the two embedded
low-dimensional shapes, and both the extrinsic geometry of
the ambient space and the intrinsic geometry of the shapes
are incorporated in computing the similarity measure. Using
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this similarity as an affinity measure in a supervised learning
framework, we demonstrate its effectiveness on two chal-
lenging classification problems: classification of brain MR
images based on patients’ age and (Alzheimer’s) disease
status and seizure detection from high angular resolution dif-
fusion magnetic resonance scans of rat brains.
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1 Introduction

This paper introduces the formal notion of covariant images
and proposes a novel similarity measure S(X,Y) for covari-
ant images that has been shown experimentally to be effective
for several classification problems arising from medical
image analysis. Images are representations of discrete point
samples of their underlying image functions on the image
domain, and as such, they are often regarded as functions
of the image domain. A characteristic feature of functions
is the invariance of their sample values under image domain
transforms, and this seemingly innocuous and often over-
looked property provides the legitimacy to a large body of
work on image matching and classification using L2 or other
functional norms as the basic similarity measures between
images. However, with more advanced sensing and signal
processing technologies, images based on more powerful
sampling methods and, consequently, more elaborate repre-
sentations are becoming increasingly common, particularly
inmedical imaging applications. These images are often vec-
tor or tensor-valued and on occasions, they can even take
values in a domain without vector-space structure. Notwith-
standing this apparent diversity of sample-values, a common
feature shared by these images is their general lack of con-
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formity to the old functional paradigm of images in that
their sample-values often change under image domain trans-
forms. In other words, invariance of the sample-values gives
way to the covariance1 of the sample-values under image
domain transforms, and an important but subtle consequence
of the covariant image model is the greater degree of co-
dependency between the image domain and sample-values
as image domain transforms now affect the sample-values
as well. Therefore, any principled approach for designing
effective similarity measures for covariant images should
take into account this implicit co-dependency between the
image and sample-value domains that is the distinguishing
feature of the covariant image model. Precisely because they
lack incorporation of this co-dependency, similarity mea-
sures based on functional norms such as the L2-distance
measure lose much of their legitimacy in the new covari-
ant context and for image classifications, their inadequacy
and deficiency are often readily noticeable. The image simi-
larity measure S(X,Y) for covariant images proposed in this
paper is intended to remedy the shortcomings of L2-based
functional norms in medical imaging applications, and the
novel aspect of our approach is the central role played by the
geometry in modeling the co-dependency between the image
and sample-value domains.

A gray-scale or a color image contains samples of the
radiance function of a scene, and each pixel’s sample value
records the flux of photons, essentially a directionless count-
ing process. In contrast, the image functions sampled in
medical image analysis are often more complex in nature
in order to be biologically meaningful and clinically use-
ful, and in particular, the image formation process often tries
to capture directional quantities such as anisotropic diffusion
along nerve fiber bundles in diffusionMR imaging. The qual-
itative difference between their respective image functions
of interest explains much of the formal differences between
processing images in medical image analysis and computer
vision applications. In particular, image domain transforms
that alter directions would naturally have nontrivial effect on
directional quantities and hence on their sampling results, the
sample-values. Although an exact modeling of the effect on
sample-values is not possible, the first-order approximation
assumes the change of sample-values depends on the local
behavior of the transform. For smooth transforms, their local
behaviors can be modeled by linear transforms, their Jaco-

1 Aword of caution here would serve in avoiding any confusion further
down in the rest of this paper. InComputerVision andStatistics, the term
covariance is commonly used to indicate the second order statistic and
should not be confused with the term we use here namely, “covariant”.
Further, in the field of tensor algebra, the terms, covariant and contra-
variant tensors are commonly used and indicate the way these tensors
transform under coordinate transformations. In this paper, covariant
images simply refers to imageswhose value set covaries or jointly varies
with transformations applied to the domain.

bians, and the appearance of the Jacobians as local linear
approximations allows us to formalize the notion of covari-
ant images.

Specifically, a covariant image is formally given as a quin-
tuple (Ω, F, T (F), I,R), where

– Ω is the image domain, taken to be the 2D or 3D unit
square [0 1]k ⊂ R

k, k = 2 or 3.
– F is the space of sample-values, and T (F) is the set of

smooth transformations of F .
– I : Ω → F is the image function, and to simplify nota-

tion, we will use I to denote both the covariant image and
its component image function.

– R : Matk → T (F) is the re-orientation map withMatk
denoting the set of k × k nonsingular matrices.

Since the image domain is a subset ofRk , the Jacobian JT(x)

of a smooth transform T at x ∈ Ω can be represented as a
k × k nonsingular matrix. The mapR specifies exactly how
the image I transformed under an image domain transform
T ∈ T (Ω) according to the formula

T∗
R(I)(x) = R(JT(T−1x))(I(T−1x)),

where T∗
R(I) denotes the transformed image, and on occa-

sions, we will also denote it as (I ◦ T)R. We remark that
R is not assumed to be a homomorphism that preserves the
algebraic structures between Matk and T (F), and in appli-
cations, R is typically given as a set of steps that produces
the transform R(JT(T−1x)) given the computed Jacobian
JT(T−1x), a process that rarely makesR a homomorphism.
However, if R is the trivial homomorphism mapping every
element in Matk to the identity transform in T (F), it then
defines a special class of covariant images whose sample-
values are not effected by the image domain transforms, the
regular images. In this sense, the notion of covariant images
strictly generalizes the usual notion of images, and it is the
novel feature of the re-orientation map (when it is not triv-
ial) that models the additional structure of co-dependency
between spatial and sample-value domains. For a global lin-
ear transform T, its Jacobian is a constant transform across
Ω , i.e., itself and therefore, the effect of T on the sample-
values is independent of x ∈ Ω . However, for a general
non-linear transform T, its Jacobian is not a constant and its
effect on the sample-values varies from point to point. In this
paper, we study two classes of covariant images: symmetric
positive-definite (SPD) tensor fields and Gaussian mixture
fields. For the former, the space of sample-values F is the
space of k × k SPD matrices, and for the latter it is the space
of Gaussian mixtures with a fixed number of components.
Their respective details on re-orientation will be presented
in the following sections.
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Classification problems of interest in medical image
analysis often require identifications of physiological or
pathological features of some anatomical structures such
as the ventricles, the corpus callosum, hippocampus etc.
in the brain, and often times, some of the most useful and
relevant features tend to be subtle variations in the shapes
of these structures. Computationally, shape variations are
usually characterized and quantified using image domain
transforms and in particular, the magnitude of the transform
that bestmatches two images often supplies an effectivemea-
sure of similarity for a range of classification problems in
medical imaging (e.g., Zhang et al. 2013). In the context
of covariant images, a similarity measure S(X,Y) can be
defined along the same line provided that an appropriate
notion of matching for covariant images can be specified.
The generalization process however is complicated by the
re-orientation map R that couples the hitherto incommen-
surable image and intensity domains, and to a lesser extent,
the sample-value space F of greater generality. In particu-
lar, any appropriate matching formulation must demonstrate
its compatibility with the re-orientation map R that is the
centerpiece of covariant images.

Mathematically, this requires the identification of the
space inwhich the computationwill take place and themetric
withwhich the similarity can bemeasured. The re-orientation
map R makes it impossible to disentangle the sample-value
domain F from the image domain Ω as each domain by
itself can not fully specify the action of R. This naturally
suggests their Cartesian product Ω × F as the candidate
for the space in which the computations should take place.
With Ω × F , a family of metrics can then be specified once
a metric has been specified on Ω and F separately. As a
subset of Rn , the metric for Ω is easy to specify, and the
difficulty is always with the metric selection for F since for
a general sample-value space F , it is not clear what met-
ric is appropriate. However, ifR-compatibility of the metric
is interpreted as its invariance under re-orientation, then in
many interesting cases, there exists only one such metric
(up to an unimportant scaling) for F , settling the perennial
thorny issue of metric selection. With the space and met-
ric determined, the final component in defining S(X,Y) is
to consider each image X as an embedded shape (submani-
fold) in Ω × F , and to interpret image matching as shape
matching in Ω × F . The similarity measure is based on
matching the two embedded low-dimensional shapes, and
both the extrinsic geometry of the ambient space and the
intrinsic geometries of the shapes (images) are incorporated
in computing the similarity measure: the point(pixel)-wise
comparisons measured by the extrinsic geometry and the
aggregation of the point-wise comparisons weighted by the
intrinsic geometry. The matching process is formulated in
a symmetric manner to ensure the symmetry of S(X,Y).
Compared with the Lp-norm, inputs from different geomet-

ric considerations permit greater improvements in specificity
and flexibility as the intrinsic geometry furnishes an image-
specific weighting scheme (essentially based on its edge
structure) and the extrinsic geometry provides a flexible set-
ting for incorporating additional features.

