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Abstract. Regression in its most common form where independent and depen-
dent variables are in R

n is a ubiquitous tool in Sciences and Engineering. Recent
advances in Medical Imaging has lead to a wide spread availability of manifold-
valued data leading to problems where the independent variables are manifold-
valued and dependent are real-valued or vice-versa. The most common method
of regression on a manifold is the geodesic regression, which is the counterpart of
linear regression in Euclidean space. Often, the relation between the variables is
highly complex, and existing most commonly used geodesic regression can prove
to be inaccurate. Thus, it is necessary to resort to a non-linear model for regres-
sion. In this work we present a novel Kernel based non-linear regression method
when the mapping to be estimated is either from M → R

n or Rn → M , where
M is a Riemannian manifold. A key advantage of this approach is that there is no
requirement for the manifold-valued data to necessarily inherit an ordering from
the data in R

n. We present several synthetic and real data experiments along with
comparisons to the state-of-the-art geodesic regression method in literature and
thus validating the effectiveness of the proposed algorithm.

1 Introduction

Regression is an essential tool for quantitative analysis to find the relation between
independent and dependent variables. Here, we are given a training set of both of these
variables and we seek a relation between them. When, both of these variables are in
Euclidean space, and there is a linear relation between them, i.e., yi = axi + b for a
set of {xi, yi}, a common way to solve for the unknowns a and b is using linear least-
square estimator, i.e., minimizing the sum of square distances between the two sets of
variables over the training set. But, in many real applications, the relation is seldom
linear, hence a non-linear least squares estimator or any other sophisticated regression
tool like Support Vector Regression [4] can be used.

Often, either of the independent or dependent variables are manifold-valued and lie
on a smooth Riemannian manifold. In such instances, embedding the manifold valued
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variables in Euclidean space (using the Whitney Embedding [1]) might result in a poor
estimation of the underlying model. Also, as any general manifold globally lacks the
vector space structure, any linear combination of points on the manifold may not lie
on the manifold. For example, suppose the data points lie in a Kendall’s shape space
[14], then an arbitrary linear combination of the shapes will not yield a point on in the
shape space. These problems motivate the development of novel regression methods
for manifold-valued data. We will now briefly present earlier work that addresses this
problem.

Related Work: Curve fitting on Riemannian manifolds where some notion of order-
ing is imposed on the manifold-valued data has been quite common lately in literature
[2,18,7,13,5,16]. We will present a brief review within the limited space. Samir et al. [18]
developed a gradient descent algorithm for time ordered manifold-valued data using a
variational formulation, where the cost function entails a data fidelity and a regularization
constraint on the curve being sought. This formulation itself is quite common to finding
smooth approximation of both real-valued and manifold-valued data. What is then differ-
ent between methods is the kind of metric used and at times even the data fidelity terms.
Each could facilitate the solution sought from an efficiency and/or accuracy.

Fig. 1. Examples of
nonlinear & geodesic
regression.

In the recent past, several researchers [7,13] have proposed
geodesic regression on manifolds, as well as non-parametric
regression models [2]. The geodesic regression models corre-
spond to linear regression in R

n. Most recently however, a vari-
ational spline regression for the manifold of diffeomorphisms
was presented in a large deformation diffeomorphic mapping
(LDDMM) setting [19]. Fletcher [7] proposed geodesic regres-
sion to regress manifold-valued data against the real-valued
variables. Taking cues from [7], authors in [5], developed a
regression technique for points that lie on unit Hilbert sphere.
In [2], authors estimate the correlation between shape and age
using manifold regression. The aforementioned methods dealt
mostly with the independent scalar variable. A multivariate general linear model was
proposed in [16] where given a dataset, authors try to model a functional relation from
a R

n to a manifold M. In [15], they extend Canonical Correlation Analysis (CCA) on
Riemannian manifold, where both of the variables are manifold-valued. Hong et al. [12]
proposed a shooting spline formulation to regress points on Grassmann manifold with
reals. In [9], Hinkle et al. has proposed a polynomial regression method formulated as
a variational minimization problem on the manifold using covariant derivatives. The
minimization tends to covariant differential equations.

