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Tractography From HARDI Using an Intrinsic
Unscented Kalman Filter

Guang Cheng, Hesamoddin Salehian, John R. Forder, and Baba C. Vemuri*

Abstract—A novel adaptation of the unscented Kalman filter
(UKF) was recently introduced in literature for simultaneous
multitensor estimation and fiber tractography from diffusion
MRI. This technique has the advantage over other tractography
methods in terms of computational efficiency, due to the fact that
the UKF simultaneously estimates the diffusion tensors and prop-
agates the most consistent direction to track along. This UKF and
its variants reported later in literature however are not intrinsic
to the space of diffusion tensors. Lack of this key property can
possibly lead to inaccuracies in the multitensor estimation as well
as in the tractography. In this paper, we propose a novel intrinsic
unscented Kalman filter (IUKF) in the space of diffusion tensors
which are symmetric positive definite matrices, that can be used
for simultaneous recursive estimation of multitensors and prop-
agation of directional information for use in fiber tractography
from diffusion weighted MR data. In addition to being more ac-
curate, IUKF retains all the advantages of UKF mentioned above.
We demonstrate the accuracy and effectiveness of the proposed
method via experiments publicly available phantom data from the
fiber cup-challenge (MICCAI 2009) and diffusion weighted MR
scans acquired from human brains and rat spinal cords.

Index Terms—Intrinsic Kalman filtering, diffusion MRI, diffu-
sion tensor estimation, tractography.

I. INTRODUCTION

IFFUSION weighted magnetic resonance imaging
(DWMRI) is a relatively nascent MRI technique that
allows one to infer neuronal pathways in the central nervous
systems. Several algorithms have been reported in literature to
reconstruct the nerve fiber bundles from DWMRI scans of the
brain, spinal cord and other parts of the anatomy. The process
of tracing the neuronal fibers is called tractography. Tractog-
raphy techniques in literature fall in two primary categories:
deterministic and probabilistic.
The streamline algorithm is one of the most popular determin-
istic tractography technique. Given the DWMR signal at each
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voxel, streamline methods are applied post reconstruction of ei-
ther the diffusion tensor, the fiber orientation distribution func-
tion (fODF) or the ensemble average propagator (EAP) func-
tion [1]-[7]. Depending on the model used to describe the fiber
orientations, several streamline-based methods have been in-
troduced. In diffusion tensor imaging (DTI) where the DWMR
signal decay is modeled by a monoexponential function charac-
terized by a zero mean Gaussian distribution, which is fully rep-
resented by a second order diffusion tensor [1], the streamline
follows the direction of the largest eigenvector of the diffusion
tensor. As alternatives to streamline applied to DTI, tensor de-
flection (TEND) methods were developed in [8] where at each
voxel, the entire DT is used as a linear operator to deflect the
incoming vector direction, as opposed to only following the
largest eigenvector, leading to smoother tract reconstruction.

It is now well known that DTI can not capture the com-
plex local fiber geometries occurring in the presence of mul-
tiple fibers in a voxel, e.g., crossing fibers. To address this short-
coming, higher order tensors have been used to capture the dif-
fusivity function profile [9]-[12]. However, it is well known that
the maxima of the diffusivity profile do not correspond to the
fiber orientations [13]. Nevertheless, they do capture the geom-
etry of the diffusivity and allow one to compute several useful
anisotropy properties [13]. If however, the higher order tensors
are used to represent the EAP, then, standard streamline methods
are applicable to the directions representing their maxima for
tractography. Further investigation to capture the fiber orienta-
tions in the presence of multiple fibers at a voxel resulted in
various streamline methods based on tracing the vector field
of maxima of orientation distribution functions (ODFs) [14],
[15] and weighted mixture models [5], [16] extracted from high
angular resolution diffusion imaging (HARDI) or from Q-ball
imaging data [17].

Front-propagation approaches are another group of deter-
ministic tractography, where some approaches have treated
the white matter bundles as a Riemannian manifold, equipped
with a metric inferred from the diffusion tensors [18], [19].
The tractography problem is then reduced to computation of
geodesic curves using this metric. While robust, these methods
are based on DTT and effectively are inadequate in dealing with
multifiber geometry present at voxels.

