
An efficient Exact-PGA algorithm for constant curvature manifolds

Rudrasis Chakraborty1, Dohyung Seo2, and Baba C. Vemuri1
1Department of CISE, University of Florida, FL 32611, USA

2U-Systems, A GE Healthcare Company, CA, USA
1{rudrasis, vemuri}@cise.ufl.edu 2{dhseo.118}@gmail.com

Abstract

Manifold-valued datasets are widely encountered in
many computer vision tasks. A non-linear analog of
the PCA algorithm, called the Principal Geodesic Anal-
ysis (PGA) algorithm suited for data lying on Rieman-
nian manifolds was reported in literature a decade ago.
Since the objective function in the PGA algorithm is
highly non-linear and hard to solve efficiently in gen-
eral, researchers have proposed a linear approximation.
Though this linear approximation is easy to compute, it
lacks accuracy especially when the data exhibits a large
variance. Recently, an alternative called the exact PGA
was proposed which tries to solve the optimization with-
out any linearization. For general Riemannian mani-
folds, though it yields a better accuracy than the orig-
inal (linearized) PGA, for data that exhibit large vari-
ance, the optimization is not computationally efficient.
In this paper, we propose an efficient exact PGA al-
gorithm for constant curvature Riemannian manifolds
(CCM-EPGA). The CCM-EPGA algorithm differs sig-
nificantly from existing PGA algorithms in two aspects,
(i) the distance between a given manifold-valued data
point and the principal submanifold is computed an-
alytically and thus no optimization is required as in
the existing methods. (ii) Unlike the existing PGA al-
gorithms, the descent into codimension-1 submanifolds
does not require any optimization but is accomplished
through the use of the Rimeannian inverse Exponential
map and the parallel transport operations. We present
theoretical and experimental results for constant cur-
vature Riemannian manifolds depicting favorable per-
formance of the CCM-EPGA algorithm compared to
existing PGA algorithms. We also present data recon-
struction from the principal components which has not
been reported in literature in this setting.

1. Introduction
Principal Component Analysis (PCA) is a widely

used dimensionality reduction technique in Science and
Engineering. PCA however requires the input data to
lie in a vector space. With the advent of new technolo-
gies and wide spread use of sophisticated feature ex-
traction methods, manifold-valued data have become
ubiquitous in many fields including but not limited
to, Computer Vision, Medical Imaging and Machine
Learning. A nonlinear version of PCA, called the Prin-
cipal Geodesic Analysis (PGA), for data lying on Rie-
mannian manifolds was introduced in [8].

Since the objective function of PGA is highly non-
linear and hard to solve in general, researchers pro-
posed a linearized version of the PGA [8]. Though this
linearized PGA, hereafter referred to as PGA, is com-
putationally efficient, it lacks accuracy for data with
large spread/variance. In order to solve the objective
function exactly, Sommer et al., [25] proposed to solve
the original objective function (not the approximation)
and called it exact PGA . While exact PGA attempts
to solve this complex nonlinear optimization problem,
it is however computationally inefficient. Though it
is not possible to efficiently and accurately solve this
optimization problem for a general manifold, however,
for manifolds with constant sectional curvature, we for-
mulate an efficient and exact PGA algorithm, dubbed
CCM-EPGA. It is well known in geometry, by virtue
of the Killing-Hopf theorem [4], that any non-zero con-
stant curvature manifold is isomorphic to either the hy-
persphere (SN ) or the hyperbolic space (HN ), hence in
this work, we present the CCM-EPGA formulation for
(SN ) and (HN ). Our formulation has several applica-
tions to Computer Vision and Statistics including di-
rectional data [21] and color spaces [19]. Several other
applications of hyperbolic geometry are, shape analy-
sis [30], Electrical Impedance Tomography, Geoscience
Imaging [28], Brain Morphometry [29], Catadiaoptric
Vision [3] etc.

