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Abstract. Compressed Sensing (CS) for the acceleration of MR scans
has been widely investigated in the past decade. Lately, considerable
progress has been made in achieving similar speed ups in acquiring multi-
shell high angular resolution diffusion imaging (MS-HARDI) scans. Ex-
isting approaches in this context were primarily concerned with sparse
reconstruction of the diffusion MR signal S(q) in the q-space. More re-
cently, methods have been developed to apply the compressed sensing
framework to the 6-dimensional joint (k,q)-space, thereby exploiting the
redundancy in this 6D space. To guarantee accurate reconstruction from
partial MS-HARDI data, the key ingredients of compressed sensing that
need to be brought together are: (1) the function to be reconstructed
needs to have a sparse representation, and (2) the data for reconstruc-
tion ought to be acquired in the dual domain (i.e., incoherent sensing)
and (3) the reconstruction process involves a (convex) optimization.

In this paper, we present a novel approach that uses partial Fourier sens-
ing in the 6D space of (k,q) for the reconstruction of P (x, r). The dis-
tinct feature of our approach is a sparsity model that leverages surfacelets
in conjunction with total variation for the joint sparse representation of
P (x, r). Thus, our method stands to benefit from the practical guarantees
for accurate reconstruction from partial (k,q)-space data. Further, we
demonstrate significant savings in acquisition time over diffusion spectral
imaging (DSI) which is commonly used as the benchmark for compar-
isons in reported literature. To demonstrate the benefits of this approach,
we present several synthetic and real data examples.

1 Introduction

Diffusion weighted MRI is a non-invasive way to probe the axonal fiber connec-
tivity in the body by making the MR signal sensitive to water diffusion through
tissue. In diffusion weighted MRI, the water diffusion is fully characterized by
the diffusion Probability Density Function (PDF) called the ensemble average
propagator (EAP) [1]. Under the narrow pulse assumption, the EAP denoted by
P (r) and the diffusion signal attenuation E(q) are related through the Fourier
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transform[1]:

P (r) =

∫
E(q) exp(−2πjq · r)dq (1)

where, E(q) = S(q)/S0, S0 is the diffusion signal with zero diffusion gradient,
q is the vector along which the diffusion gradient is applied and r is the radial
vector in the dual space defined through the Fourier relationship above. P (r) at
each voxel, captures all the information needed to perform tractography since
it is well known that the peaks of this distribution correspond to the local fiber
orientations.

In order to estimate the P (r), one normally acquires the diffusion-weighted
MR data by sampling E(q) in the q-space along different diffusion sensitiz-
ing gradient directions, qk (with 1 ≤ k ≤ N), spanning a unit hemisphere
either over a single shell or multiple shells [2]. For every gradient direction qk,
a full 3-D acquisition in the k-space follows. In order to reconstruct P (r) with
a reasonable angular accuracy, a substantial number of sensitizing gradient di-
rections, on multiple shells, are necessary (e.g., N = 180). The time incurred in
this extensive data acquisition is the key problem making high angular resolu-
tion diffusion imaging impractical for clinical use. Very recently however, novel
techniques such as multi-band imaging have been implemented, in connection
with the well known connectome project, to speed up the acquisition of MS-
HARDI [3]. However, these techniques do not exploit the redundancy present in
the (k,q)-space which is the main theme of our work in this paper. Thus, the
methods presented in this paper maybe applied in addition to the multi-banding
techniques to achieve further gains in acquisition time.

Compressed sensing has been applied to magnetic resonance image (MRI)
acquisition quite successfully by under sampling in the k-space (frequency space)
and still achieving accurate signal reconstruction from this sparse sampling [4].
In the context of diffusion MRI acquisition, there have been some attempts at
applying compressed sensing concepts to diffusion spectral imaging (DSI) [5–
7]. These techniques reported to use approximately 200 gradient directions to
achieve accurate diffusion MR signal reconstruction and this amounts to over
forty minutes of scan time which is not practical in many situations such as for
movement disorder and Autism patients. As an alternative, there has been some
ground breaking work reported in literature on reducing the number of directions
along which the magnetic field gradients that are applied to acquire the data in
order to achieve sparse reconstruction of the signal and the EAP [8–10]. They
however did not apply the compressed sensing jointly to (k,q)-space.