Presence of noise during DWMR data acquisition process,
as well as the deficiency of the diffusion model used to recon-
struct the DWMR signal, leads to inevitable uncertainties in
the estimated fiber orientation at each voxel [20]. Probabilistic
tractography is a class of tracking methods that were introduced
to take such uncertainties into account. In these algorithms, a
population of different fiber tracts emanating from a specific
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seed point are reconstructed. The probability for each pathway
is estimated based on local probability functions defined at
voxels along the path. These algorithms fall into two general
categories. The methods in the first group, are the so called
parametric methods which estimate the noise parameters using
some probability distribution. Several parametric methods
were reported in literature that were mostly based on single
tensor [20], [21], multitensor [22], [23] or (-ball imaging [24].
On the other hand, the techniques in the second category use
residual bootstrap as a nonparametric statistical procedure to
estimate the uncertainty in the DWMR signal reconstruction.
Various residual bootstrap methods were proposed depending
on the model being used, including DTI [25], [26], g¢-ball
ODF [27] and Constrained Spherical Deconvolution [28]. In
[29], authors augmented the residual bootstrap technique with a
curve inference labeling technique to identify voxels containing
single, crossing or fanning fibers, leading to detailed subvoxel
geometry information. Probabilistic methods resort to the full
spherical function representing the diffusion ODF profile—as
opposed to using only the principal directions—which however
is usually not indicative of the fiber orientations. To overcome
this issue, Descoteaux et al. [30] developed a method to trans-
form the diffusion ODF into a fiber ODF using what is known as
the deconvolution sharpening transform. Probabilistic methods
however in general are far more computationally expensive
than the deterministic counter parts. Thus, in this work, we will
limit ourselves to a deterministic method such as the streamline
method.

Most of the aforementioned streamline tractography methods
are based on a two stage procedure: i) estimation of the un-
derlying model from DWMR signal over the whole image, ii)
tracking based on the estimated model in i). Some how, no
possible interaction between these stages has been exploited
until, authors in [31] proposed a clever multitensor tractography
method based on the Unscented Kalman Filter (UKF) [32]. The
UKF-based method in [31] enjoys the important advantage of si-
multaneous multitensor reconstruction and propagation of most
consistent directional information for use in tractography. This
advantage is evident in two aspects namely: 1) The regular-
ized tensor reconstruction is only performed along the estimated
fibers, which yields significant computational efficiency, since
one only needs to reconstruct multitensors at the voxels that are
likely on fiber paths, and not all over the image; 2) propagating
the most consistent direction to track along achieves smooth-
ness of the tracts being traced using a streamline technique. The
streamline method implicitly regularizes the tracts by using the
most consistent direction from the smooth estimates of tensors
obtained from the UKF.

Various types of UKF-based tractography methods have been
reported in literature [31], [33], [34]. In [31] a weighted mix-
ture model is used to reconstruct the signal at each voxel. The
state vector is then formed by one principal eigenvector and two
largest eigenvalues for each component. In this state model it
was assumed that diffusion tensors have ellipsoidal shapes, i.e.,
A1 > Ao = A3, where A;’s are the eigenvalues. This assumption
causes inaccuracies in reconstruction of the underlying signal,
as the information carried by the smallest eigenvalue, A3, is not
taken into account. Finally, in [34] authors proposed an exten-
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sion of UKF to HARDI data modeled by ODFs. However, none
of the mixture model-based UKF techniques described above
are intrinsic to the space of diffusion tensors, possibly resulting
in nonpositive definite diffusion tensors that lead to inaccura-
cies in the reconstruction as well as fiber tracking. Although,
later versions [35] did overcome some of these deficiencies via
nonintrinsic computationally expensive methods. In general it
would be more apt to track the full tensor and naturally enforce
the positivity constraint resorting to the intrinsic geometry of
the space of diffusion tensors.