In order to depict the effectiveness of our proposed
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CCM-EPGA algorithm, we use the average projection
error as defined in [25]. We also report the computa-
tional time comparison of the CCM-EPGA with the
PGA [8] and the exact PGA [25] algorithms respec-
tively. Several variants of the PGA exist in literature
and we briefly mention a few here. In [23], authors
computed the principal geodesics (without approxima-
tion) only for a special Lie group, SO(3). Geodesic
PCA (GPCA) [14, 13] solves a different optimization
function namely, optimizing the projection error along
the geodesics. Authors in [13], minimize the projection
error instead of maximizing variance in geodesic sub-
spaces (defined later in the paper). GPCA does not
use a linear approximation, but it is restricted to man-
ifolds where a closed form expression for the geodesics
exists. More recently, a probabilistic version of PGA
called PPGA was presented in [31], which is a nonlinear
version of PPCA [27]. None of these methods attempt
to compute the solution to the exact PGA problem
defined in [25]. Another recent work in [11], reports
a non-linear generalization of PGA, namely the prin-
cipal geodesic curves, and argues about its usefulness
over PGA.

The rest of the paper is organized as follows. In
Section 2, we present the formulation of PGA. We also
discuss the details of the linearized version of PGA [8]
and exact PGA [25]. Our formulation of CCM-EPGA
is presented in Section 2. Experimental results for the
CCM-EPGA algorithm along with comparisons to ex-
act PGA and PGA are presented in Section 3. In ad-
dition to synthetic data experiments, we present the
comparative performance of CCM-EPGA on two real
data applications. In Section 4, we present the for-
mulation for the reconstruction of data from principal
directions and components in this nonlinear setting.
Finally, in section 5, we draw conclusions.

2. Principal Geodesic Analysis
Principal Component Analysis (PCA) [17] is a well

known and widely used statistical method for dimen-
sionality reduction. Given a vector valued dataset, it
returns a sequence of linear subspaces that maximize
the variance of the projected data. The kth subspace
is spanned by the principal vectors {v1,v2, · · · ,vk}
which are mutually orthogonal. PCA is well suited
for vector-valued data sets but not for manifold-valued
inputs. A decade ago, the nonlinear version called the
Principal Geodesic Analysis (PGA) was developed to
cope with manifold-valued inputs [8]. In this section,
first, we briefly describe this PGA algorithm, then, we
show the key modification performed in [25] to arrive
at what they termed as the exact PGA algorithm. We
then motivate and present our approach which leads

to an efficient and novel algorithm for exact PGA on
constant curvature manifolds (CCM-EPGA).

Let M be a Riemannian manifold. Let us sup-
pose we are given a dataset, X = {x1, · · · , xn}, where
xj ∈ M . Let us assume that the finite sample Fréchet
mean [9] of the data set exists and be denoted by µ. Let
Vk be the space spanned by mutually orthogonal vec-
tors (principal directions) {v1, · · · ,vk}, vj ∈ TµM,∀j.
Let Sk be the kth geodesic subspace of TµM , i.e.,
Sk = Expµ(Vk), where Exp is the Riemannian expo-
nential map (see [4] for definition). Then, the principal
directions, vi are defined recursively by

vi = arg max
‖v‖=1,v∈V ⊥

i−1

1
n

n∑
j=1

d2(µ,ΠSi(xj)) (1)

Si = Expµ(spanVi−1,vi) (2)

where d(x, y) is the geodesic distance between x ∈ M
and y ∈ M , ΠS(x) is the point in S closest to x ∈ M .
The PGA algorithm on M is summarized in Alg. 1.

Algorithm 1 The PGA algorithm on manifold M

1: Given a data set X = {x1, · · · , xn} ∈ M , and 1 ≤
L ≤ dim(M)

2: Compute the FM, µ, of X [1]
3: Set k ← 1
4: Set {x̄0

1, · · · , x̄0
n} ← {x1, · · · , xn}

5: while k ≤ L do

6: Solve vk = arg max
‖v‖=1,v∈TµM,v∈V ⊥

k−1

1
n

n∑
j=1

d2(µ,ΠSk(x̄k−1
j ))

as in Eq. (1).
7: Project {x̄k−1

1 , · · · , x̄k−1
n } to a k co-dimension

one submanifold Z of M , which is orthogonal to
the current geodesic subspace.