More recently, Mani et al [11] proposed compressed sensing in (k,q)-space
by jointly under-sampling k and q spaces. This was achieved by under-sampling
the k-space randomly for each direction q. Another recent development in the
same vein was reported in [12], where joint (k,q)-space compressed sensing is
proposed while the sparsity is enforced in the q-space. Naturally their recon-
struction is again geared to recovering the S(k,q) signal, first. To achieve the
EAP reconstruction their method employs the typical Fourier transform relation-
ship between S(k,q) and P (x, r) post reconstruction of S(k,q) (using the dual
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spherical polar Fourier basis) and thus fails to exploit the incoherence between
P (x, r) and S(k,q).

In this paper, we present a novel technique based on advances in sampling
theory to alleviate this time and cost expensive acquisition process that will
make MS-HARDI a more viable imaging technique in the clinic. We pose the
diffusion-weighted imaging problem as a six-dimensional sampling problem in
the 6-dimensional (k,q)-space (i.e., (kx, ky, kz) and (qx, qy, qz)). The diffusion
sensitized MR signal and the EAP are related through the 6-dimensional Fourier
transform given by,

S(k,q) =

∫
R3

∫
R3

P (x, r) exp(−2πj(xtk + qtr)) dr dx (2)

For simplicity, we omitted the scaling factor S(x,0) from the Fourier transform
in the equation above.

In order to utilize the compressed sensing principles to achieve accurate re-
construction from partial data, the sparsity constraint is often enforced in the
space domain while the sensing occurs in the (dual) frequency space. The no-
tion of incoherent sensing formalizes the idea that sensing basis (e.g., Fourier)
and representational basis (e.g., Dirac) are dual to each other; thus yielding full
incoherence. Since (k,q) and (x, r) spaces are Fourier duals of each other and
the acquisition occurs in (k,q)-space, we seek to reconstruct with sparsity con-
straints in (x, r)-space. The key distinction between our approach and existing
approaches is that, enforcing sparsity in P (x, r) entitles us to leverage incoher-
ent sensing, not only in k, but also in the q-space simultaneously. Therefore, our
approach presented here stands to benefit from practical guarantees for accurate
reconstruction from partial (k,q) data. We then combine the (k,q) sampling
with sparse reconstruction to exploit the principle of compressed sensing for re-
construction of P (x, r). The key ingredient enabling sparse representation for
P (x, r) is accomplished using surfacelet basis. The most attractive feature of
surfacelet basis is the inherent directional selectivity that leads to a sparse rep-
resentation in the r-space. For further details, see Section 2.2.

The rest of the paper is organized as follows, in section 2, we present the
theoretical formulation of the sampling and reconstruction problem. Section 3
contains several synthetic and real data experiments demonstrating the perfor-
mance of our method. Finally, we wrap up in section 4 with conclusions.

2 Formulation

In this section, we present the theoretical formulation for our full 6D Compressed
Sensing (CS) and sparse reconstruction of the field of EAPs, P (x, r).

2.1 Compressed Sensing

The significant achievement of the CS theory [13, 14] is the ability to reconstruct
a function from partial data given the function has a sparse representation. The
three ingredients of the CS framework necessary to guarantee accurate recon-
struction are:
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– Sparsity: The function to be reconstructed needs to be sparsely repre-
sentable, possibly in some transform domain.

– Incoherent Sensing: The data for reconstruction must be acquired in a
domain incoherent (e.g., dual) to the domain in which the function is sparsely
representable.

– Nonlinear Reconstruction: The reconstruction problem involves an (con-
vex) optimization process.

In the case of diffusion MR imaging, with the presence of the Fourier dual re-
lationship between (k,q) and (x, r) space, as illustrated in Equation (2), the
above conditions will be met when a proper sparsifying transform is applied to
P (x, r). In this work, we propose to use surfacelets as a choice of sparsifying
basis for representation of EAPs.

2.2 The Surfacelet Transform

Measuring the diffusion of water molecules along several directions in HARDI
acquisitions is an attempt to capture diffusion anisotropy. It is well known
that EAPs capture this local information quite adequately. The key question
then is, how best to represent the EAPs that are to be reconstructed from
patially sensed data in (k,q)-space? Thus, the primary goal here (in accor-
dance with the principles of CS described above) is to find a basis in which
EAPs with their inherent directional information are sparsely representable.