This paper provides the mathematical and computational
details for realizing the slewof ideas described above. Specif-
ically, we propose a novel similarity measure for covariant
images based on matching two embedded image graphs
as geometric shapes, with the emphasis on capturing the
similarities/dissimilarities between two covariant images.
In particular, we develop a geometric approach for match-
ing general covariant images and present the mathematical
details for the aforementioned two types of covariant images
of importance in medical image analysis. The resulting opti-
mization problem can be handled very efficiently since the
major part of the gradient computation is achieved via use-
ful analytical expressions. For validation tests, we show
that the computed similarities can be used as the affin-
ity measures in a supervised learning framework to yield
competitive results on challenging classification problems
in medical image analysis. Specifically, we report classifi-
cation experiments that use a covariant image classification
framework proposed in this paper for the classifications of
brain MR images and high angular resolution diffusion mag-
netic resonance images, and experimental results show that
the proposed approach is capable of producing impressive
results for several interesting classification problems that
include classifying the MR brain images of Alzheimer’s dis-
ease patients and detecting seizures from (rat) brain images.

2 Related Work

Image registration is awell studied problem inmedical image
analysis. Registration requires defining a similarity measure,
S(X,Y), and needless to say that there is a large body of
medical image analysis literature devoted to image registra-
tion. There are methods using landmarks, contours, surfaces
or volumes [references in Christensen and Johnson (2001)].
Themost popularmetrics aremostlyL2-basedmetrics, and in
image registration, both the data fidelity as well as the defor-
mation regularization are often measured using L2-metric
(Christensen and Johnson 2003; Christensen et al. 1996;
Joshi et al. 2004; Beg et al. 2005; Cao et al. 2006). Addition-
ally, symmetric registration frameworks for various types of
images have also been investigated in the literature (Chris-
tensen and Johnson 2001; Johnson and Christensen 2002;
Christensen and Johnson 2003; Tagare et al. 2009; Cheng
et al. 2009).While registration algorithms proposed in Chris-
tensen and Johnson (2001), Johnson and Christensen (2002),
Christensen and Johnson (2003) are approximately symmet-
ric, the exact symmetric formulation has been introduced
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and studied in great depth in Tagare et al. (2009). In partic-
ular, an important point elucidated in Tagare et al. (2009)
is the role played by the measure used to define the inte-
gral for computing the L2-norm. While most earlier work
simply settled for the standard Lebesgue measure ω in R

n ,
(Cachier and Rey 2000) followed by Tagare et al. (2009)
proposed a transform-dependent measure to ensure symmet-
ric registration, and for a transform γ , their novel measure
is essentially a weighted Lebesgue measure (1 + Jγ )ω with
the weight determined by Jγ , the determinant of the Jacobian
matrix of γ . Alternatively, a different methodwas introduced
in Cheng et al. (2009) that also guarantees symmetric reg-
istration. Instead of tinkering with measures, their methods
are relative in nature as the registration map is essentially
factored through a third domain, the common domain. As its
name suggest, the two images to be registered are transferred
to the common domain for comparison, and the registration
map is the product of the two transforms (or their inverses)
that map the common domain to the two images. The fac-
torization approach circumvents the symmetry issue, and it
also has the added flexibility of handling simultaneous reg-
istration of multiple images.

Shape matching has also been studied quite extensively
in the fields of computer graphics and computational geom-
etry (e.g., Litke et al. 2005). However, most of these earlier
works were invariably focused on shapes in low-dimensional
Euclidean spaces such as R

3, and for our intended appli-
cations that often require non-Euclidean ambient spaces,
these earlier works are insufficient and inadequate. In partic-
ular, mathematical and computational details of our method
are often more complicated and elaborate due to its non-
Euclidean setting. Furthermore, issues such as symmetric
registration that are important for medical image applica-
tions were seldom addressed by these earlier works which
originated in different application domains. Additionally,
parametric invariance is usually required for shape match-
ing algorithms that operate on parametric shapes, and an
important issue of re-parameterization in 2D closed surface
matching has been investigated in Kurtek et al. (2010, 2011).
This work introduced the idea of q-maps as a novel repre-
sentation for shapes in order to solve the re-parameterization
issue within the common L2-based 3D shape matching
framework. However, if the ambient space is non-Euclidean,
it is not immediately clear how to extend the centering step
in the construction of the q-map, and it does not appear at
the moment that such an extension is straightforward or even
possible.

Finally, image graphs have been used previously for
anisotropic image smoothing, image enhancement and seg-
mentation (Sochen et al. 1998; Kimmel and Sochen 1999;
Kimmel et al. 2000; Gur and Sochen 2009; Seo and Vemuri
2009). In these works, image processing operations such as
smoothing are often formulated as operations that directly

modify the geometry of the image graphs in order to achieve
the desired results. However, images and hence their image
graphs are always considered individually, and image graphs
have not been used in problems that require consideringmore
than one image. To the best of our knowledge, image graphs
have not been used for matching images or computing their
similarities in the way proposed here with the exception of
Cachier et al. (2003) wherein, images are treated as point
sets in 3D and the image matching problem is then posed
as a point cloud matching problem which is solved using a
variant of the iterated closest point (ICP) algorithm. Note
that this approach does not take advantage of the underly-
ing surface geometry of an image graph as is done in our
work here. Despite the impressive results reported in these
papers, Koenderink and vanDoorn have argued against using
image graphs (of RGB images) and their associated differ-
ential invariants in a provocatively-titled paper (Koenderink
and Doorn 2002). Essentially, their argument is based on the
incommensurability of the image and intensity domains, and
in particular, notions such as image graphs that depend on
blurring the distinction between the two domains have no the-
oretical foundations. Compared with RGB images, covariant
images are not raw sampled signals that, for example, only
count the impacting photons. Instead, they are representa-
tions of the signals that have often been processed beyond
their initial raw stage, with the processing often involving
image domain operations. Therefore, for covariant images,
the two previously independent domains are now related
through the re-orientationmapR, and this explicit “asymme-
try breaking” between the image and intensity domains, so to
speak, considerably lessens the importance of incommensu-
rability. Hence, Koenderink and van Doorn’s viewpoint does
not invalidate the use of image graphs for covariant images.
It is interesting to note that the geometry model proposed in
Koenderink and Doorn (2002) is based on an exotic family
of transforms that relate the image and intensity domains.
Although their context is different from ours, this never-
theless highlights, for image processing, the importance of
identifying the correct group of transforms and elucidating
their effects on the image domain and intensity values.

3 A Similarity Measure for Covariant Images

In this section we present the details for the similarity
measureS(X,Y) for covariant images and discuss its compu-
tational and mathematical components for general covariant
images. The specializations of the general framework intro-
duced in this section to two specific types of covariant images
will be given in the next section. As image graphs play an
central role in defining S(X,Y), we will start with a brief
review of their geometry.
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Fig. 1 An illustration of a 3-by-3 symmetric positive-definite (SPD)
tensor image in R

3 as a section of a fiber bundle. The total (ambient)
space is E = R

3 × P(3) (Gur and Sochen 2009)

3.1 Image Graphs

Among other applications, image graphs have been applied
to anisotropic image smoothing (Kimmel and Sochen 1999;
Kimmel et al. 2000;Gur andSochen2009), andGur et al. pro-
vide a detailed review of the differential geometry of image
graph (Gur and Sochen 2009). Specifically, an image is con-
sidered as a section of a trivial fiber bundle with projection
map π E = Ω × F

π−→ Ω (Gur and Sochen 2009; Koen-
derink and Doorn 2002) where Ω (image domain) and F
(intensity i.e., sample-value domain) are the base manifold
and the fiber, respectively, and E as the Cartesian product of
the base manifold and fiber is the total space. Recall that a
section of the fiber bundle is a mapping X : Ω → E such
that the composition π ◦ X is the identity on Ω , and Fig.1
shows a 3-by-3 SPD tensor image as a section of a fiber bun-
dle whose total space is E = R

3 × P(3). Geometrically, the
image graph is the subset of E defined by the image of the
section f , and in practice, the image graph is then considered
as an embedded submanifold in the ambient space E .