8: Set the projected points to {x̄k1 , · · · , x̄kn}
9: k ← k + 1

10: end while

2.1. PGA and exact PGA

In Alg. 1 (lines 6− 7), as the projection operator Π
is hard to compute, hence a common alternative is to
locally linearize the manifold. This approach [8] maps
all data points on to the tangent space at µ, and as
the tangent plane is a vector space, one can use the
PCA to compute the principal directions. This simple
scheme is an approximation to the PGA and naturally
raises the following question: Is it possible to do PGA
(solve Eq. (1)) without any linearization? The answer
is yes. But, computation of the projection operator,
ΠS(x), i.e., the closest point to x in S is computation-
ally expensive. In [25], Sommer et al. give an alterna-



tive formulation for the PGA by minimizing the aver-
age squared reconstruction error, i.e., d2(xj ,ΠSi(xj))
instead of d2(µ,ΠSi(xj)) in eqns. (1). They use an op-
timization scheme to compute this projection. Further,
they termed their algorithm, exact PGA, as it does not
require any linearization. However, their optimization
scheme is in general computationally expensive and for
a data set with large variance, convergence is not guar-
anteed. Hence, for large variance data, their exact PGA
is still an approximation as it might not converge. This
motivated us to formulate an accurate and computa-
tionally efficient exact PGA, at least in cases where it
is feasible to do so.

2.2. Efficient and accurate exact PGA

In this paper, we present an analytic expression
for the projected point and design an effective way
to project data points on to the co-dimension k sub-
manifold (as in 1, line 7). An analytic expression is
in general not possible to derive for arbitrary Rieman-
nian manifolds. However, for constant curvature Rie-
mannian manifolds, i.e., SN (positive constant curva-
ture) and HN (negative constant curvature), we derive
an analytic expression for the projected point and de-
vise an efficient algorithm to project data points on to
a co-dimension k submanifold. Both these manifolds
are quite commonly encountered in Computer Vision
[10, 20, 3, 29, 30] as well as in many other fields of
Science and Engineering. The former more so than the
latter. Even though, there are applications that can be
naturally posed in hyperbolic spaces (e.g., color spaces
in Vision [19], catadiaoptric images [3] etc.), their full
potential has not yet been exploited in Computer Vi-
sion research as much as in the former case.

We first present some background material for the
N -dimensional spherical and hyperbolic manifolds and
then derive an analytical expression for the projected
point.

2.2.1 Basic Riemannian Geometry of SN

• Geodesic distance: The geodesic distance be-
tween ψ, ψ̄ ∈ SN is given by, d(ψ, ψ̄) =
arccos(ψtψ̄).

• Exponential Map: Given a vector v ∈ TψSN ,
the Riemannian Exponential map on SN is de-
fined as Expψ(v) = cos(|v|)ψ+ sin(|v|)v/|v|. The
Exponential map gives the point which is located
on the great circle along the direction defined by
the tangent vector v at a distance |v| from ψ.

• Inverse Exponential Map: The tangent vec-
tor v ∈ TψSN directed from ψ to ψ̄ is given

by, Exp−1
ψ (ψ̄) = θ

sin(θ) (ψ̄ − ψ cos(θ)) where, θ =
d(ψ, ψ̄).

2.2.2 Basic Riemannian Geometry of HN

The hyperbolic N -dimensional manifold can be embed-
ded in RN+1 using any of three different models. In
this paper, we use the hyperboloid model [15]. In this
model, HN is defined as HN = {x = (x1, · · · , xN+1)t ∈
RN+1| < x, x >H= −1, x1 > 0}, where the inner
product on HN , denoted by < x, y >H is defined as
< x, y >H= −x1 ∗ y1 +

∑N+1
i=2 (xi ∗ yi).