Fig. 1: Frequency
partitioning of sur-
facelet transform

Wavelets, as a common choice of sparsifying transforms,
lack directional sensitivity and exhibit inadequacy in effi-
ciently capturing orientational features. As geometric gen-
eralizations to wavelets, directional decomposition meth-
ods, e.g., ridgelets [15], have been proposed to detect the
orientational structures in a signal. Although these trans-
forms can be generalized to higher dimensions, they are only
optimal for 2D signals such as images. The three dimen-
sional curvelet (3D-Curvelet) was suggested in [16] for de-
tecting/representing directional information and geometry
of the object; however, its high redundancy factor (i.e., ratio
of the number of transformed coefficients to the number of
signal elements) makes the problem size excessively large,
hence, limits its application in diffusion MR image analysis.

Surfacelets [17], on the other hand, are real three-dimensional transforms and
were shown to be particularly efficient for sparse approximation of volumetric
data [18]. They have a low redundancy factor (∼ 4) and are able to capture
directional information which is predominant in the q-space diffusion sensitized
MR signal.

The surfacelet transform is implemented as a combination of a multi-scale
pyramid with 3D directional filter banks (3D-DFB) [17]. The basis functions are a
spatial domain representation of symmetric pyramids partitioning the frequency
space. Fig. 1 depicts the support of one surfacelet basis in the frequency domain.
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Let Ω denote the rectangular 3-D volume within which we desire to recon-
struct the EAPs. Let the total number of voxels in Ω be Ns. In this work, we
propose to reconstruct the EAP at each voxel in Ω on a grid within the voxel. In
order to fully exploit the power of surfacelet transform, we further restrict this
grid to be a cube and denote the length of the side of this cube by Nr. Let Pi
(i = 1, . . . , Ns) be the EAP at theith voxel, thus, Pi ∈ RNr×Nr×Nr . Pi can then

be expressed in surfacelet basis ϕ
(l)
m (.), corresponding to different scales (l) and

spectral directions (m) as:

Pi(r) =
∑
m,l

cm,lϕ
(l)
m (r) (3)

Let ci := [cm,l] be the vector formed by surfacelet coefficients of the ith voxel
and denote the surfacelet transform with S. We can then write ci = S(Pi) and
seek for a sparse coefficient vector by minimizing `1 norm of ci for each voxel, as
described in section 2.3. When we represent the voxel location by x, surfacelet
transform of P (x, r) is essentially S(Pi) applied on all Ns voxels separately and
simultaneously.

The low redundancy factor along with tree-structured (fast) implementation
makes the surfacelets practically suitable in dMRI applications, while directional
decomposition makes it well-suited for recovering the geometry of EAPs.

2.3 Problem Formulation

Equipped with the sparsifying ability of the surfacelet transform upon EAPs, we
are now able to apply the CS theory to achieve direct reconstruction of EAPs
from a set of partial samples of S(k,q). Denote the measured (k,q)-space data
over Ω by S and let Fu be the undersampled 6-D Fourier Transform.We formu-
late the EAP reconstruction problem as the following optimization problem:

P̂ = arg min
P

{ 1

2
‖Fu(P )− S‖2F + µ

Ns∑
i=1

‖S(Pi)‖1 + γ‖P‖TVs
}

(4)

where, µ and γ control the balance between the sparsity regularization and the
spatial smoothness regularization. S(Pi) denotes the coefficients obtained by
applying the surfacelet transform to the EAP at the ith voxel in Ω.

In the above objective function, the l1 norm of the surfacelet coefficients is
minimized which promotes sparsity [13, 14] in the surfacelet representation. In
addition, we leverage the sparsity of the gradients in the field of EAPs via a
total variation (TV) penalty term. The TV norm over the field of EAPs, where
each EAP is represented by a volume of size Ns, is denoted by ‖ · ‖TV s and is
defined as follows. First, let us define the total variation of the kth component of
an EAP, k = 1, . . . , Nr

3, over Ω. In this context, we adopt the anisotropic TV
norm in our formulation. Represent the kth component of an EAP in the voxel
(r, s, t) of Ω by P k(r,s,t), and represent the 3D volume formed by all of P k(r,s,t) by

P k. P k can be regarded as a discrete scalar valued function defined on a 3-D
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rectangular grid Ω, P k : Ω → R. Therefore, the anisotropic total variation of
P k can be defined as:

TVaniso3,1(P k) =
∑
r,s,t

{∣∣P k(r+1,s,t)−P
k
(r,s,t)

∣∣+∣∣P k(r,s+1,t)−P
k
(r,s,t)

∣∣+∣∣P k(r,s,t+1)−P
k
(r,s,t)

∣∣}
(5)

Then, the total variation of P over the spatial domain can be defined as follows:

‖P‖TVs =

{∑N3
r

k=1

[
TVaniso3,1(P k)

]α} 1
α

. In this work, we use α = 1.