It is well known that diffusion tensors lie in the space of sym-
metric positive definite (SPD) matrices denoted by F,,, which is
not a Euclidean space but a Riemannian manifold [36]. Hence,
algorithms that are based on vector operations can not be ap-
plied directly to this space, and nontrivial extensions are needed.
Some extensions of UKF to various Riemannian manifolds have
been reported in literature. Recently, a generalization of the
UKEF to Riemannian manifolds was presented in [37]. This ex-
tension is quite general, but has some technical issues that were
not carefully considered. Further, no applications to tractog-
raphy were considered, which is the main driving application
in this paper.

In this paper, we propose a novel intrinsic UKF on P, and
provide examples for the n = 3 case. A preliminary version of
this work (four pages long) was presented in [38]. This paper is
a significant extension providing the detailed theory and an ex-
tensive set of experiments testing the theory. We apply this filter
to the publicly available fiber cup challenge DWMRI phantom
data [39], and real DWMRI datasets from rat spinal cords and
human brains respectively. In both real and synthetic data cases,
we consider only single shell DWMRI scans. The accuracy of
our tractography results on the fiber cup data are better than
other methods published in literature with respect to the spa-
tial distance measure used for tractography evaluation in [39],
and are competitive with regards other error measures used in
the fiber cup challenge [39]. Additionally, we have made the
MATLAB implementation of this method publicly available at
http://www.nitrc.org/projects/iukf 2013.

The rest of the paper is organized as follows: the intrinsic un-
scented Kalman filter (IUKF) is described in Section II, where,
in Section II-B the basic geometric properties are briefly intro-
duced, followed by a novel dynamic model defined for the mul-
titensor model. We then present the IUKF algorithm and finally
the experiments are presented in Section III and conclusions
drawn in Section I'V.

II. INTRINSIC UNSCENTED KALMAN FILTER
FOR DIFFUSION TENSORS

In this section, we will first provide motivation for the use
of a dynamic stochastic filter such as the Kalman filter for the
tractography task. Then, we briefly describe its extension to the
UKEF followed by a detailed description of our [UKF to estimate
diffusion tensors which lie in the space of n x n SPD matrices
denoted by P,, and propagate directional information that facili-
tate tractography. Prior to describing the [UKF, we will however
give some mathematical preliminaries involving a brief intro-
duction of Riemannian geometry on P,, and refer the readers to
[36] for further details on Riemannian geometry.
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A. A Stochastic Dynamic Filter

As described earlier, tractography involves tracing out the
most likely direction of nerve fiber bundles in the given DWMR
data. However, it is nontrivial to estimate the fiber bundle direc-
tion from the DWMR data. This is why most of the fiber analysis
frameworks [14]-[16], [18], [19] contain an estimation stage to
denoise and estimate the EAP, ODF, etc., and the fiber tracking is
dependent on these estimated results. One drawback for such an
analysis framework is that in the estimation stage, the smooth-
ness along the fiber bundles is not considered because the lo-
cation of these fiber bundles are not known during this estima-
tion. One way out is to estimate the EAP (or fODF) recursively
along the fiber, so the fiber tracking and estimation can be done
simultaneously. An extra bonus of this new framework is that
we now only need to do the estimation at the voxels along the
fiber, which would reduce the computational complexity.

Taking a closer look, we can find that by viewing the tensors
as the state and MR signal as the observation, the EAP estima-
tion along the fiber would nicely fit into a state-space model
(see Section II-C), where the smoothness constraint can be en-
forced recursively along the fiber. Thus, the problem of tensor
estimation and tracking is apt for the application of a recursive
stochastic dynamic filter such as the well known Kalman filter
(KF). Several such methods were reviewed in Section I. The KF
is a linear filter and its extension called the extended KF (EKF)
is its nonlinear version wherein, the probability distribution of
the system state is approximated by a Gaussian random vari-
able and propagated through the system dynamics analytically
by using a first-order linearization of the nonlinear system. It has
been shown that this can lead to large errors in the posterior es-
timates of the mean and covariance of the transformed Gaussian
random variable and at times lead to divergence of the filter [32].
A stable and accurate solution to this problem is achieved by the
UKEF. This is done by careful selection of sample points to esti-
mate the mean and covariance of the Gaussian random variable
representing the system state and when propagated through the
system dynamics, captures the mean and covariance of the trans-
formed Gaussian random variable accurately to the third order.
Since, in the tractography problem, we model the diffusion MR
signal by a mixture model in the presence of intravoxel hetero-
geneity and we want to simultaneously estimate the model pa-
rameters and propagate the most consistent directional informa-
tion to facilitate tractography, the UKF is better suited for this
problem than the KF.