The differential geometry of the image graph is specified
by its Riemannianmetric tensor and for our purpose, themain
interest is on the Riemannian volume form that would allow
us to integrate over the image graph. The general formulas
for computing the metric tensor and volume form are well-
known (DoCarmo 1992), and specializing to images defined
on Ω ⊂ R

3, we have the following. Let X denote both the
covariant image and its corresponding section,

X : (x, y, z) → (r, I(r)), (1)

where r = (x, y, z) and I is the intensity value of X at
(x, y, z) ∈ Ω . Computationally, the section map X serves as
a global parameterization of the image graph using Ω ⊂ R

3

as its parameter domain, and all local geometric quantities
of interest are phrased in terms of the derivatives of X with

respect to the three coordinates x, y, z.Wefirst equip the total
space E = Ω × F with the product Riemannian metric G
that is the product of the Euclidean metric onR3 and a metric
H for the fiber F . The product Riemannian metric specifies
a non-degenerate bilinear form < u, v >G for tangent vec-
tors at each point in E , and < u, v >G can be represented
by a block-diagonal matrix that clearly indicates its product
structure (H is the fiber metric)

G =

⎛
⎜⎜⎝

λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 H

⎞
⎟⎟⎠ . (2)

Using the product metricG, the Riemannianmetric tensor
of the image graph is given by

K =
⎛
⎝

< Xu,Xu >G < Xu,Xv >G < Xu,Xw >G

< Xv,Xu >G < Xv,Xv >G < Xv,Xw >G

< Xw,Xu >G < Xw,Xv >G < Xw,Xw >G

⎞
⎠ ,

(3)

whereXu,Xv,Xw are the partial derivatives ofXwith respect
to u, v, w, respectively, considered as tangent vectors in E .
The Riemannian volume dω form follows immediately from
the metric tensor according to the formula

dω = √
κ dudvdw, (4)

where κ is the determinant of K.

3.2 Similarity Measure S(X1,X2)

Given the image domainΩ , we denoteT(Ω) the set of trans-
forms inΩ , smooth bijective transforms that fix the boundary
ofΩ . A transform� inT(Ω) is then represented by its defor-
mation field (U, V, W ) on Ω:

⎛
⎝

u2

v2
w2

⎞
⎠ =

⎛
⎝

u1 + U (u1, v1, w1)

v1 + V (u1, v1, w1)

w1 + W (u1, v1, w1)

⎞
⎠ , (5)

With this representation, the magnitude of � is measured
by the squared-norm of its displacement field:

‖�‖2Ω =
∫

Ω

(|U |2 + |V |2 + |W |2)dΩ. (6)

In addition, the Jacobian of � is then conveniently given
by

Jγ =
⎛
⎝
1 + Uu1 Uv1 Uw1

Vu1 1 + Vv1 Vw1

Wu1 Wv1 1 + Ww1

⎞
⎠ , (7)
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where the subscripts denote the variables with respect to
which the partial derivatives are taken. Let X1,X2 denote
two covariant images with their image graph representations

X1 : (u1, v1, w1) → (r1, I1(r1))

X2 : (u2, v2, w2) → (r2, I2(r2)), (8)

with Ω the image domain. Comparison of these two image
graphs is based on the product metric in E that gives the
squared distance Dist2(e1, e2) between two points e1 =
(u1, v1, w1, I1), e2 = (u2, v2, w2, I2) ∈ E as

λ((u1−u2)
2+(v1−v2)

2+(w1−w2)
2)+Dist2F (I1, I2), (9)

where Dist2F (I1, I2) is the squared-distance between the two
points I1, I2 in the fiber F using the fiber metric.

Intuitively, the similaritymeasureS(X1,X2) between two
covariant images X1,X2 is defined as the magnitude of the
image domain transform � that best matches the two image
graphs as shapes in the total space E . This is made precise
by defining S(X1,X2) as

S(X1,X2) = ‖�‖2Ω,

where � is the minimum of a two-term objective function
that is the sum of the matching cost and regularization (with
Lr > 0):

� = arg min
γ∈T(Ω)

E(γ ;X1,X2)

= arg min
γ∈T(Ω)

Em(γ ;X1,X2) + Lr Er (γ ).

Thematching cost functionEm(γ ;X1,X2) is a function of
the transform γ , and each γ provides a particular correspon-
dence between points on X1 and X2. The distance between
a pair of corresponding points is measured by the metric in
E and for each γ ,Em(γ ;X1,X2) integrates these point-wise
distances over the image graphs using their Riemannian vol-
ume forms, giving a cost function that can easily be shown
to be symmetric:

Em(γ ) =
∫

Dist2(X1,X2◦γ )(
√

κ1+
√

κ2(Ω2 ◦ γ )Jγ )dΩ1

where Jγ the determinant of the Jacobian, Jγ and
√

κ1dΩ1

and
√

κ2dΩ2 denote the Riemannian volume forms on
X1,X2, respectively (Fig. 2). If (U, V, W ) is the displace-
ment field ofγ ,Dist2(X1,X2◦γ ) canbegivenmore precisely
as (following Eq. 9)

Dist2(X1,X2 ◦γ ) = λ(U 2 + V 2 + W 2)+Dist2F (I1, I2 ◦γ ),

(10)

Fig. 2 Matching images as image graphs can be realized via registra-
tionmap γ defined between the two surfaces. The two surfaces represent
2D image graphs or 2D slices of 3D image graphs

The regularization term Er (γ ) is the standard symmetric
regularization schemeusing the JacobianfieldJγ as proposed
in Tagare et al. (2009), Yanovsky et al. (2007)

Er (γ ) =
∫

(Jγ − 1) log(Jγ )dΩ1. (11)

In our framework, we do not adopt a diffeomorphic
approach such as LDDMM or its variants. Therefore, our
regularization term may not be able to guarantee diffeomor-
phisms. However, the regularization in our work requires the
determinant of Jacobian to be close to one and/or positive
which is a necessary condition for diffeomorphisms. How-
ever, if the smoothness coefficient is not large enough, this
requirement is violated.At each registration,we check for the
positivity of the determinant of Jacobian. If there are set of
pixels/voxels where the determinants are negative, we tune
the penalty constraint by an appropriate amount to satisfy
this constraint.

Remark In the two-term objective function, E(γ ;X1,X2),
the geometries of the covariant images X1,X2 are incor-
porated in the first term Em(γ ;X1,X2). In its integral
definition, the integrand Dist2(X1,X2 ◦ γ ) depends on the
extrinsic geometry since it uses the distance of the ambi-
ent space E . On the other hand, the integral measure,
(
√

κ1+√
κ2(Ω2 ◦ γ )Jγ )dΩ1 comes entirely from the intrin-

sic geometries ofX1,X2 that furnish the volume formsκ1, κ2,
respectively. In particular, from Eq. 3, it follows that the
forms κ1, κ2 are products of various derivatives of I1 and
I2, respectively, and for points near or on an edge, relatively
large magnitudes of their derivatives generally correspond to
larger values for κ1 and κ2. Consequently, the integral pro-
vides greater weights to regions near or on an edge,2 and for
a similarity measure that is designed to pick up subtle varia-
tions in shape, this is a desirable feature, a direct consequence
of the pure geometric formulation.

2 A similar observation is also made in Sochen et al. (1998).
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3.3 Computational Details and Optimization

To effectively determine the matching transform � as the
minimum of the objective function E(γ ;X1,X2), it is nec-
essary to work with a computationally useful and efficient
parameterization of T(Ω). As it stands, T(Ω) is an infinite-
dimensional nonlinear space and its exact parameterization
is in general difficult. Instead, we will take advantage of the
fact that computations will take place on a regular grid in
R
3 and the representation of � given in Eq. 5 naturally sug-

gests expanding the components of the displacement field
(U, V, W ) using the orthogonal discrete sine and cosine
(DSC) basis as was done in earlier work by Ashburner and
Friston (1999). Specifically, the expansions of U, V, W are
given by

U (u, v, w) =
∑

n=1,m,l=0

AnmlΦUnml (u, v, w)

V (u, v, w) =
∑

m=1,n,l=0

BnmlΦVnml (u, v, w)

W (u, v, w) =
∑

l=1,n,m=0

CnmlΦWnml (u, v, w)

with the basis functions given by

⎧⎨
⎩

ΦUnml = Nu sin(Pnh(u)) cos(Qmw(v)) cos(Qld(w))

ΦVnml = Nv cos(Qnh(u)) sin(Pmw(v)) cos(Qld(w))

ΦWnml = Nw cos(Qnh(u)) cos(Qmw(v)) sin(Pld(w))

(12)

where N{u,v,w} are normalization constants. The angular
functions Pab(x),Qab(x) are determined by the grid size
{h, w, d} ∈ Z

3 such that u ∈ [0, h − 1],v ∈ [0, w − 1] and
w ∈ [0, d − 1] and

Pab(x) = πax

b − 1
,

Qab(x) = πa(2x + 1)

2b
.

The coefficients Anml , Bnml and Cnml provide a linear
parameterization of deformation fields on Ω . While com-
putationally convenient, this linear parameterization fails to
guarantee the parameterized transforms are indeed bijec-
tive, although the degree of their smoothness can always be
controlled by the coefficients. Furthermore, due to the sine
functions in Eq. 12, deformations across the domain bound-
ary are prevented.