• Geodesic distance: The geodesic distance be-
tween ψ, ψ̄ ∈ HN is given by, d(ψ, ψ̄) =
cosh−1(− < ψ, ψ̄ >H).

• Exponential Map: Given a vector v ∈ TψHN ,
the Riemannian Exponential map on HN is de-
fined as, Expψ(v) = cosh(|v|)ψ + sinh(|v|)v/|v|.

• Inverse Exponential Map: The tangent vec-
tor v ∈ TψHN directed from ψ to ψ̄ is given by
Exp−1

ψ (ψ̄) = θ
sinh(θ) (ψ̄ − ψ cosh(θ)) where, θ =

d(ψ, ψ̄).

For the rest of this paper, we consider the underly-
ing manifold, M , as a constant curvature Riemannian
manifold, i.e., M is diffeomorphic to either SN or HN ,
where N = dim(M) [4]. Let ψ, ψ̄ ∈ M , v ∈ Tψ̄M .
Further, let y(v, ψ) be defined as the projection of ψ
on the geodesic submanifold defined by ψ̄ and v. Now,
we will derive a closed form expression for y(v, ψ) in
the case of SN and HN .

Figure 1: Projection of a data point on to a geodesic
submanifold of the sphere.



2.3. Analytic expression for y(v, ψ) on SN

Theorem 1. Let ψ ∈ SN and v ∈ Tψ̄SN . Then the
projection of ψ on the geodesic submanifold defined by
ψ̄ and v, i.e., y(v, ψ) is given by:

y(v, ψ) = cos(arctan
(

(< v, ψ >)/(< ψ, ψ̄ >)
|v|

)
)ψ̄

+ sin(arctan
(

(< v, ψ >)/(< ψ, ψ̄ >)
|v|

)
)v/|v|

(3)

Proof. Consider the spherical triangle shown in Fig.
1, 4ψ̄ψyψ, where yψ = y(v, ψ). Let, a = d(ψ̄, yψ),
b = d(yψ, ψ) and c = d(ψ, ψ̄). Also, let A = ∠ψ̄ψyψ,
B = ∠ψψ̄yψ, C = ∠ψ̄yψψ. Clearly, since yψ is the
projected point , C = π/2. So,

cosB =
< c

sin c (ψ − ψ̄ cos c),v >

c|v|

=
<v,ψ>

sin c − cot c < v, ψ̄ >
|v| (4)

Here, < ., . > denotes the Euclidean inner product,
where both ψ and v are viewed as points in RN+1,
i.e., the ambient space. Note that, < v, ψ̄ >= 0, as
v ∈ Tψ̄SN . From spherical trigonometry, we know that
tan a = cosB tan c.

∴ cosB tan c =
<v,ψ>

cos c
|v|

= (< v, ψ >)/(< ψ, ψ̄ >)
|v|

∴ a = arctan
(

(< v, ψ >)/(< ψ, ψ̄ >)
|v|

)
(5)

Hence, using the Exponential map, we can show that
yψ is given by,

yψ = cos(a)ψ̄ + sin(a)v/|v| (6)

�

Analogously, we can derive the formula for y(v, ψ)
on HN , v ∈ Tψ̄HN .

Theorem 2. Let ψ ∈ HN and v ∈ Tψ̄HN . Then the
projection of ψ on the geodesic submanifold defined by
ψ̄ and v, i.e., y(v, ψ) is given by:

yψ = cosh(a)ψ̄ + sinh(a)v/|v| (7)

where,

a = tanh−1

(
(< v, ψ >H)/(− < ψ, ψ̄ >H)

|v|

)
.