In this paper, we present a nonlinear kernel regression technique to handle both of
the following commonly encountered cases, Rn → M and M → R

n. We dub our
proposed kernel based regression from R

n → M as Manifold-valued Kernel Regres-
sion (MVKR). A key advantage of this approach is that there is no requirement for the
manifold-valued data to necessarily inherit an ordering from the multi-variate data in
R

n, a necessary requirement in most existing methods. An example in Fig. 1 depicts
the usefullness in terms of accuracy in using the nonlinear regression over the geodesic
regression model.
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2 Methodology

Regression is ubiquitous in scientific analysis where given a set of tuples {xi, yi}Ni=1 ⊂
X ×Y , the goal is to find a functional relation between {xi}Ni=1 and {yi}Ni=1. Here, one
variable is the observed data (independent variable) and the other one is the response
(dependent variable). We propose a kernel interpolation to find the relation between
observed data and responses where one of them lies in the Euclidean space and the
other one lies on a Riemannian manifold. Given {xi}Ni=1 ⊂ R

n and {yi}Ni=1 ⊂ M, we
pose the two cases as following interpolation problems:

– Manifold valued independent variable: Find a function f : M → R
n such that

xi = f(yi), ∀i.
– Manifold valued dependent variable: Find a function h : Rn → M such that
yi = h(xi), ∀i.

In both the above cases, M is a Riemannian manifold equipped with a Riemannian
metric g. We will address these above two problems separately in the following subsec-
tions.

2.1 Manifold Valued Independent Variable

Given {xi, yi}Ni=1 as before, we try to model the function f̂ : M → R
n by mini-

mizing the following error function: E = 1
N

∑N
i=1 ||x̂i − xi||2 where, x̂i = f̂(yi) =

∑k
j=1 K(cj , yi)tj . Here {cj}kj=1 ⊂ M and {tj}kj=1 ⊂ R

n are the representatives on
M and R

n respectively. K : M × M → R is the kernel function. Thus, x̂, the ap-
proximation of x is the weighted mean of tj’s. The weights here are computed by using
a suitable kernel function and representatives, {cj}kj=1, on the manifold, M. We learn
the {tj}kj=1 by minimizing the above error function, E, whereas, {cj}kj=1 are taken
to be the cluster representatives. Here, we used the steepest descent technique to es-
timate {tj}kj=1. The gradient of the objective function with respect to tj is given by,

∇tjE = 2
N

∑N
i=1(x̂i − xi)K(cj , yi).

Note that, as the objective function, E is convex in tj , the global minimum can
be achieved using a steepest descent technique. In a similar fashion, we can initial-
ize cj to be the cluster representatives and estimate them along the gradient direc-
tion. The gradient of the objective function with respect to cj is given by, ∇cjE =
2 tj
N

∑N
i=1(x̂i − xi)∇cjK(cj , yi).

Since any kernel function depends on the underlying metric, if the underlying man-
ifold M has a closed form expression for the geodesic distance, so will ∇cjK(cj , yi).
In this work, we use the kernel K(c, y) = exp{− b

2σ2 d(c, y)2}, where b, σ2 are the
kernel parameters, and d(., .) is the geodesic distance on M. Then, ∇cjK(cj , yi) =
b

2σ2K(cj , yi)Logcjyi where, Logcjyi is the Riemannian inverse exponential map. Note
that, the b value is tuned according to the structure of the dataset. By drawing an anal-
ogy with the Gaussian kernel on R

n, we chose a small b value for a well clustered data,
and a high b value otherwise. The parameter σ2 is taken as the variance over the training
data.
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2.2 Manifold Valued Dependent Variable

Given {xi, yi}Ni=1 as above, we now try to model the function ĥ : R
n → M such

that yi ≈ ĥ(xi). As before, let M be equipped with a Riemannian metric g. Also, let
d : M × M → R be the geodesic distance on M defined as follows: d(yi, yj)2 =
gyi(Logyiyj , Logyiyj) , where Logyiyj is the inverse-exponential map. We can now
estimate h by minimizing the following error function: E = 1