While the objective function E(γ ;X1,X2) can now be
considered as a function of Anml , Bnml and Cnml , its min-
imization is still quite challenging and often times, extra
steps are required in order to bolster convergence or ensure
the quality of the result. For example, in order to prevent

Fig. 3 Plot of the values of the cost functional versus the number of iter-
ations. Thenumber of basis functions is increased after afixednumber of
iterations, starting from the lowest frequencymode.Thegreen/blue lines
represents method with/without the coarse-to-fine strategy respectively.
The points where additional high-frequency modes were introduced are
marked red. Given a fixed number of iterations, computation speed with
the coarse-to-fine (green line) is 1.5 times faster than the one without
the coarse-to-fine (blue line) strategy (Color figure online)

entrapment at a local minimum in the early stage of the opti-
mization, the coarse-to-fine grain method is often required.
However, successive image down-sampling and up-sampling
in coarse-to-fine grain approach can be undesirable on occa-
sions. The DSC basis approach outlined above enables us to
bypass this step, and instead of down-sampling images, it ini-
tiates the optimization with a small number of low-frequency
components in the DSC basis expansion. High-frequency
components are then successively introduced to further
improve upon the current solution. Figure 3 displays the
typical behavior of the value of the objective function dur-
ing the optimization process with its characteristic pattern of
diminishing value occurring in stages.We have compared the
convergence pattern with/without of the coarse-to-fine strat-
egy which are depicted in green/blue respectively. The plot
shows that the overall convergence rate without the coarse-
to-fine strategy is slower than the one with the coarse-to-fine
strategy w.r.t. the number of iterations. In addition, Given
same number of iterations, the compute time of the method
with the coarse-to-fine strategy is 1.5 times faster than the
one without the strategy in this test. The timing comparison
was carried on an Intel Xenon 5520 CPU with Matlab GPU
package for DSC computation with NVIDIA GTX 470.

The specific optimization method used is based on the
nonlinear conjugate gradient (NCG) and the numerical algo-
rithm for the optimization is outlined in Algorithm 1. An
important ingredient in NCG is the evaluation of the gradi-
ent of the objective function, andwhile the objective function
E(γ ;X1,X2) in general is too complicated to allow one sin-
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gle closed-form formula for its gradient, we show below that
its gradient can nevertheless be efficiently computed using a
series of formulas that can be easily managed during com-
putation.

The gradient vector is determined by the first-order partial
derivatives of E(γ ;X1,X2) with respect to Anml , Bnml and
Cnml . It suffices to present only the derivation forAnml as the
derivations for Bnml and Cnml follow suit. As E(γ ;X1,X2)

is a sum of two terms, we have

∂

∂Anml
E(γ,X1,X2)

= ∂

∂Anml
Em(γ ;X1,X2) + ∂

∂Anml
Er (γ ). (13)

and from Eq. 13, there are three terms of interest namely,

∂

∂Anml
Dist2(X1,X2 ◦ γ )R, (14)

∂

∂Anml

√
κ2(Ω2 ◦ γ )Jγ , (15)

∂

∂Anml
(Jγ − 1) log(Jγ ). (16)

Equations 15 and 16 do not involve the sample val-
ues and re-orientation; they are the same for all covariant
images regardless their type of sample values. The deriva-
tions for Eqs. 15 and 16 are provided in Appendix 2. With
re-orientation, Eq. 14 can be rewritten as

∂

∂Anml
Dist2(X1,X2 ◦ γ )R

= 2λUΦUnml + ∂

∂Anml
Dist2F (I1, I2 ◦ γ )R. (17)

The first term on the RHS is straightforward and indepen-
dent of the sample value. The second term, however, depends
on the sample value and hence needs the re-orientation.
Its derivation requires the specification of a re-orientation
scheme and the details are presented in the following sec-
tion.

4 Applications

This section presents the details for two types of covariant
images: fields of symmetric positive-definite matrices (SPD
fields) and fields of Gaussian mixtures (GM fields). These
two types of covariant images are fundamental in medical
image analysis applications primarily in diffusion magnetic
resonance imaging because, diffusivity of the water mole-
cules in the tissues being imaged, a directional quantity of
biological significance, can be compactly represented by
them. In particular, their respective re-orientation schemes

Algorithm 1Optimization for� using Nonlinear Conjugate
Gradient Method (NCG)
Initialize deformation fields : γ = I d
Initialize family of coefficients : A = 0
Evaluate ∂

∂A Costtotal using Eq. 13 through Eq. 43
Set r0 ← ∂

∂A Costtotal , k ← 0
Set p0 ← −r0
while Costtotalk+1/Costtotalk < (1 − ε) do
Compute αk and set Ak+1 = Ak + αkpk ;
Evaluate deformation fields using Eq. 12
and its Jacobian ;
Interpolate I2 and its first order derivatives ;
Reorient I1 ;
Evaluate ∂

∂A Costtotal using Eq. 13 through Eq. 43 ;
rk+1 ← ∂

∂A Costtotal ;

βk+1 ← r

k+1rk+1

r

k rk

;

pk+1 ← −rk+1 + βk+1pk ;

αk+1 = αk
r


k pk

r

k+1pk+1

;

k ← k + 1 ;
end while

often reflect the ways directional information are encoded
by the images and utilized by the applications. For the two
basic re-orientation schemes, the Preservation of Principal
Direction (PPD) scheme (Cao et al. 2006; Alexander et al.
2001; Cheng et al. 2009) and the Finite Strain (FS) scheme
(Alexander et al. 2001), SPD fields will be re-oriented using
the latter scheme while GM fields will follow the former.
In general, the FS scheme is used when all the eigenvectors
of the SPD matrix (2nd order tensor) need to be re-oriented
when undergoing a deformation. On the other hand, the PPD
scheme considers only re-orientation of the first principle
direction; this approach is valid when assuming a tubular
structure for the axonal fibers in HARDI data sets, and this
is the assumption we make for the GM fields in this paper.
More details are provided in following sections and in Cheng
et al. (2009).

For each covariant image, we will discuss the (Rie-
mannian) metric used for matching the images as well as the
specific re-orientation scheme. The latter will then provide us
with the necessary information to complete the formulas for
computing the gradient of the matching objective function.

4.1 Diffusion Tensor (SPD) Fields

In diffusion magnetic resonance (MR) imaging, the diffusiv-
ity of water molecules at a given location is often represented
by a symmetric positive-definite (SPD)matrix, with positive-
definiteness ensuring positivity of the function. In addition to
this important example, SPD fields also appear frequently in
Computer Vision in the form of image structure tensors that
are important for many Vision applications such as texture
classification. In addition to the structure tensors considered
as a feature transform of an image, there are other examples
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of feature transforms that transform an image into an SPD
field. One example we will investigate experimentally in the
following section is to transform a (gray-scale) image into
an SPD field given by the Riemannian metric tensor of its
image graph. The motivation underlying this particular fea-
ture transform is to capture local information of an image
using metric tensor of its image graph.

The sample-value space for SPD fields is the space P(3)
of 3-by-3 symmetric positive-definite matrices. Although
not a vector space, P(3) is convex and it admits a tran-
sitive action of GL(3), nonsingular 3-by-3 matrices: for
X ∈ P(3),A ∈ GL(3),X → A
XA. It is well-known
that there is a canonical GL-invariant metric on P(3) [see
Moakher (2006)].

This metric has been studied extensively in differential
geometry, and in particular, its (squared) geodesic distance
for two points in P(3) can be computed exactly using the
formula

Dist2F (I1, I2) = Tr(log(I−1/2
1 I2I

−1/2
1 )2), (18)

where Tr, log denote the matrix trace and logarithm func-
tions, respectively.

4.1.1 Re-orientation Scheme

In this paper, we use the finite strain (FS) method to re-orient
the SPD matrices when the coordinates undergo a non-rigid
deformation.Aswewill show in following section,we gener-
ate the SPDfields from3-Dgray scaleMRI brain images, and
the entries of the SPDmatrices are related to the gradients of
the intensities in three orthogonal directions. Therefore, all
eigenvectors should be re-oriented properly. We use the FS
method in Alexander et al. (2001), however in our work we
express deformation vector fields in a DSC basis. Therefore
the gradient w.r.t. the re-orientation is modified accordingly.
For the FS scheme, the action of the Jacobian Jγ of γ on
the sample value is modeled after the GL(3)-action above.
More specifically, let Jγ = UDV
 denote the singular value
decomposition of Jγ . The sample value I ∈ P(3) is trans-
formed by Jγ using the rotation R

I → R
IR,

where R = UV
. Geometrically, the effect of the re-
orientation by R is to rotate the eigenvectors of I without
changing their associated eigenvalues.

4.1.2 Metric for P(3)

With this re-orientation scheme, it is then natural to consider
the canonical invariant Riemannian metric on P(3). For an
SPD field X

X : (u, v, w) → (r, I(r)), (19)

where I(r) ∈ P(3), the Riemannian metric tensorKSPD of its
image graph (Eq. 3) is given by the following formula (Gur
and Sochen 2009)

⎛
⎝

1 + Tr(M2
u) Tr(Mu)Tr(Mv) Tr(Mu)Tr(Mw)

Tr(Mv)Tr(Mu) 1 + Tr(M2
v) Tr(Mv)Tr(Mw)

Tr(Mw)Tr(Mu) Tr(Mw)Tr(Mv) 1 + Tr(M2
w)

⎞
⎠ ,

where Mu = I−1Iu,Mv = I−1Iv , and Mw = I−1Iw. Using
the above formulas for re-orientation and the Riemannian
distance, we have,

Dist2F (I1, (I2 ◦ γ )R) = Tr(log(I−1/2
1 R
(I2 ◦ γ )RI−1/2

1 )2).