Now that we have laid out the motivation for using the UKF
for our problem at hand, we are still faced with one crucial issue,
the parameters we want to estimate are matrix-variate random
variables which are diffusion tensors (SPD matrices). Thus the
standard UKF is unsuitable since it expects inputs to be in a
vector space and SPD matrices belong to a Riemannian mani-
fold with negative sectional curvature [36]. We are now ready
to present the background Riemannian geometry of the space of
SPD matrices and then the modified UKF that we dub, the in-
trinsic UKF or simply IUKF.

B. Riemannian Geometry on p.,

The space of n x n SPD matrices, known as F,,, is a smooth
manifold and a symmetric space [36] and is obtained by quo-
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tienting out the group of orthogonal matrices from the general
linear group, i.e., F,, = GL{n)/O(n) where GL(n) denotes the
General Linear group (the group of 7 x 7 nonsingular matrices)
and O(n) denotes the space of n x n orthogonal matrices. Let
X € P,, g € GL(n), the group action g applied to X is given
by X[g] = gXg". It is known that GL(n) acts transitively on
P,,ie,VX,Y € P,,3g € GL(n) such that X[g] = Y.

Ateach point X € P, the tangent space is denoted by 7x P,,,
which can be identified with a vector space Sym(n)—the
space of n X m symmetric matrices. For tangent vectors U
and V € 7TxP, the canonical inner-product/metric is de-
fined as < U,V >x= tr(X Y2UX VX Y2) 1t is
easy to verify that this metric is invariant to GL actions, i.c.,
< U,V >x=< gUg’ gVg’ >t xg- Given the metric, the
distance between any two points X,Y € P, can be defined
as the geodesic length between any two points X.Y on the
manifold. On P, this distance can be computed in a closed
form as, dist(X,Y)? = tr(log?(X1Y)), where, log is the
matrix log function. The exponential map denoted by Expx ()
at a certain point X € F,, maps a tangent vector V € Tx P,
rooted at the origin to a geodesic in the manifold. That is, the
curve segment v(t) = Expx (#V).t € [0,1] is a geodesic from
¥(0) = X to Expx (V). The Log map (Logx(-)) is the inverse
of the Exponential map. The Exponential and Log maps on P,
are given by Expy (V) = X1/2cxp(X 1/2vX - V2H)X1/2,
and Logx(Y) = X2log(X 1/2YXY*)X1/2, where
X,Y € P,,V € Tx F,, and Log and Exp denote the matrix
exp and log operators. Many operations in Euclidean space
can be applied to P, by first Log mapping points on the man-
ifold to the tangent space and mapping back to P, (using the
exponential map) after the operation.

The generalization of the arithmetic mean in the Euclidean
space to the Riemannian manifold is the Karcher mean—an es-
timator that minimizes the sum of squared geodesic distances.
In P, t/h\e Karcher mean of set of elements X; € P, is given by,
p* =3, X; = argmin,, Y, dist®(X;, p), which can be com-
puted using a gradient descent technique.

For a certain matrix-valued random variable X € P,,, the in-
trinsic expectation can be defined similarly to the Karcher mean
E(X) = argminy [, dist*(X,Y)dP(X), where dP(X) is
the probability measure. This expectation is called the Karcher
expectation. The matrix-valued random variable X can then be
projected to T'r(x) Py, and the covariance matrix can be defined
in this tangent space.