Proof. As before, consider the hyperbolic triangle
shown in, 4ψ̄ψyψ, where yψ = y(v, ψ). Let, a =
d(ψ̄, yψ), b = d(yψ, ψ) and c = d(ψ, ψ̄). Also, let
A = ∠ψ̄ψyψ, B = ∠ψψ̄yψ, C = ∠ψ̄yψψ. Clearly, since
yψ is the projected point , C = π/2. Then, B is the
angle between Logψ̄(ψ) and v. Hence,

coshB =
<v,ψ>H

sinh c − coth c < v, ψ̄ >H
|v| (8)

Then, from hyperbolic trigonometry, as tanh a =
coshB tanh c, we get

a = tanh−1

(
(< v, ψ >H)/(− < ψ, ψ̄ >H)

|v|

)
(9)

Note that, since the arc length between ψ̄ and yψ
is a, hence, using the Exponential map, we can show
that yψ = cosh(a)ψ̄ + sinh(a)v/|v|.

�

Given the closed form expression for the projected
point, now we are in a position to develop an efficient
projection algorithm (for line 7 in Alg. 1), which is
presented in Alg. 2. Note that, using Alg. 2, data
points on the current submanifold are projected to a
submanifold of dimension one less, which is needed by
the PGA algorithm in line 6. Also note that, in order
to ensure existence and uniqueness of FM on SN , we
have restricted the data points to be within a geodesic
ball of convexity radius < π/2 [1]. On HN , FM exists
and is unique everywhere.

Note that in order to descend to the codimension-1
submanifolds, we use step-1 and step-2 instead of the
optimization method used in the exact PGA algorithm
of [25].

3. Experimental Results
In this section, we present experiments demonstrat-

ing the performance of CCM-EPGA compared to PGA
[8] and exact PGA [25]. We used the average projection
error, defined in [25], as a measure of performance in
our experiments. The average projection error is de-
fined as follows. Let {xi}ni=1 be data points on a man-
ifold M . Let µ be the mean of the data points. Let, v



Algorithm 2 Algorithm for projecting the data points
to a co-dimension one submanifold

1: Input: a data point xi ∈ SN (HN ), a geodesic
submanifold defined at µ and v ∈ TµSN (TµHN ),
and y(v, xi) which is the projection of ψ on to the
geodesic submanifold.

2: Output: x̄i which is the projection of the data point
xi to a subspace, SN−1(HN−1), that is orthogonal
to the current geodesic submanifold.

3: Step 1. Evaluate the tangent vector, vi ∈
Ty(v,xi)SN (Ty(v,xi)HN ) directed towards xi using
the inverse Exponential map. It is clear that vi is
orthogonal to v.

4: Step 2. Parallel transport vi to µ. Let vµi de-
note the parallel transported vector. The geodesic
submanifold defined by µ and vµi is orthogonal to
geodesic submanifolds obtained from the previous
steps in Alg. 1.

5: Step 3. Set x̄i ← y(vµi , xi)

be the first principal direction and S = Expµ(v). Then
the error (E) is defined as follows:

E = 1
n

n∑
i=1

d2(xi,ΠS(xi)) (10)

where d(., .) is the geodesic distance function on M .
We also present the computation time for each of the
three algorithms. All the experimental results reported
here were obtained on a desktop with a single 3.33 GHz
Intel-i7 CPU and 24 GB RAM.

3.1. Comparative performance of CCM-EPGA on
Synthetic data

In this section, we present the comparative perfor-
mance of CCM-EPGA on several synthetic datasets.
For each of the synthetic data, we have reported the
average projection error and computation time for all
three PGA algorithms in Table 1. All the four datasets
are on S2 and the Fréchet mean is at the ”north
pole”. For all the datasets, samples are in the north-
ern hemisphere to ensure that the Fréchet mean is
unique. Data 1 and Data 2 are generated by taking
samples along a geodesic with a slight perturbation.
The last two datasets are constructed by drawing ran-
dom samples on the northern hemisphere. In addition,
data points from Data 1 are depicted in Fig. 2. The
first principal direction is also shown (black for CCM-
EPGA, blue for PGA and red for exact PGA). Further,
we also report the data variance for these synthetic
datasets. By examining the results, it’s evident that
for data with low variance, the significance of CCM-
EPGA in terms of projection error is marginal, while