N

∑N
i=1 d(ŷi, yi)

2 where,

ŷi = ĥ(xi) = arg min
μ∈M

k∑

j=1

KEuc(tj , xi) d(cj , μ)
2 (1)

Analogous to the manifold valued independent variable case, here cj ∈ M and tj ∈ R
n,

∀j. KEuc : Rn × R
n → R is the kernel function on the Euclidean space. Thus, yi is

estimated as the weighted Fréchet mean (FM) [8] of the representatives, {cj}kj=1, where
weights are given by the kernel function, yielding the MVKR. We use {tj}kj=1 as the
cluster representatives and estimate {cj}kj=1 using the steepest descent on the objective
function. The gradient direction of E with respect to cj is given by,

∇cjE = − 2

N

N∑

i=1

Logŷiyi∇cj ŷi. (2)

As cj and ŷi both are on M, we will use charts to compute ∇cj ŷi. Let M be an m
dimensional manifold. Consider two charts (U,Φ) and (V, Ψ) containing cj and ŷi,
respectively. By fixing xi, we can take ŷi as a function of cj’s. Let the function be F .
Then, ∇cj ŷi can be defined as ∇cj ŷi := ∇c̃jG, where c̃j = Φ(cj) and G = Ψ ◦ F ◦
Φ−1 : Rm → R

m. Hence, ∇c̃jG is the Jacobian of G. Note that, ∇cjE ∈ TcjM, so
in order to make the RHS of equation 2 to be in TcjM, we use parallel transport of
Logŷiyi from ŷi to cj . For a general Riemannian manifold M, we can approximate this
parallel transport, ΛcjLogŷiyi as ΛcjLogŷiyi ≈ Logcjyi − Logcj ŷi.

Since there is no closed form solution for the weighted FM of more than two
samples on general Riemannian manifolds, computation of ∇c̃jG, or the Jacobian of
G, is not straightforward. Hence, in spirit of [16,11], we approximate Equation 1 as
ŷi ≈ Expp

(∑k
j=1 KEuc(tj , xi)Logpcj

)
, where p ∈ M is any arbitrary point on M ,

and Exp is the Riemannian Exponential map. In the absence of such an approximation,
the problem would become analytically intractable as estimating both the control points
and the FM jointly is nontrivial. With this simplification, ∇cj ŷi = KEuc(tj , xi) × Im,
where Im is the identity matrix of size m. For the case of P (n), we resort to use of the
efficient recursive FM estimator in [10] and a similar one for and Sn.

3 Experimental Results

We now evaluate the performance of the proposed regression method on both synthetic
and real datasets. In the following two subsections, we will experimentally show ef-
fectiveness of our method to (1) regress real vector-valued dependent variables against



Nonlinear Regression on Riemannian Manifolds 723

manifold-valued independent variables and (2) regress manifold-valued dependent vari-
ables against real vector-valued independent variables. In order to quantify the perfor-
mance of our Rn to manifold regression, we use the R2 statistical measure and the
p−value. The R2 statistical measure on a manifold is defined in [7] and repeated here
for convenience. Let {yi}Ni=1 be the manifold-valued data with its corresponding pre-
dicted value to be {ŷi}Ni=1. Let the unexplained variance be defined as

∑N
i=1 d(yi, ŷi)

2.
Then, the R2 statistic is defined as: R2 = 1− unexplained variance

data variance . The value of R2 statistic
lies in the interval [0, 1], and a value close to one in general denotes better regression
performance. We use a t−test over 30 independent runs to reject the null hypothesis,
H0: mean of the unexplained variance is not less than the mean of the data variance
with a significance level of 0.001. For the manifold to R

n regression, we present an ap-
plication to the classification on Parkinson’s dataset and report the average classification
accuracy over 30 runs.

3.1 Manifold Valued Independent Variable

In this section, we present results of our regression scheme applied to classification of
MR T2 brain scans obtained from, (1) controls (CON), and patients with (2) essential
tremor (ET), and (3) Parkinson’s disease (PD). We aim to automatically discriminate
between these three classes, using features derived from the data.