C. The State Transition and Observation Models

We are now ready to present the details of the [UKF. Prior
to delving into the details though, it suffices to say that to con-
struct the UKF, one needs to specify three models: 1) a prior
model, to describe the system state prior to making any mea-
surements; 2) a measurement (observation) model, which re-
lates measurements to the current state; and 3) the state-tran-
sition model, which describes the evolution of the current state
over time. These three models are used to describe the evolution
of the current state of the stochastic system and its relationship
to the measurements. To obtain the optimal estimate of the cur-
rent state of the system, the UKF operates in two phases namely,
the extrapolation phase which predicts the next state (given the
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previous best estimate of the same) and the covariance associ-
ated with this predicted state. The second phase is the correc-
tion phase which updates the predictions with the observations.
TUKF also operates within this general framework except, var-
ious operations within the filter are based on F,, and not in a
vector space. We now present the various modules of the [UKF.

1) Observation Model: In this paper, we use the bi-tensor
diffusion model as was done in [31], where the DWMR signal
is represented by the sum of two Gaussian functions

_ t (L) .t _ ty(2) .t
gn) — So(e 8D 8n | ot Dy 4y

)

where D® ¢ P, is the ith (3 x 3) diffusion tensor, g,, de-
note the direction of nth magnetic gradient, and b is the corre-
sponding b-value, S(™) is the MR signal along the nth gradient
direction, and r,, is the additive Gaussian noise. Note that the
concentration tensor/matrix is the inverse covariance matrix of
a Gaussian. Instead of the weighted sum, we use direct sum of
two Gaussian functions, because the weight can be integrated
into the diffusion tensor D)

wie—brenDMel — o —bugl (DY —log(wi)/baD)g),

— o buglD%g], ©)
where D) is the diffusion tensor under the weighted sum
model and w; is the ¢th weight. Since w; < 1, we can guarantee
that D) is always positive definite. From (2) we can see that
when using a constant b value, as in high angular resolution
diffusion imaging (HARDI), there is insufficient data to resolve
the degrees of freedom of both weights and diffusion tensors
respectively. So instead, we use the direct sum model as in
(1) which reduces the number of parameters (the estimation
of the weight of each component is not need) in the system,
and thus reduces the computational load and makes the system
more stable. However, the direct sum model and the weighted
sum model are not geometrically equivalent because w; = 0 is
mapped to infinity in the direct sum model.

2) State Transition Model: Here we would like to estimate
diffusion tensors D), D(®) ¢ P, along each fiber, which leads
to an estimation problem on F,,. The state transition model on
P,, in this paper is based on the GL operation and the Log-
Normal distribution [40] and is given by

1 1
Dg—i)-l :EXpFDE‘_l)Ff (V](€ ))

2 2
Dgs—i)-l = EXPFD;\_z)F’ (V](g ))

3

where, DS) s D,(f) are the two tensor-valued states at step &, F' is
the state transition matrix (a G L operation), V]il) and v,(f) are the
Gaussian distributed random symmetric matrices representing
the state transition noise for D,(:) and DgQ ) in the tangent space
TFDgcl)Ft Ps and TFfo)Ft Ps, respectively. Note that P, here is
Ps5 since n = 3 for our problem.

Here we assume that the two state transition noise models
are independent from each other and the previous states. The
covariance matrices of the two state transition noise models are
Q;,l) and Q,(CQ) respectively. The covariance matrix Q,(;) i=1,2
is a 6x 6 matrix defined for the tangent vectors in 7T’ FD{F* Ps.

Note that Qg) is not invariant to G L transforms on P,,. Let X =
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Exp”(v) € P, be a matrix-variate random variable, where v
is a random vector drawn from a zero mean Gaussian with Q
being the covariance matrix. Then, after a GL transform g €
GL(n), the new random variable Y = gXg' = Exp,,,. (u).
The covariance matrix of u is

Qg)=(g®g) 'Qgwg) ™’ 4)

where @ denotes the Kronecker product. In this paper, we first
define the covariance matrix at the identity Qr,,., = ¢Ilsxs,
where ¢ is a positive scalar. Further, the covariance matrix at
point X can be computed using (4) by setting g = X'/2. With
this definition, the state transition noise is independent with re-
spect to the system state.