2.4 Solution using the Split Bregman Algorithm

We solve the optimization problem in Equation (4) by employing the well known
Split Bregman method [19]. The problem in Equation (4) can now be reformu-
lated as:

P̂ = arg min
P

{ 1

2
‖Fu(P )− S‖2F + µ

Ns∑
i=1

‖ci‖1 + γ‖P‖TVs
}

s. t. Pi = S?(ci), i = 1, . . . , Ns

(6)

where, S? denotes the inverse surfacelet transform and Pi is defined as in section
2.3. We can now convert this problem into an unconstrained one by introducing
the Lagrange multipliers λi:

P̂ = arg min
P

{ 1

2
‖Fu(P )−S‖2F+µ

Ns∑
i=1

‖ci‖1+γ‖P‖TVs+

Ns∑
i=1

λi
2
‖Pi−S?(ci)‖2F

}
.

(7)
In this work we choose to assign λ1 = λ2 = · · · = λNs = λ, then, Equation (7)
is simplified to:

P̂ = arg min
P

{ 1

2
‖Fu(P )−S‖2F +µ

Ns∑
i=1

‖ci‖1+γ‖P‖TVs+
λ

2

Ns∑
i=1

‖Pi−S?(ci)‖2F
}
.

(8)
The Split Bregman algorithm is used to find the optimal solution to the above

problem through the following iterations, where t denotes the iteration index:

(P (t+1), c
(t+1)
i ) = arg min

P,ci

{ 1

2
‖Fu(P )− S‖2F + µ

Ns∑
i=1

‖ci‖1 + γ‖P‖TVs

+
λ

2

Ns∑
i=1

‖Pi − S?(ci)− b
(t)
i ‖

2
F

} (9)

b
(t+1)
i = b

(t)
i + (S?(c(t+1)

i )− P (t+1)
i )

for each i = 1, . . . , Ns
(10)
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Algorithm:
Split Bregman for EAP reconstruction from partial (k,q) data

Input: Partial (k,q)-space data S
Output: Reconstructed EAP

Initialization: P (0) = F−1(S0)
while ‖Fu(P (t))− S‖2F < tol do

for n = 1 to N do
P (t+1) =
arg minP

{
1
2
‖Fu(P )− S‖2F + γ‖P‖TVs + λ

2

∑Ns
i=1 ‖Pi − S

?(c
(t)
i )− b

(t)
i ‖

2
F

}
for i = 1 to Ns do

c
(t+1)
i = arg minci

{
µ‖ci‖1 + λ

2
‖P (t+1)

i − S?(ci)− b
(t)
i ‖

2
F

}
end for

end for
for i = 1 to Ns do

b
(t+1)
i = b

(t)
i + (S?(c(t+1)

i )− P (t+1)
i )

end for
t = t+ 1

end while

The minimization in (9) can be performed by iteratively minimizing with respect
to P and ci separately. The entire algorithm is summarized below.

As illustrated above, we initialize P to be the inverse Fourier Transform of
the zero-filled partial data S (by filling the unkown value to be 0), denoted by
S0. The number of inner iterations in the above algorithm N is set to be 1 as
suggested in [19].

3 Experimental Results

To demonstrate the performance of our approach, we present experimental re-
sults on several synthetic and real datasets in this section.

We use conventional diffusion spectral imaging (DSI) data as the ground
truth for comparisons of the reconstruction performance. The (k,q)-space data,
acquired for the connectome project, that is composed of 515 diffusion weighted
images was considered as fully sampled data. We perform the undersampling of
the DSI data with a radial line sampling scheme. It is one of the most widely
used schemes for partial Fourier sensing [4], and the theoretical justification for
it from a CS perspective was presented in [20].