(20)

4.1.3 Gradient Computation

Setting � = I−1/2
1 R
(I2 ◦ γ )RI−1/2, the first-order deriva-

tive of Eq. 20 can be written as

∂

∂Anml
Dist2F (I1, (I2 ◦ γ )R)

= Tr
(
2 log(�)

1

�
∂�

∂Anml

)
, (21)

where 1
� = �−1 and

∂�
∂Anml

= I −1/2
1

(
∂R


∂Anml
(I2 ◦ γ )R

+ R
 ∂(I2 ◦ γ )

∂Anml
R + R
(I2 ◦ γ )

∂R
∂Anml

)
I 1/21 .

(22)

In Eq. 22, ∂(I2 ◦ γ )/∂ Anml is simply

∂(I2 ◦ γ )

∂Anml
= ∂ I2

∂u

∣∣∣∣
u+U

ΦUnml . (23)

However, thefirst order derivative ofRw.r.t.Anml requires
more algebra. The term can be written as

∂R
∂Anml

=
∑
i, j

∂R
∂Jγ i j

∂Jγ i j

∂Anml
, (24)

where i and j arematrix indexes of Jγ and from the definition
of the Jacobian it is clear that

∂R
∂Anml

= ∂R
∂Jγ 11

∂ΦUnml

∂u

+ ∂R
∂Jγ 12

∂ΦUnml

∂v
+ ∂R

∂Jγ 13

∂ΦUnml

∂w
. (25)
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For the evaluation of ∂R/∂Jγ i j we refer the reader to
Alexander et al. (2001). Evaluating gradient direction w.r.t.
the DSC coefficients requires the integration of Eq. 21 over
domain, and if we factor out basis functions in the expression
of Eqs. 21 and 22, we can simplify the numerical scheme for
the integration. For this factorization, we refer the reader to
Appendices A and B respectively.

4.2 Gaussian Mixture Fields

With the multi-directional measurements from high angular
resolution diffusion-weighted MRIs (HARDI), Tuch (2002)
proposed to model the diffusion signals using a discrete
mixture of Gaussians, and subsequent work by Jian et al.
(e.g., Jian and Vemuri 2007) has made Gaussian mixture
fields (GM fields) a useful class of image representations for
HARDI data. Recall that a Gaussian mixture is a probabil-
ity distribution that is the sum of a finite set of Gaussian
distributions. For HARDI applications, a Gaussian mixture
with a fixed number of components is associated with each
voxel, and the n-component Gaussian mixture associated to
a voxel positioned at r provides a probability distribution ρr
representing the local diffusivity profile at the voxel,

ρr(r′) =
n∑

i=1

ηi (r)G(r′; , 0,Σi (r)), (26)

where G(r′; , 0,Σi (r)) is theGaussian distributionwith zero
mean and covariance matrix Σi with non-negative weights
ηi (r) that sum to one. We note that the RHS is a distribu-
tion with r′ as the random variable, where r′ is the position
vector with origin at the center of the voxel. The set of these
Gaussian mixtures is considered as a discrete spatial sample
of a underlying continuous Gaussian mixture field. In par-
ticular, a GM field I is a covariant image with GM(n), the
space ofn-componentGaussianmixtures, as its sample-value
space:

I(r) =
n∑

i=1

ηi (r)G(r′; , 0,Σi (r)). (27)

For applications of HARDI data, there are two additional
requirements: First, the covariant matricesΣi (r) are globally
constant, i.e., independent of r. Second, the cylindrical nature
of the directional modeling in applications requires that the
covariancematrixΣi (r) has atmost two distinct eigenvalues.

4.2.1 Metric for GM(n)

We will use the L2-metric on GM(n) and for two elements
I1, I2 ∈ GM(n), the L2-distance between the two Gaussian
mixtures I1, I2 is

Dist2F (I1, I2) =
∫
R3

(I1 − I2)2dr′. (28)

The advantage of the L2-distance for GM fields is that
the squared distance can be computed using a closed-form
formula. More specifically, the covariance matrix can be
decomposed as

Σ = (λ1 − λ2)uu
 + λ2I, (29)

where the eigenvalues are λ1 ≥ λ2 = λ3 with u the (unit)
principal eigenvector and I the identity matrix. That is, we
assume the tubular fiber structure in the HARDI data sets
(Cheng et al. 2009). Then, given two Gaussian mixtures, I1
and I2 having weights ηi and ρi , and covariance matrices Σi

and Γi , respectively, with eigenvalues {λi }3i=1 and {ζi }3i=1,
and principal eigenvectors u and v, respectively, where i ∈
{1, 2, ..., n}, Eq. 28 can be easily shown (Cheng et al. 2009)
to be

Dist2F (I1, I2) = η
Aη + ρ
Bρ − 2η
Cρ, (30)

where η = (η1, ..., ηn) and ρ = (ρ1, ..., ρn) are vectors
of the mixture weights and A, B and C are matrices whose
elements are

⎧⎨
⎩

Ai1,i2 = ((2π)3det (Σi1 + Σi2))
−1/2

B j1, j2 = ((2π)3det (Γ j1 + Γ j2))
−1/2

Ci, j = ((2π)3det (Σi + Γ j ))
−1/2

The term det (Σ + Γ ) in the equation above is readily
evaluated usingdet (Σ+Γ ) = α−β(u
v),whereα = (λ1+
ζ2)(λ2 + ζ1)(λ2 + ζ2) and β = (λ1 −λ2)(ζ1 − ζ2)(λ2 + ζ2).

The L2-distance defines the inner-product for the tangent
spaces of GM(n) given by

< ∂μI1(r), ∂νI1(r) >GM=
∫
R3

∂μI1(r)∂νI1(r)dr′, (31)

with ∂μI1, ∂νI1, the two tangent vectors of GM(n) at the
point I1 ∈ GM(n) (μ, ν ∈ {u, v, w} the coordinates in R

3).
It then follows that the components of themetric tensorKGM

can be determined by the following formula

< Xμ,Xν >= λδμν +
∫
R3

∂μ I (r)∂ν I (r)dr′, (32)

Due to the constant covariance matrix fields Σi (r), we
have

∂μ Ir(r′) =
n∑

i=1

(∂μηi (r))G(r′; 0,Σi (r)), (33)
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and together with earlier formulas, we can rewrite Eq. 32 as

< Xμ,Xν > = λδμν

+
n∑

i, j=1

∂μηi∂νη j
1√

(2π)3det (Σi + Σ j )

.

(34)

4.2.2 Re-orientation Scheme

Re-orienting a Gaussian mixture requires the re-orientation
of the covariance matrix of each of its components. Since
each covariance matrix has one dominant eigenvalue, it suf-
fices to re-orient only the corresponding principal direction,
giving the so calledPreservation of PrincipleDirection (PPD)
scheme (Cheng et al. 2009). More precisely, for a compo-
nent covariance matrix Σ given as in Eq. 29 with principal
direction u, its re-orientation ΣR under an image domain
transform γ and its Jacobian Jγ is given by

ΣR = (λ1 − λ2)uRu

R + λ2I, (35)

where the re-oriented principal direction uR is given by

uR = Jγ u
|Jγ u| . (36)

For a GMfield given in Eq. 27, its re-orientation is defined
by the re-orientations of its components:

I1(r)R =
n∑

i=1

ηi (r)G(r′; 0,ΣiR(r)). (37)

4.2.3 Gradient Computation

With the reorientation given above, Eq. 30 is rewritten as

Dist2F (I1R, I2 ◦ γ ) = η
ARη + (ρ ◦ γ )
B(ρ ◦ γ )

−2η
CR(ρ ◦ γ ), (38)

Then, we can write its first order derivative w.r.t Anml as

∂

∂Anml
Dist2F (I1R, I2 ◦ γ )

= η
 ∂AR
∂Anml

η + 2(ρ ◦ γ )
B∂(ρ ◦ γ )

∂Anml

−2η
 ∂CR
∂Anml

(ρ ◦ γ ) − 2η
CR
∂(ρ ◦ γ )

∂Anml
, (39)

where

∂AR
∂Anml

∣∣∣∣
i, j

= β
u


iRu jR[∂(u

iRu jR)/∂Anml ]

(2πdet (ΣiR + Σ jR))3/2
(40)

∂CR
∂Anml

∣∣∣∣
i, j

= β
u


iRv j [∂(u

iRv j )/∂Anml ]

(2πdet (ΣiR + Γ j ))3/2
(41)

∂(ρ ◦ γ )

∂Anml
= ∂ρ

∂u

∣∣∣∣
u+U

ΦUnml (42)

and

∂uiR
∂Anml

= J−1
(

∂J
∂Anml

)
uiR

−
[
u


iRJ−1
(

∂J
∂Anml

)
uiR

]
uiR (43)

We present how to factor out the basis functions from
Eq. 39 in Appendix 2.