The observation model of our dynamic system is based on
(1). The covariance matrix of the observation noise for all the
magnetic gradients is denoted by R.. Based on the assumptions
that the measurements from distinct magnetic gradients are in-
dependent, we know that R is diagonal.

3) Prior Model: For a recursive filter, a prior for the initial
state is pretty useful as we need to initialize the filter before
the first iteration. Similar to the state transition model, in the
prior, we assume the two (random) diffusion tensors are inde-
pendent and LogNormally distributed, which are very similar to
(3). However, since there is no state prior to the initial state, we
center the distribution at the diffusion tensors that are estimated
at the seed points during the initialization step.

D. The Intrinsic Unscented Kalman Filter

Prediction and correction are the two major stages at each
iteration in UKF [31]. In the prediction stage, the state random
variable at the current iteration is predicted based on the result of
previous steps and the state transition model. In the correction
stage, the predicted state is corrected based on the likelihood
(observation in the current state together with the observation
model) using Bayesian inference. In the fiber tracking problem,
the states are on P,, where no vector operations are available,
and the observation model in (1) is highly nonlinear. To solve
this problem, we propose a nontrivial extension of the UKF,
especially for the prediction stage to be valid on P,,.

To begin with, the augmented state for the bi-(dif-
fusion) tensor state at iteration step k is defined as
X; = [ug)’t, u,(cz)’t7 vlgl)’t,vlgz)’t]t, where v,(f) i = 1,2 1is
the state transition noise vector for diffusion tensor state
D\” and u{) = LogE(Dg‘,g)(D,(;)), which is the representa-
tion of the state random variable in the tangent plane at its
Karcher expectation (£(-)). X is zero mean and with co-
variance matrix denoted by P%. The covariance matrix for the
state [uS)’t, u,(f)’t]t is denoted by P, pp. Note that P} is a
block-wise diagonal matrix composed from Py pp, Q,g,,l), and
Q,(f), because of the independence of the prior and the state
transition noise.

’VPk,DD 0 0 -|
a 1
k= 0 ;c) 0

L 0 0 (2)

In the prediction stage, 2L+ 1 weighted samples from the dis-
tribution of X}, are first computed by a deterministic sampling

(&)
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scheme given below. Here, . = 24 and denotes the dimension
of Xt

Ao =0, wo = )
1
Xy = ( (L'+KYPZhij::§aj;;5
1
X jrr = —( (L +r)PY)jwir = AL +r) (6)

where w; is the weight for the corresponding sample,
x € R is a parameter to control the scatter of the sam-
ples, and (\/(L + x)P$); is the jth column vector of matrix

(L + r)Pg.

Since samples X}, ; = [uglj) f,u,(‘zif, ,513 * v,Ezj "1t are gen-
erated from the joint distribution of posterior and state transi-
tion at frame %, we can get the samples from the distribution
of prediction in frame k£ + 1 based on X}, ; through a two-step
procedure. First we can get the samples from the posterior from
iteration k

(7

where‘]AD ,(:) is the state estimate from iteration % (the estimator of
E (D,(:) ))- And then the samples from the predicted distribution
can be generated based on Dg}/j and v,(f),

Dlg-)u i= EXPDE_Z_)‘, (VIEL)]) (8)

where D,E J)rl denotes the jth sample from the distribution
of the predlctlon The predicted mean could be computed
as the weighted Karcher mean, Dk-{—l E w]D,(H)_l7 for
general state transition functions. However, since P{ in (5) is
block-wise diagonal, /(L + x)P{ is also block—w1se diag-

onal, which means for each sample A} ;, either u,(f) or v,E)

is zero. Based on the sampling strategy in (6) and the state
transition in (3), it is obvious that Dk 1= DIE ), because, we
can only have either u;, # 0 or v; # 0, but not both. This
means, during the state transition map, either (7) or (8) is an
identity map. Based on the sigma points generation [see (6)],
the sigma points (for a single tensor) are Dy, Expp, (uz),
Expp, (—u), - ... Ezpp, (vi).Erpp, (—V}), . . ., Since each
v}, or uj, has a negative counterpart with the same weight, the
sum of Log mapped sigma points at D will be zero, which
means the Karcher mean (prediction) of the sigma points is
equal to the (identity) transformed previous state. Therefore,
we do not actually need to compute the Karcher mean at each
iteration, which is known to be computationally expensive.
The predicted covariance of the states is computed in
the product space wang X Tbﬂng, using, Prr1pp =

> wild;U} where

2 i 1 . 2
Uj = [Logpm (s ) Logpe (D))

is a concatenation of the two vectors obtained from the Log-map
of each predicted sample.