The undersampling of the entire (k,q)-space is achieved by applying 3-D
radial line sampling in k and q spaces respectively. We conducted experiments
at various rates of undersampling in the joint (k,q)-space. In addition to that,
q-space-only and k-space-only undersampling were also performed, respectively,
for comparisons.
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3.1 Synthetic Data Experiments

We synthesized a fully sampled DSI dataset, Ŝ(x,q), over a grid of size 12 ×
12× 12. Each slice consisted of two straight “fiber” bundles crossing each other
in the center and a circular “fiber” bundle crossing with the two straight ones
at the corners. To fully demonstrate the performance of our method on data
sets with complex local geometry, we further increased the complexity of the
data set by making the two straight ”fiber” bundles gradually rotate throughout
the 12 slices. The diffusion signals were generated using a mixture of Gaussian
functions, each being a rotated version of a Gaussian distribution function with
zero mean and diagonal covariance matrix Cov = diag{20, 20, 400}. The (k,q)-
space data was generated from the (x,q)-space data through a 3-D Fourier
Transform (relating x to k) for each gradient direction q.

We applied conventional DSI reconstruction on the fully sampled synthetic
data, to obtain the ground truth field of EAPs. The performance of the recon-
struction was quantitatively evaluated by the normalized sum-of-squares error
(NSSE) between the reconstructed EAP (PREC(x, r)) and the ground truth EAP

(PGT (x, r)), defined as NSSE=
∑

x,r ‖PGT (x,r)−PREC(x,r)‖22∑
x,r ‖PGT (x,r)‖22

. We tested our method

at various undersampling levels (i.e., partial Fourier sensing rates). At each level,
three different undersampling schemes were performed on fully sampled data,
namely joint (k,q)-space undersampling, q-space only undersmapling and k-
space only undersampling. The reconstruction accuracy for each combination of
undersampling level and scheme is computed as the average of 15 repetitions. To
demonstrate the advantages of partial sensing in the joint 6-D (k,q)-space com-
pared to partial k or partial q sensing, we compared the reconstruction accuracy
of these three undersampling schemes at identical sampling rates.

To assess the performance of the proposed method in the presence of noise,
we carried out another experiment where various levels of Rician noise was added
to the synthetic (x,q)-space data. The noise level is measured by SNR, defined
as SNR=E/σ, E being the mean magnitude of the noise-free signal and σ the
standard deviation of the noise. We analyzed the accuracy of reconstruction mea-
sured by NSSE, with various undersampling rates and undersampling schemes.

Quantitative results of the reconstruction on partial data (noise-free) with
various undersampling rates for different undersampling schemes are presented
in Fig. 2(a) and the effects of noise on reconstruction accuracy are shown in Fig.
2(b). As shown in the plots, in both noise-free and noisy case, the proposed com-
pressed sensing in joint (k,q)-space has a better EAP reconstruction accuracy
than when undersampling is performed in k-space or q-space only. And with
as little as 10-15% of the original data, our method is able to reconstruct the
EAPs with very high accuracy even in the presence of noise. As evident from Fig.
2(b), at a moderate level of noise, there is little degradation in the reconstruc-
tion accuracy compared to the noise-free case, and at a high level of noise, our
method still maintains satisfactory performance. Since NSSE is depicted using a
log scale, the reader is cautioned about larger values of NSSE being compressed.
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(a) Reconstruction accuracy on
noise-free data

(b) Reconstruction accuracy in
presence of various levels of
noise

Fig. 2: Quantitative EAP reconstruction results for synthetic data.

To further assess the results visually, we plotted the reconstructed EAPs as
well as the ground truth EAPs at r = 4.5 for each voxel and showcase selected
slices below. In Fig. 3, for slice #12, we show the ground truth EAP field and
reconstructed EAP fields with various undersampling schemes from 15% of the
full noise-free DSI data. Considering the complexity of the data and the low
undersampling rate, our method with joint (k,q)-space undersampling obtained
a reconstruction fairly close to the ground truth. While in the k-only undersam-
pling case, false crossings appear at voxels with no crossings (as highlighted in
green boxes). In the q-only case, however, the recovered EAP profiles appear to
be of poor quality as depicted in the region marked with a red box. In Fig. 4,
we present a visualization of the EAP reconstruction from slice #7 of the noisy
data with SNR = 10, reconstructed with 15% of the full DSI data. Compared to
k-only and q-only cases, the joint(k,q)-space undersampling yields more accu-
rate reconstructions with respect to the lobe orientations as well as the presence
of crossings (representative regions are highlighted in colored boxes).