Figure 2: Synthetic data (Data 1) on S2

for high variance data, CCM-EPGA yields significantly
better accuracy. Also, CCM-EPGA is computationally
very fast in comparison to exact PGA. The results in
Table 1 indicate that CCM-EPGA outperforms exact
PGA in terms of efficiency and accuracy. Although,
the required time for PGA is less than that of CCM-
EPGA, in terms of accuracy, CCM-EPGA dominates
PGA.

3.2. Comparative performance on point-set data
(SN example)

In this section, we depict the performance of the
proposed CCM-EPGA algorithm on 2D point-set data.
The database is called GatorBait-100 dataset [22]. This
dataset consists of 100 images of shapes of different fish.
From each of these images of size 20× 200, we first ex-
tract boundary points, then we apply the Schrödinger
distance transform [7] to map each of these point sets
on a hypersphere (S3999). Hence, this data consists
of 100 point-sets each of which lie on S3999. As be-
fore, we have used the average projection error [25], to
measure the performance of algorithms in the compar-
isons. Additionally, we report the computation time
for each of these PGA algorithms. We used the code
available online for exact PGA [24]. This online im-
plementation is not scalable to large (even moderate)
number of data points, and further requires the compu-
tation of the Hessian matrix in the optimization step,
which is computationally expensive. Hence, for this
real data application on the high dimensional hyper-



Data Var. CCM-EPGA PGA exact PGA
avg. proj. err. Time(s) avg. proj. err. Time(s) avg. proj. err. Time(s)

Data 1 2.16 1.13e− 04 0.70 0.174 0.46 2.54e-02 14853
Data 2 0.95 5.87e− 02 0.27 0.59 0.12 0.59 84.38
Data 3 7.1e-03 2.33e− 03 0.19 0.55 0.05 0.55 16.87
Data 4 5.9e-02 0.27 0.33 0.37 0.14 0.37 71.84

Table 1: Comparison results on synthetic datasets

Method avg. proj. error Time(s)
CCM-EPGA 2.83e− 10 0.40
PGA 9.68e− 02 0.28

Table 2: Comparison results on Gator-Bait database

sphere, we could not report the results for the exact
PGA algorithm. Though one can use a Sparse matrix
version of the exact PGA code, along with efficient par-
allelization to make the exact PGA algorithm suitable
for moderately large data, we would like to point out
that since our algorithm does not need such modifica-
tions, it clearly gives CCM-EPGA an advantage over
exact PGA from a computational efficiency perspec-
tive. In terms of accuracy, it can be clearly seen that
CCM-EPGA outperforms exact PGA from the results
on synthetic datasets. Both average projection error
and computational time on GatorBait-100 dataset are
reported in Table 2. This result demonstrates accu-
racy of CCM-EPGA over the PGA algorithm with a
marginal sacrifice in efficiency but significant gains in
accuracy.

3.3. PGA on population of Gaussian distributions
(HN example)

In this section, we propose a novel scheme to com-
pute principal geodesic submanifolds for the manifold
of Gaussian densities. Here, we use concepts from in-
formation geometry presented in [2], specifically, the
Fisher information matrix [18] to define a metric on
this manifold [6]. Consider a normal density f(.|θ) in
an n−dimensional space, with parameters represented
by θ. Then the ijth entry of the n × n Fisher matrix,
denoted by gij , is defined as follows:

gij(θ) =
∫

R
f(x|θ)∂lnf(x|θ)

∂θi

∂lnf(x|θ)
∂θj

dx (11)

For example, for a univariate normal density f(.|µ, σ),
the fisher information matrix is

(gij(µ, σ)) =
( 1
σ2 0
0 2

σ2

)
(12)

So, the metric is defined as follows:

< u, v >= utGv (13)

where G = (gij) is the Fisher information matrix.
Now, consider the parameter space for the univariate
normal distributions. The parameter space is HF =
(µ, σ) ∈ R2|σ > 0, i.e., positive half space, which is
the Hyperbolic space, modeled by the Poincaré half-
plane, denoted by P2. We can define a bijection
F1 : HF → P2 as F (µ, σ) = ( µ√

2 , σ). Hence, the uni-
variate normal distributions can be parameterized by
the 2−dimensional hyperbolic space. Moreover, there
exists a diffeomorphsim between P2 and H2 (the map-
ping is analogous to stereographic projection for SN ),
thus, we can readily use the formulation in Section 2 to
compute principal geodesic submanifold on the mani-
fold of univariate normal distributions.

Motivated by the above formulation, we ask the fol-
lowing question: Does there exist a similar relation for
multivariate normal distributions? The answer is no
in general. But if the multivariate distributions have
diagonal covariance matrix, (i.e., independent uncor-
related variables in the multivariate case), the above
relation between P2 and H2 can be generalized. Con-
sider an N−dimensional normal distribution parame-
terized by (µ,Σ) where µ = (µ1, · · · , µN )t and Σ is
a diagonal positive definite matrix (i.e., Σij = σi, if
i = j, else Σij = 0). Then, analogous to the univari-
ate normal distribution case, we can define a bijection
FN : HN

F → P2N as follows:

FN (µ,Σ) = ( µ1√
2
, σ1, · · · ,

µN√
2
, σN ) (14)

Hence, we can use our formulation in Section 2 since
there is a diffeomorphism between P2N and H2N .
But, for general non-diagonal N−dimensional covari-
ance matrix space, SPD(N), the above formulation
does not hold. This motivated us to go one step
further to search for a parameterization of SPD(N)
where we can use the above formulation. In [16], au-
thors have used the Iwasawa coordinates to parame-
terize SPD(N). Using the Iwasawa coordinates [26],



we can get a one-to-one mapping between SPD(N)
and the product manifold of PD(N) and U(N − 1),
where PD(N) is manifold of N−dimensional diagonal
positive definite matrix and U(N − 1) is the space of
(N −1)−dimensional upper triangular matrices, which
is isomorphic to RN(N+1)/2. We have used the formu-
lation in [26], as discussed below.

Let Y = VN ∈ SPD(N), then we can use
Iwasawa decomposition to represent VN as a tuple
(VN−1, xN−1, wN−1). And repeating the following par-
tial Iwasawa decomposition:

VN =
(
I xN−1
0 1

)T (
VN−1 0

0 wN−1

)
(15)

where wN−1 > 0 and xN−1 ∈ RN−1. We
get the following vectorized expression: VN 7→
(((w0, x

t
1, w1), xt2, w2), · · · , xtN−1, wN−1). Note that as

each of wi is > 0, we can construct a positive definite
diagonal matrix with ith diagonal entry being wi. And
as each xi is in Ri, we will arrange them column-wise
to form a upper triangular matrix. Thus, for PD(N),
we can use our formulation for the hyperboloid model
of the hyperbolic space given in Section 2, and the stan-
dard PCA can be applied for RN(N+1)/2.

We now use the above formulation to compute the
principal geodesic submanifolds for a covariance de-
scriptor representation of Brodatz texture dataset [5].
Similar to our previous experiment on point-set data,
in this experiment, we report the average projection
error and the computation time. We adopt a similar
procedure as in [12] to derive the covariance descrip-
tors for the texture images in the Brodatz database.
Each 256×256 texture image is first partitioned into 64
non-overlapping 8×8 blocks. Then, for each block, the
covariance matrix (FFT ) is summed over the blocks.
Here, the covariance matrix is computed from the fea-

ture vector F =
(
I, | ∂I∂x |, |

∂I
∂y |, |

∂2I
∂x2 |, | ∂

2I
∂y2 |

)t
. We make

the covariance matrix positive definite by adding a
small positive diagonal matrix. Then, each image is
represented as a normal distribution with zero mean
and this computed covariance matrix. Then, we used
the above formulation to map each normal distribution
on to H10. The comparative results of CCM-EPGA
with PGA and exact PGA are presented in Table 3.
The results clearly demonstrate the efficiency and ac-
curacy of CCM-EPGA over the PGA and the exact
PGA algorithms.