Applying the observation model defined in (1) to the pre-
dicted state samples we get the predicted vector of MR signals

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 34, NO. 1, JANUARY 2015

for different magnetic gradients denoted by Si41 ;. Because
this is in a vector space, we can use standard vector operations
to compute the predicted mean 3k+1 as the average of Sp41 ;.
Using the observation noise covariance R, the predicted obser-
vation covariance can be computed as

Pri1,88 = R-I-Z’wj(5k+1,j*3k+1)(5k+1,j*3k+1)t~ 9)

7

Also the cross-correlation matrix between the observation and
the states is given by Pri1.08 = > ; w0 (Ui (Skv1,5 — Skt1)")-

In the update step, the Kalman gain is computed as K11 =
Pry1,DsP,_ +11‘SS . Knowing the Kalman gain we can update the
states and covariance which are given by

DY =Exp.. z(,i)
k1 Ppgcll B4l
t
Pii1,00 =Prt1,0D — K41 Pr,ssKiq1

(10)
where [z,&if. ,(62_211‘] Krr1(Spe1 — 3‘k+1), and S;11 is the

observation (MR signal vector) at step & 4 1.

E. The Tracking Algorithm

The IUKF proposed in Section II-D is a recursive bi-tensor
reconstruction algorithm, which can be used to recursively es-
timate the fiber directions. Combining IUKF with line integra-
tion, we can get a fiber tracking algorithm which can track fibers
directly from DWMR signals. At iteration %, we can estimate
the two tensors D( ) and D( ) using IUKF described earlier,
and their respective principal eigenvectors v( ) and v(2) as can-
didates. After selecting the direction vy from the candidates
via comparison to the direction v;_; from the last iteration,
we can propagate the fiber based on the line integral equation,
Pr11 = Pr + 0vy, where py, is the current point on the fiber
at iteration k, and 6 is the preselected step size. The stopping
criteria in this paper is defined by: 1) if the tract has reached a
known boundary, i.e., boundary of the segment or image or, 2)
if both candidate directions are far from the previous direction
(greater than 60°). To initialize the tracking, a seed region is se-
lected, and a second-order tensor is estimated at each seed point
to provide the initial values for [IUKF. More details of the initial-
ization process are described in Section III. Finally, in order to
perform the multitensor reconstruction in subvoxels along fiber
tracts, the DWMR signal is interpolated. Among different in-
terpolation alternatives suited for this framework, e.g., spline,
tricubic, etc., we picked the trilinear interpolation technique for
simplicity and computational speed.

III. EXPERIMENTS

In this section, we present extensive validation of our [UKF
algorithm for tractography. We present three different experi-
ments to this end. In the first experiment, we evaluate the per-
formance of our [IUKF-based tractography algorithm on the data
provided at the fibercup challenge competition held in conjunc-
tion with the MICCAI’09 [39] and publicly available now on
the web. We present comparisons between the performance of
our I[UKF and three other methods that were judged the top three
at this competition. To the best of our knowledge, there are no
other published results bettering these methods in terms of per-
formance on the fiber cup data sets. In the second experiment,
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Fig. 1. (I) Tractography results obtained from various algorithms applied to fiber cup phantom data [39]. (a) Ground-truth. (b) IUKF (our method). (c) UKF [31].
(d) FOD-SH [28]. (e) MoG [42]. Images (a), (c), (d), and (e) are reproduced from [39]. (II) Quantitative comparisons between IUKF and the winners of the fiber

cup challenge.

we present results of [UKF tractography applied to DWMR data
from cervical region of rat spinal cords. We present statisti-
cally significant differences between control and injured cords
using fiber density maps extracted from estimated tracts. In the
final experiment, we applied IUKF tractography to human brain
DWMR scans provided during the tractography challenge com-
petition held in conjunction with the MICCATI’12 [41].