5 Experiments

In this section, we present three experiments and their results,
demonstrating the effectiveness of the similarity measure
S(X,Y) for covariant images in two very specific medical
imaging applications. In the first experiment, we evaluate
the effectiveness of the optimization method outlined in the
previous section for computing image matching, using the
Diffeomorphic Demons (Vercauteren et al. 2007), a regis-
tration method popular in medical imaging community, as
the main comparison. In the second and third experiments,
we use S(X,Y) as the main pairwise similarity measure
for 3D MR brain image classification based on the age and
disease status (Alzheimer’s disease) of the patient, and for
seizure detection in rat brains using High Angular Resolu-
tion Diffusion-Weighted Imaging (HARDI), respectively.

5.1 Synthetic Data

In this experiment, we evaluate the accuracy of the matching
computed by minimizing the objective function E(γ ;X1,

X2), and compare our result with that of Diffeomorphic
Demons (Vercauteren et al. 2007; Kroon et al. 2009). Specif-
ically, five 2D slices of 3D brain MRI scans are randomly
chosen from the OASIS database (Marcus et al. 2007) and
image domain diffeomorphisms are generated and used as
the ground truth for evaluating the accuracy. The test set
of synthetic diffeomorphisms is prepared in following way:
(1) To pick control points and generate vectors at the points
from a Gaussian distribution. (2) To interpolate these vectors
to other pixels. Diffeomorphisms are checked by checking
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Fig. 4 Example images and transforms used in the synthetic data
experiment:a original image, b deformed image, c color-coded defor-
mation vector field with encoding scheme shown in f. Color coding
used to display the flow vectors is the one standardly used to display
optical flow fields, see http://vision.middlebury.edu/flow/eval/results/
results-a1.php. The ’tick marks’ on the axes depict a flow unit in one
pixel. d and e are images of (a) and (b) with additional Gaussian noise
(σ = 0.02)

if there is any folding and the determinants of Jacobian are
positive.

In this experiment, we use the gray-scale images with-
out re-orientation, and the purpose is the evaluation of only
the matching component of our method. The diffeomorphi-
cally deformed images are subject to additional Gaussian
white noise with examples shown in Fig. 4. For quantitative
comparisons, the angle error (AE) and the end-point error
(EPE) are computed between the ground truth and the com-
puted deformation vector fields within the regions of interest
(ROI). For implementationof theDemons algorithm,weused
the code provided by the authors of Kroon et al. (2009).
To achieve best results with the code, we tuned the regu-
larization parameter (used in this algorithm) in the range
(0.01–0.9) for the best results. Best result here refer to a
registrationthat yielded the smallest energy cost satisfying
no-folding in the deformed mesh and one that has a pos-
itive determinant of Jacobian. For all the experiments, the
image intensity was scaled by 255. The results are shown
in Table 1 and Fig. 6, with several visual comparisons also
shown in Fig. 5. The deformation field is color coded using
standard color coding used to display flow fields in the Com-
puter Vision community. More specifically, the angle of each
vector is represented with hue which has value between 0◦
and 360◦ and the length of each vector is represented with
saturation which is rescaled w.r.t. the maximum length of
vector in vector field. The ’tick marks’ on the axes depict a
flow unit in one pixel. For more details on this color cod-
ing scheme, we refer the reader to Baker et al. (2011) and Ta
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Fig. 5 Visual comparisons between deformation fields computed by
Diffeomorphic Demons and our method. The ground truth deformation
is shown in Fig. 4c. a–c Display the deformation vector fields com-
puted by our method for the deformed image shown in Fig. 4b and
with added Gaussian noise of σ = 0, 0.0001, 0.02, respectively. e–
g Display the deformation vector fields computed by Diffeomorphic
Demons for the same deformed image and with added Gaussian noise
of σ = 0, 0.0001, 0.02, respectively. d and h show intensity differences
between a target and registered images with our method and Demons
respectively. Gaussian noise of σ = 0.001 was added to the source and
target. In this comparison, the bitmap values are doubled to enhance
visual effect

Fig. 6 Plots of error measures. a The angular error (AE) and b the
end-point error (EPE). The horizontal axis represents the variance of
the Gaussian noise. The errors from the diffeomorphic Demons and our
approach are depicted in red and blue, respectively. From the plots, it
is clear that our method generally produces more accurate results than
the diffeomorphic Demons

the web-site http://vision.middlebury.edu/flow/eval/results/
results-a1.php. These results demonstrate that our method
outperforms the Diffeomorphic Demons using AE and EPE
as the error measures. In particular, across the images chosen
for the experiment, the errors incurred by ourmethod are con-
sistently smaller than the ones from the Demons algorithm
as depicted in Fig. 6.

For the next two experiments, we will use S(X1,X2) as
the similarity measure in a supervised learning setting—in
following the SPD fields and Gaussian mixture field exam-
ples, measuring similarity requires pairwise registration and
it takes less than 1min for each pair of subjects with same
machine configuration specified in Sect. 3.3. More specifi-
cally, the similarity S(X1,X2) will be used in conjunction
with the diffusion map for dimensionality reduction of the
image data. In the low-dimensional Euclidean space – which
is 8-dimensional in our case – determined by the diffusion
map using S(X1,X2) as its affinity measure, the classifica-
tion is carried out using the nearest neighbor method with the
standard Euclidean distance. For details regarding diffusion
maps, we refer the reader to the original work of Coifman
et al. (2005), Coifman and Lafon (2006).

5.2 Classifications of 3D MR Brain Images

5.2.1 Data Preparation and Experimental Setting

The OASIS dataset (Marcus et al. 2007) contains 3D MR
(gray-scale) brain images of 416 humans aged between 18
and 92. Each subject is associated with several attributes that
include age and possible disease status, e.g., Alzheimer’s dis-
ease (AD) patient. The classification problems of interest are
to classifyMRbrain images according to their age groups and
their disease status. Specifically, we divide the subjects into
three age groups: Young (<41), Middle-aged (41–60), Old
(>60). Furthermore, there are also two additional groups of
Alzheimer’s disease patients and normal subjects (the control
group). In this experiment, we will show that a straightfor-
ward classification using the original gray-scale MR images
and registration does not provide satisfactory results. How-
ever, superior results can be obtained by transforming the
gray-scale images into covariant images that are SPD fields.
Specifically,

1 The image graphs of the OASISMR (gray-scale) images
are constructed in R3 × R+.

2 For each image graph, theRiemannianmetric tensor (first
fundamental form) represented as a symmetric positive-
definitematrix is computed at eachvoxel. This transforms
each gray-scale image into a covariant image X, an SPD
field.
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Fig. 7 Slices of 3-D MRI images. a–c Cross-sectional images of the
ventricles of 18, 43, and 81 years old respectively. d–f Longitudinal
images of the ventricles in the same order

Fig. 8 Slices of the 3-DSPD tensor-valued images that are the first fun-
damental forms of the image graphs of the ventricles shown in Fig. 7.
Each SPD tensor-valued image is visualized as a field of spherical func-
tions Barmpoutis et al. (2007). a–c 2-D slices from the superior view
of 18, 43, and 81 year olds, respectively. d–f Mid-sagittal sections of
the ventricles in the same order

We choose the ventricles as the main ROIs for computing
the similarity since this particular anatomical structure is
known to be important for age classification. Figures 7 and 8
show 2D slices of longitudinal and cross-sectional OASIS
MR images and their corresponding SPD fields. Figure 9
displays several (2D) dimensionality reduction results for dif-

ferent pairs of age groups. The separations between different
age groups are clearly visible, indicating the appropriateness
of the similarity measure S(X1,X2) for age classification.
For classification, we use both the leave-one-out method
and four-fold cross-validation for selecting training and test
images. For the Alzheimer’s disease patient classification,
we took seventy subjects from the Old age group with 35
subjects diagnosed as AD patients and 35 normal subject as
the control. The classification is performed similarly using
leave-one-out and four-fold cross-validation.

5.2.2 Results and Discussion

The experimental results are summarized in Tables 2, 3,
and 4, and there are four specific objectives investigated in
this set of experiments:

1 Achievable classification result using our method,
2 Improvement over Diffeomorphic Demons,
3 Relevance and importance of the re-orientation and met-
ric,

4 Comparisonswith other similar classification results pub-
lished in recent literature.

In general, the regularization parameter, Lr can be chosen
using the standard cross-validation approach (Bates et al.
1987), but in our experiments, we picked it empirically by
experimenting with several values and choosing the one that
gave the best performance in terms of classification scores.
In Table 2, we present sample test results that we have used
to pick a best Lr . In this test, we picked 39 of young and 49
of old brains from OASIS dataset, and validation method is
the standard leave-one-out technique.