Method avg. proj. error Time(s)
CCM-EPGA 7.73e− 03 0.09
PGA 0.14 0.05
exact PGA 0.09 732

Table 3: Comparison results on Brodatz database

Figure 3: Approximation of xj from the first k principal
components.

4. Data Reconstruction from principal
directions and coefficients

In this section, we present a recursive scheme to
approximate an original data point with principal di-
rections and coefficients. We present a reconstruction
method for data on SN , the reconstruction for data
points on HN can be done in an analogous manner.
Let xj ∈ SN be the jth data point and vk the kth

principal vector. x̄kj is the kth principal component of
xj . Note that on SN , kth principal component of a
data point is y(vk, xj). Let xkj be the approximated
xj from the first k principal components. Let wk−1

j

be Logµxk−1
j /‖Logµxk−1

j ‖. Let w̄k−1
j be the parallel

transported vector wk−1
j from µ to x̄kj . Let, v̄k be the

parallel transported version of vk to xk−1
j . We refer

readers to Fig. 3 for a geometric interpretation.
Now, we will formulate a recursive scheme to recon-

struct xj . Let us reconstruct the data using the first
(k − 1) principal components. Then, the kth approx-
imated point xkj is the intersection of two geodesics
defined by xk−1

j , v̄k and x̄kj , w̄k−1
j . Let these two great



circles be denoted by

G1(t) = cos(t)xk−1
j + sin(t)v̄k (16)

G2(u) = cos(u)x̄kj + sin(u)w̄k−1
j (17)

At t = α1 and u = α2, let G1(α1) = G2(α2) = xkj .
Since, v̄k and w̄k−1

j are mutually orthogonal, we get,

tan(α1) tan(α2) =< xk−1
j , w̄k−1

j >< x̄kj , v̄k > (18)

Note that, as our goal is to solve for α1 or α2 to get
xkj , we need two equations. The second equation can
be derived as follows:

d(µ,G1(α1)) = d(µ,G2(α2))

This leads to,

cos(α2) =
cos(α1) < µ, xk−1

j >

< µ, x̄kj >
(19)

Then, by solving Eqs. (18) and (19) we get,

a cos4(α1) + b cos2(α1) + d = 0 (20)

where,

a =< µ, xk−1
j >2< xk−1

j , w̄k−1
j >2< x̄kj , v̄k >2

− < µ, xk−1
j >2

b =< µ, x̄kj >
2 + < µ, xk−1

j >2

and
d = − < µ, x̄kj >

2

By solving the equation (20), we get

α1 = arccos
(√
−b+

√
(b2 − 4ad)sgn(a)

2a

)
(21)

where, sgn(.) is the signum function. Hence, xkj =
G1(α1). This completes the reconstruction algorithm.
Our future efforts will be focused on using this recon-
struction algorithm in a variety of applications men-
tioned earlier.

5. Conclusions
In this paper, we presented an efficient and accu-

rate exact-PGA algorithm for (non-zero) constant cur-
vature manifolds, namely the hypersphere Sn and the
hyperbolic space Hn. We presented an analytic expres-
sion for the projection of a data point on a geodesic
submanifold, which is required in the PGA algorithm
and in general involves solving a difficult optimization

problem. Using these analytic expressions, we achieved
a much more accurate and efficient solution for PGA on
constant curvature manifolds, that are frequently en-
countered in Computer Vision, Medical Imaging and
Machine Learning tasks. We presented comparison re-
sults on synthetic and real data sets demonstrating fa-
vorable performance of our algorithm in comparison to
the state-of-the-art.
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