Fig. 2. Examples of Substantia Nigra

In [20], authors have used DTI based
analysis, specifically the scalar-valued
features to address the problem of move-
ment disorder classification. In this sec-
tion, we use the shape of the Substatia
Nigra across the input population as our
key discriminatory feature. Sample Sub-
stantia Nigra shapes for the three classes
are shown in Fig. 2. The shapes of interest are first segmented and then are converted
into a probability density function. Then using the square root density parameterization,
this shape can be represented as a point on the unit Hilbert sphere using the Schrodinger
Distance Transform (SDT) [3].

The key feature used in our classification of the aforementioned disease classes is
the shape of the Substantia Nigra. The Substantia Nigra was hand-segmented from all
rigidly pre-aligned datasets, consisting of 25 controls, 15 ET and 24 PD images. The
T2 brain scans were acquired using a 3T Phillips MR scanner with the following pa-
rameters: TR = 774ms, TE = 86ms and voxel size = 2× 2× 2mm3.

We first collected random (point) samples on the boundary of each 3-D Substantia
Nigra shape, and applied the SDT to represent each shape as a point on the unit hyper-
sphere. The size of the ROI for the 3-D shape of interest was set to (28×28×15)mm3,
resulting in a 11760-dimensional unit vectors using SDT. Therefore, the samples now
live on the S11759 manifold.

We randomly selected 10 Control, 10 PD and 5 ET images as the test set, and used the
rest of the data for training. The details of our classification method are described next.
First, we regress the dependent variable against the independent variable on S

11759. In
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order to make the dependent variable lie in [0, 1], we apply the logistic function L on
the dependent variable f(y). Then, we classify a point y as belonging to class-1, if
L(f(y)) < 0.5, else we assign it to class-2. The classification task is repeated 30 times
using various randomly chosen training sets and the average accuracy is reported. The
results are shown in Table 1. We compare our method with the standard PCA and PGA
(Principal Geodesic Analysis) [6], and report the accuracy of classification.

Table 1. Result based on Substantia Nigra shape

Control vs. ET Control vs. PD PD vs. ET
Proposed PGA PCA Proposed PGA PCA Proposed PGA PCA

Accuracy 100.00 90.14 75.69 95.26 92.95 67.32 85.71 87.58 64.60

The results show that our
proposed method performs well
compared to the other two in
classifying Control versus PD
and ET. In case of PD vs. ET
classification, our method gives slightly lower accuracy compared to PGA.

3.2 Manifold Valued Dependent Variable

In this section, we applied our MVKR method on synthetic and real datasets. In all of
these experiments, we have made a comparison with the recently proposed MGLM
method in [16] and MKRE (Manifold kernel regression estimator) in [2]. As MVKR
and MKRE both use the same Nadaraya-Watson kernel, we have used the same choice
of parameters for both of these methods.

Table 2. Synthetic data results

MVKR MGLM MKRE
Train Error 0.00 0.60 0.07
Test Error 0.00 0.61 0.07
R2 Stat. 1.00 0.29 0.92
p−value < 0.001 < 0.001 < 0.001

Synthetic Data Experiment: For this experiment,
we synthesized a dataset {xi, yi}500i=1 ⊂ R

2 × S2

by defining a function h : xi =[θi, φi] → yi
as follows: h([θi, φi]) := (cos(θi) cos(φi),
cos(θi) sin(φi), sin(θi)) where θi ∈ [0, π/2),
φi ∈ [0, 2π], ∀i. Thus, all the yis are on the northern
hemisphere of the 2−sphere, so FM is uniquely defined. We have partitioned this
dataset into 90%, 10% for training and testing respectively. The p−value and average
R2 statistics are reported in Table 2 over 30 runs. From these figures, we can clearly
see that our MVKR method performs better in comparison to MGLM [16] and gives
comprative performance to MKRE [2].

OASIS Dataset [17]: We used the publicly available OASIS data [17] to regress
manifold-valued data with reals. This dataset consists of T1 MR brain scans of subjects
with ages from 18 to 96 including individuals with early stage Alzheimer’s Disease.