Table 2 reflects the fact that the standard deviation of the
Score—which is 1.8—is small compared to the one in Lr –
which is 3.16 (as Lr values are multiplied by 100). This indi-
cates that the classification scores are relatively less sensitive

Fig. 9 2-D plots of the dimensionality reduction results using diffusion map: a young versus old, b young versus middle, and c middle versus old
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Table 2 Classification results of sample test of young versus old with
various penalty parameters

Lr 0.01 0.03 0.05 0.07 0.09

Score 100 % 97.72 % 98.86 % 96.59 % 95.45 %

to variations in the value of Lr . Hence, we choose to pick the
value of Lr (= 0.01) empirically rather than use the standard
cross-validation approach (Bates et al. 1987).

Table 2 reports the classification results obtained using
our method and correspondingly, Table 3 reports the results
obtained using Demons algorithm that operates directly on
the gray-scale MR images using the sum-of-squares (SSD)
as the matching cost function. The classification method and
validation scheme used in both experiments are identical
except thatDemonsmethoddoes not transform thegray-scale
images into covariant images and it uses the SSD as its sim-
ilarity measure. The observed improvements of our method
over Demons (higher classification rates with smaller vari-
ances) visible from the two tables can primarily be attributed
to the use of covariant images and the similarity measure
S(X1,X2) in our method.

Next, we demonstrate the flexibility of our approach by
varying the ambient metric. For Table 3, the metric in the
total space E is the product metric of Euclidean metric on
R
3 and the affine-invariant metric on P(3). Alternatively, we

can consider sample-value space P(3) as a convex subset
of R6, giving the mapping X : R

3 → R
3 × R

6, and we
replace the affine-invariant metric with the Euclidean metric
in R

6, i.e., the Frobenius norm. Table 5 reports the results
using the Euclidean metric (with and without re-orientation)
for the classification of young versus old age groups. In the
last column of Table 5, we have used the affine-invariant
Riemannian distance in P(3) but with the standard Lebesgue
measure in R3 as the integral measure.

The comparison betweenTable 3 and the first two columns
of Table 5 shows that the affine-invariant metric on P(3) is
superior to the Euclidean metric on R

6, and as mentioned
earlier, the affine-invariant metric is compatible with the re-

orientation while the Euclidean metric is not. Furthermore,
the comparison between Table 3 and the third column of
Table 5 indicates that using the Riemannian volume form
derived from the covariant image graph as the integral mea-
sure produces better results than using the standardEuclidean
volume form. In other words, the intrinsic geometry of the
covariant image graph matters. We remark that the results
in the third column of Table 5 are slightly better than the
results obtained using the conventional intensity-value-based
method reported in Table 4. This suggests that the feature
transform that transforms a gray-scale image into an SPD
covariant image may have imbued the covariant image with
local geometric information that are useful for image match-
ing and classification.

Finally, in Table 6, we have compared our results with
previously published classification results using the OASIS
dataset. Authors in Xie et al. (2010) register each image to a
common atlas and compute the deformation tenor field as the
main discriminating feature for each image. The deformation
tensor fields are taken to be points in a high-dimensional fea-
ture space that is the Cartesian product of several P(3)s, and
the classification is based on the metric distance of the Carte-
sian product. InChen et al. (2010), histogramsof deformation
vector fields have been used as features, and the CAVIAR
method proposed in Chen et al. (2010) uses an adaboost-like
approach in its classification by using a weighted combina-
tion of several weak learners/classifiers. We remark that the
image matching methods used in these works are all L2-
based methods that compare only sample (intensity) values
at corresponding voxels. Furthermore, our method compares
favorably with these methods in terms of classification rates,
and in particular, for the more challenging problem of clas-
sifying brain images of Alzheimer’s disease (AD) patients,
our method demonstrates a small but real improvement over
CAVIAR and Adaboost (Chen et al. 2010). In AD versus
control classification test, we select 35 of AD and 35 of old
brains from full OASIS dataset, and same dataset has been
used for CAVIAR and Adaboost classifiers. Resulting clas-
sification scores are also reported in Table 6. Authors in Xie
et al. (2010), however, used different dataset for this AD test;

Table 3 Classification results
for the four-fold cross-validation
experiment (first four rows) and
the leave-one-out experiment
(last row) using the proposed
method

Input: 3-by-3 SPD
image graphs

Old versus
young (%)

Old versus
middle (%)

Middle versus
young (%)

AD versus
control (%)

Maximum 100 100 100 100

Minimum 97.72 95.38 94.54 75.0

Average 99.54 98.98 98.54 94.87

Standard deviation 0.79 1.09 1.62 5.55

Leave-one-out 99.43 98.46 99.09 95.32

For the four-fold cross-validation experiment, training and test images are randomly generated fifty times,
resulting in fifty different classification runs. The metric used for the ambient space R3 × P(3) is the product
metric of the Euclidean metric on R

3 and the affine-invariant metric on P(3)
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Table 4 Classification results
for the four-fold cross-validation
experiment (first four rows) and
the leave-one-out experiment
(last row) using the
Diffeomorphic Demons method

Input: image function Old versus young
(%)

Old versus middle
(%)

Middle versus young
(%)

Maximum 100 100 100

Minimum 96.59 93.85 85.45

Average 98.81 97.35 94.94

Standard deviation 0.88 2.065 2.96

Leave-one-out 98.3 97.69 97.27

In this experiment, the intensity values of the OASIS MRI images are used directly without feature
transforming into SPD fields as in Table 3. The results reported here use exactly the same sets of training
and testing data as in Table 3

Table 5 Classification results
for young versus old age groups
using different metrics on the
ambient space (with and without
reorientation)

Methods Frobenius with
reorientation (%)

Frobenius without
reorientation (%)

Riemannian distance
with reorientation
and standard volume
form (%)

Maximum 100 100 100

Minimum 88 88.63 96.59

Average 94.96 96.52 99.03

Standard deviation 2.57 2.15 0.99

Leave-one-out validation 97.03 98.01 99.15

Results from the four-fold cross-validation experiment are shown in the first four rows and the leave-one-out
experiment shown in the last row. In the first and second columns, the Frobenius norm is used as the metric
for P3 with integral measure derived from the Riemannian volume form of the image graph. In the last
column, the metric for P3 is the affine-invariant Riemannian metric using the volume form introduced in
Tagare et al. (2009) as the integral measure

Table 6 Classification results of
our methods and four other
published methods using
four-fold cross-validation

Old versus
young

Old versus
middle (%)

Middle versus
young (%)

AD versus
control (%)

Our Method 99.54 98.98 98.54 94.87

CAVIAR Chen et al. (2010) 99.14 98.36 97.76 88.0

Adaboost Chen et al. (2010) 98.75 96.80 96.0 84.38

Submanifold projection Xie et al. (2010) 96.43 90.23 84.32 ·
Nearest Neighbor in PCA Xie et al. (2010) 92.43 87.74 78.42 ·

therefore, the AD test results in Xie et al. (2010) are not
reported here. In addition, we carried out the Hotelling’s T2
test with our feature vectors– which are in R8– to determine
the statistical significance of our classification in the AD test.
The T2 test yielded a p-value less than 0.05. Therefore, the
null-hypothesis was rejected. In addition, it leads us to con-
clude that the feature vectors that we have chosen are well
suited for this classification problem.

5.3 Seizure Detection from High Angular Resolution
Diffusion-Weighted MR Imaging (HARDI)

5.3.1 Data Preparation and Experimental Setting

The dataset consists of HARDI data acquired from nine rat
brains. The brains have undergone electrical stimulation for

inducing epileptic seizures. HARDI data are collected over
several time intervals in order to observe occurrences of
seizure from the time-sequence scans. For each rat, there
are between five to eight temporal scans and we refer to
data taken before seizure but post stimulation as pre-seizure
and data collected after seizure is referred to as post-seizure.
The aim of this experiment is to automatically classify the
data into two classes namely, pre- and post-seizure classes
respectively. Specifically, we have 34 pre-seizure and 12
post-seizure data sets. We acquired in vivo HARDI data of
rat brains and computed the GM fields whose weight vector
dimension is 46 and this is a sparse vector with the num-
ber of nonzero weights being equal to the number of fiber
crossings in that voxel. The Gaussian mixture model is esti-
mated using the tensor distribution model described in Jian
et al. (2007), Jian and Vemuri (2007). In Jian et al. (2007),
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Table 7 Classification results
for the leave-one-out validation
experiment using two different
matching methods

GM fields as shapes GM fields as functions

Pre-seizure (%) Post-seizure (%) Pre-seizure (%) Post-seizure (%)

Score 100 75 91.18 50

Total score 93.47 80.43

Classification (detection) results for pre- and post-seizure are reported separately

Table 8 Average classification results for the four-fold validation
experiment using 50 different sets of training and testing data

Pre-seizure Post-seizure Pre- and Post-seizure

Ave. score 96.25 % 75.6 % 90.61%

Jian and Vemuri (2007), the Guassian mixture model estima-
tion requires solving a linear system of sparse weight vector
whose dimension was set to 46 in this experimental set up.
Therefore, the covariant images areGMfieldswith 46 dimen-
sional weight vector—this leads to n = 46 in Eq. 26—and
their image graphs are constructed based on the mapping
I : R3 → R

3×GM(46). The remaining experimental details
are similar to the 3D MR brain image experiment above:
using S(X1,X2) as the similarity (affinity) measure and the
diffusion map for dimensionality reduction. Classification is
carried out using nearest neighbormethodwith the Euclidean
metric in the low-dimensional feature space.