(a) Ground truth (b) (k,q)− joint (c) k-only (d) q-only

Fig. 3: Visualization of EAP reconstruction for synthetic noise-free
data. Ground truth EAP field and reconstructed EAP fields with different un-
dersampling schemes at a rate of 15% for slice #12 of the noise-free data.
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(a) Ground truth (b) (k,q)− joint (c) k-only (d) q-only

Fig. 4: Visualization of EAP reconstruction for noise contaminated syn-
thetic data. Ground truth EAP field and reconstructed EAP fields with differ-
ent undersampling schemes at a rate of 15% for slice #7 of the noisy data with
SNR=10.

3.2 Real Data Experiments

Real datasets used in the experiments were obtained from the MGH-USC Hu-
man Connectome Project(HCP) database (https://ida.loni.usc.edu/login.jsp).
We evaluated the proposed method on data acquired using the DSI scheme on a
Seimens 3T Connectom scanner, including 514 diffusion weighted images and 1
non-diffusion weighted image. The scan parameters are as follows: maximum b-
value bmax = 10, 000 s/mm2, TR=5900.0ms, TE=77.0ms, pixel size X=2.0mm,
Y=2.0mm and slice thickness 2.0mm, resulting in a 104× 104× 55 volume. We
picked a 12×12×12 region from the dataset as our ROI for reconstruction and
show the intersection of the ROI with slice #57 from a coronal view in Fig. 5.

Fig. 5: Coronal view of Slice #57
of the real dataset with ROI pre-
sented in the red box.

Fig. 6: Quantatitive EAP recon-
struction results for real data.

We present the EAP reconstruction accuracy for various undersampling rates
in Fig. 6 and visualization of the EAP fields for the coronal slice #57 (slice #11
in ROI) in Fig. 7. From Fig. 6 it is evident that the joint (k,q)-space under-
sampling leads to higher accuracy in terms of NSSE over the k-only and q-only
undersampling. The graph depicts that with 10-15% of the fully sampled data
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our method yields high fidelity reconstruction of the EAPs. This leads to an
acceleration by a factor of 6.7-10 over the standard DSI acquisition. From a
comparison of the three reconstructed EAP fields with ground truth in Fig. 7, it
is evident that the joint (k,q)-space undersamping method correctly recovered
most of the crossings and fiber orientations. However, with k-only undersam-
pling, false crossings and incorrect recovery of EAP lobe orientations are evident
in several regions (highlighted in colored boxes). Further, with q-only undersam-
pling, spurious lobes are introduced leading to erroneous orientation information.

(a) Ground truth (b) (k,q)− joint (c) k-only (d) q-only

Fig. 7: Visualization of EAP reconstruction for real data. Ground truth
EAP field and reconstructed EAP fields with different undersampling schemes
at rate 15% for slice #11 in the ROI of real data

In summary, through synthetic and real data experiments we have demon-
strated that our method of direct reconstruction of EAPs from CS in joint (k,q)-
space yields superior results in comparison to CS applied to either q-space or
k-space in isolation.

4 Conclusion

In this paper we presented a novel technique for direct reconstruction of the field
of EAPs, P (x, r), from partial sampling in the 6D joint (k,q)-space. The key
distinguishing feature of our method from earlier reported works in literature
is that we exploit the principle of Compressed Sensing which states that sens-
ing and reconstruction ought to occur in mutually dual spaces. Consequently,
since the data acquisition in diffusion MRI occurs in (k,q)-space, the recon-
struction ought to be performed in the (x, r)-space. Moreover, using the Fourier
transform relationship between P (x, r) and S(k,q), it is natural to exploit the
aforementioned duality condition and seek a sparse representation of P (x, r). We
achieved this sparsity through a surfacelet basis which are well known for their
directional selectivity in signal/image processing literature. We presented recon-
struction results for synthetic and real data demonstrating the performance of
our algorithm. Our results show that we can achieve high fidelity of reconstruc-
tion of P (x, r) using just 10-15% of the samples used in a full DSI acquisition.
This leads to an acceleration rate of 6.7-10 in acquisition time thus making MS-
HARDI a clinically viable diagnostic imaging tool. Our future work will focus
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on exploring benefits to be acrrued from different sampling schemes in the joint
(k,q)-space.
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