Fig. 3. Corpus callosum shapes

We randomly chose 4 brain scans from each of the
decades in the 18− 96 age group, totalling 36 brain im-
ages, out of which 32 were randomly chosen and used
as training and the rest were used as the test set. Cor-
pus callosum (CC) shapes of individuals of varying ages
are shown in Fig. 3. We seek to model the relationship
between age and shape of the CC, captured using three
different features as described in the following. From each of the brain images of the
36 individuals, we construct three different data representations as follows. (1) We seg-
mented out the CC from the brain images. Then, we take the boundary of the CC and
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map it to S24575 using the SDT [3]. (2) After segmenting out the CC, we used a set of
landmark points on the boundary and map each of these point sets into the Kendall’s
shape space [14], which is a complex projective space. (3) We took the whole brain im-
age and computed the normalized histogram and used the square root of the normalized
histogram to map each image on to S255.

The average R2 statistics of 30 runs on each of these three representations of the
chosen OASIS datasets is given in Table 3. From the table, it is evident that the perfor-
mance of MVKR is significantly better compared to the MGLM method. It should be
noted that the R2 statistics reported by MVKR is not very high (not close to 1). But it
can be argued that, as we are only considering relation between age and the manifold-
valued data, the relation is highly nonlinear.

Table 3. Results on the OASIS dataset

Dataset using SDT Kendall’s shape space Dataset using histogram
MVKR MGLM MKRE MVKR MGLM MKRE MVKR MGLM MKRE

R2 Stat. 0.49 0.05 0.46 0.35 -0.27 0.33 0.48 -0.18 0.40
p−value < 0.001 < 0.001 < 0.001 < 0.001 > 0.001 < 0.001 < 0.001 > 0.001 < 0.001

Hence, it is not pos-
sible to truly capture the
“relation in full” based on
age alone, of an individ-
ual. Also, the brain im-
ages are chosen randomly
without considering gender, educational background or even symptoms of AD, all of
which makes the relation between age and the shape of the CC very complex. So, given
these confounding parameters that could influence the structure, the R2 statistics for
MVKR depicts a significantly good performance. Note that, for second and third vari-
ant of this dataset, MGLM results in a negative R2 statistic. From the definition of R2

statistics, we can see that a negative value indicates that the regressor performed worse
than the most trivial choice, which is FM of the dataset for any given test point x (value
of the independent variable).

Thus, MGLM’s unsatisfactory performance on these datasets indicates that a lin-
ear regressor is inept for this problem and motivates the use of a nonlinear regression
technique such as the one presented here. The p−values reported in Table 3 indicate
the higher statistical significance and hence the superior performance of our MVKR
method. In comparison to MKRE, the performance of MVKR is consistently better,
though not by a significant amount.

So, in summary, as for most of the real cases, the data on the manifold do not lie close
to a geodesic, the performance of MGLM is not comparable to MVKR. This is due to
the fact that MGLM assumes that data lie close to a geodesic while MVKR does not
require any such assumption. When the data lie or are close to a geodesic, MVKR and
MGLM have comparable performance as can be seen from the following toy example.
In this example, we have used the sythetic data on P (3), the space of symmetric positive
definite matrices, in [16]. The R2 statistics value for MGLM and MVKR are 0.98 and
0.99 respectively. We would also like to point out that although compared to MKRE,
performance of MVKR is not significantly better, MVKR is applicable for Rn to M
regression and vice versa, whereas, the method in [2] is applicable only to regression
for the case of R to M .
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4 Conclusions

In this paper, we presented a novel nonlinear regression technique for estimating the
functional relationship between manifold-valued independent variables and R

n valued
dependent variables and vice versa. Earlier work in this area involved use of geodesic
regression and is ill suited for many situations involving complex relationships be-
tween the aforementioned independent and dependent variables. Our method involved
a Kernel-based technique and we presented several experiments to demonstrate the per-
formance of our methods in comparison to the state-of-the-art (MGLM method) on a
variety of data sets. Results depict that our method yields superior performance for both
the applications namely, classification of movement disorders and finding a correlation
between age and CC shape of patients from the OASIS database.
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8. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Annales
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