5.3.2 Results and Discussions

As in the previous experiment, we have used leave-one-out
method and four-fold cross-validation for selecting training
and testing data. The result from the leave-one-out valida-
tion is reported in Table 7 and the result is compared with
the result obtained using the sum of squared difference cost
function for image registration method but with the inclu-
sion of re-orientation transform. The main difference is the
use of Riemannian volume form as the integral measure in
our method and the standard Lebesgue measure in R3 in the
comparative method, and this results in the noticeable differ-
ence between the two classification results. For the four-fold
cross-validation experiment, we have randomly selected 8 of
pre-seizure and 3 of post-seizure out of 34 and 12, respec-
tively, as the test data. The random selection is performed
50 times as before, and the averaged classification results are
reported in Table 8.

6 Conclusions

In this paper, we have proposed the novel notion of covariant
images and a novel similarity measure for covariant images.
Covariant images are images whose sample values are trans-

formed by the application of image domain transforms, and
they play important roles in various medical image applica-
tions.We have argued that their covariant nature with respect
to image domain transforms blur the distinction between
image and sample-value domains, opening the door for the
geometric approach advocated in this paper. In particular,
using their image graphs, covariant images are considered
as shapes embedded in an ambient space that is the Carte-
sian product of the image and sample-value domains, and
the similarity between two covariant images are formulated
as the similarity between their associated shapes. For their
comparisons, we have proposed a matching framework that
incorporates both extrinsic and intrinsic geometry of the
covariant images. We have also developed an optimization
method for efficiently computing the matching, and hence
the similarity between two covariant images. The proposed
similaritymeasure has been evaluated in two extensive sets of
experiments on classifying human and animal brain images.
Good classification results achieved in these two experiments
have demonstrated its effectiveness and usefulness for brain
image classifications, and its great potential for othermedical
image applications as well.
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Appendix 1

In this section, we show how to factor out DSC basis func-
tions in formulating the gradient descent direction w.r.t. the
DSC coefficients. Here, we only show details of derivatives
w.r.t. Anml . Derivatives w.r.t. Bnml and Cnml can be done in
the same way described in the following. In this section we
consider Eq. 14 and in the following sections Eqs. 15 and
Eq. 16 will be considered. Here, we only consider the image
graphs of Gaussian mixture fields.

Equation 14 is rewritten as

∂

∂Anml
Dist2(X1R,X2 ◦ γ )

= ∂

∂Anml
(λ (U 2 + V 2 + X2)︸ ︷︷ ︸

Part1

+Dist2F (I1R, I2 ◦ γ )︸ ︷︷ ︸
Part2

)

(44)
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In the Part1 of Eq. 44, factoring out basis functions is
very straight forward, therefore, we only show how to do
this in the Part2 below.

∂

∂Anml
Dist2F (I1R, I2 ◦ γ )

= η
 ∂AR
∂Anml

η − 2η
 ∂CR
∂Anml

(ρ ◦ γ )

+2(ρ ◦ γ )
B∂(ρ ◦ γ )

∂Anml
− 2η
CR

∂(ρ ◦ γ )

∂Anml
, (45)

Factoring out basis functions in Eq. 45 requires evaluation
Eqs. 40, 41, and 42 explicitly. First, we need to evaluated
derivatives of Jacobian matrix, J. Given

J =
⎛
⎝
1 + Uu Uv Uw

Vu 1 + Vv Vw

Wu Wv 1 + Ww

⎞
⎠ , (46)

the first order derivative w.r.t. Anml is given

∂J
∂Anml

=
⎛
⎝

∂
∂u ΦUnml

∂
∂v

ΦUnml
∂

∂w
ΦUnml

0 0 0
0 0 0

⎞
⎠ . (47)

Once we notice that

∂J
∂Anml

uiR

=

⎛
⎜⎜⎜⎜⎝

uiR1
∂

∂u
ΦUnml + uiR2

∂

∂v
ΦUnml + uiR3

∂

∂w
ΦUnml︸ ︷︷ ︸

Δi

0
0

⎞
⎟⎟⎟⎟⎠

,

(48)

where the subscript i of Δ is same with i of uiR, and rewrite
J−1 as

J−1 =
⎛
⎝

J−1
11 J−1

12 J−1
13

J−1
21 J−1

22 J−1
23

J−1
31 J−1

32 J−1
33

⎞
⎠ =

⎛
⎝J−1

1 J−1
2 J−1

3

⎞
⎠ (49)

then, we can factor out basis functions in Eq. 43 as

∂uiR
∂Anml

= (J−1
1 − (u


iRJ−1
1 )uiR)Δi (50)

and in the same way,

∂uiR
∂Bnml

= (J−1
2 − (u


iRJ−1
2 )uiR)Δi (51)

∂uiR
∂Cnml

= (J−1
3 − (u


iRJ−1
3 )uiR)Δi . (52)

With Eq. 50, we can rewrite Eqs. 40 and 41 as

∂AR
∂Anml

∣∣∣∣
i, j

= ai ju

iRu jR

[
u


iR(J−1
1 − (u


jRJ−1
1 )u jR)Δ j

+(J−1
1 − (u


iRJ−1
1 )uiR)
u


jRΔi
]

.= J 1
i jΔ j + J 2

i jΔi (53)

and

∂CR
∂Anml

∣∣∣∣
i, j

= bi ju

iRv j (J

−1
1 − (u


iRJ−1
1 )uiR)
v jΔi

.= Zi jΔi , (54)

where

ai j = β

(2πdet (ΣiR + Σ jR))3/2
,

bi j = β

(2πdet (ΣiR + Γ jR))3/2
.

Finally we factor out basis functions and their derivatives
in Eq. 45 as follows.

η
 ∂AR
∂Anml

η − 2η
 ∂CR
∂Anml

(ρ ◦ γ )

= ηi

(
∂AR
∂Anml

)

i j
η j − 2ηi

(
∂CR
∂Anml

)

i j
(ρ ◦ γ ) j

= ηi (J 1
i jΔ j + J 2

i jΔi )η j − 2ηiZi j (ρ ◦ γ ) jΔi

= ηi [(J 1
i j u jR1+J 2

i j uiR1)η j −2Zi j (ρ ◦ γ ) j uiR1]∂ΦUnml

∂u

+ ηi [(J 1
i j u jR2 + J 2

i j uiR2)η j −2Zi j (ρ ◦ γ ) j uiR2]∂ΦUnml

∂v

+ ηi [(J 1
i j u jR3+J 2

i j uiR3)η j −2Zi j (ρ ◦ γ ) j uiR3]∂ΦUnml

∂w

(55)

2(ρ ◦ γ )
B∂(ρ ◦ γ )

∂Anml
− 2η
CR

∂(ρ ◦ γ )

∂Anml

= 2((ρ ◦ γ )
B − η
CR)
∂ρ

∂u

∣∣∣∣
u+U

ΦUnml (56)

Appendix 2

In this section, we show how to evaluate Eqs. 15 and 16.
Denote Jγ the determinant of the Jacobian, Jγ defined in
Eq. 7. Its derivative w.r.t. Anml defined in Eq. 12 can be
written as
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∂

∂Anml
Jγ = (1 + Vv + Ww + VvWw − VwWv)

∂ΦUnml

∂u

+(V + wW + u − Vu Ww − Vu)
∂ΦUnml

∂v

+(Vu Wv − VvWu − Wu)
∂ΦUnml

∂w
(57)

Given the derivative of Jγ , evaluations of Eqs. 15 and 16
is straightforward:

∂

∂Anml

√
κ2(Ω2 ◦ γ )Jγ

= 1

2
√

κ2

∂κ2

∂u

∣∣∣∣
u+U

ΦUnml Jγ + √
κ2

∂ Jγ

∂Anml
, (58)

and

∂

∂Anml
(Jγ − 1) log(Jγ )

=
[
log(Jγ ) + 1 − 1

Jγ

]
∂

∂Anml
Jγ . (59)
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