A. Results on Fiber cup Phantom Data

We present tractography results from an application of [UKF
to the fiber cup phantom data [39], along with the qualitative
and quantitative comparisons to three different tractography al-
gorithms [28], [31], [42], which were the declared winners of
the challenge. The phantom simulates a coronal section of the
human brain, which includes different crossing and kissing fiber
bundles with different curvatures. Diffusion MR data was ac-
quired on the 3-T Tim Trio MRI systems of the NeuroSpin
Centre, with b = 1500 s/ mm” and voxel size = 3 x 3 x 3 mm?
along 130 diffusion directions. Fig. 1(a)—(e) depicts the fiber
tracts obtained using (our method) IUKF, as well as the other
three aforementioned algorithms and the ground-truth.

For quantitative validation, we computed the spatial, angular
and curvature distances (that were used in the fiber cup compe-
tition and are described in [39]) between the fibers estimated by
each method and the ground-truth. Fig. 1(f)—(h) illustrates the
mean error for the aforementioned measures, computed from
our method compared to the first [42], second [28], and third
[31] ranked winners of fiber cup challenge, which are labeled as
MOG, FOD, and UKF, respectively. The mean spatial distance
errors for [UKF, MOG, FOD, and UKF are 3.91, 4.35, 5.13, and
12.98, respectively. It is evident that [UKF outperforms all of
the winners of the fiber cup challenge with respect to the spatial
distance error measure.

Moreover, the mean error using angular distance for [UKF,
MOG, FOD, and UKF are, respectively, 12.80, 11.07, 10.08, and
26.11. Using the curvature distance, the mean errors are 0.091,
0.029, 0.106, and 0.094, respectively. Note that in these error
measures [UKF is still competitive when compared to the win-
ners of the fiber cup challenge. Specifically, it should be noted
that with regards to all the three error measures, [UKF performs
better than the nonintrinsic recursive filter based approach in
[31], one which was ranked third in the fiber cup challenge. Fur-
ther, the standard deviations of all the three error measures for
the four methods were: (a) Spatial error: UKF (19.29), FOD-SH
(2.71), MoG (3.67), IUKF (2.08); (b) Tangential error: UKF
(17.81), FOD-SH (3.73), MoG (10.02), IUKF (4.16); (c) Cur-
vature error: UKF (0.02), FOD-SH (0.2), MoG (0.01), IUKF

(0.04). Note that [UKF provides reasonably small standard de-
viations with respect to all the three error measures compared to
the competing methods. Also, our tractography algorithm does
not require extensive tuning of parameters in achieving the re-
sults shown here.

B. Spinal Cord Tractography

In this section we describe the application of our tractography
technique to detect spinal cord injuries. In this study, we per-
formed tractography on HARDI scans of rat cervical spinal cord
at C'3—C'5. The group contained seven different scans including
five control and two injured rats with injury in the thoracic spinal
cord.

The HARDI scan for each rat was acquired using a 17.6-T
Brucker scanner, along 21 directions with a b value of
1000 s/ mm? along with a single image acquired at b value
close to zero. Echo time and repetition time were 21.174 ms and
3.5 s, respectively; A and ¢ values were 13.4 ms and 1.8 ms;
the voxel size of the scan was 35 m x 35 pm x 300 pm; and
the image resolution was 128 x 128 in the # — y plane, and 22
to 26 in the z-direction.

First, the fiber bundles in each dataset are tracked using
the TUKF algorithm and for comparison, we used the Con-
strained Spherical Deconvolution (CSD) algorithm proposed
in [28] and implemented as part of MRtrix-0.2.11 software
[43]. Moreover, to illustrate the differences between the ITUKF
and UKF, we also applied the published UKF code which is
available at http://www.nitrc.org/projects/ukftractography. To
initialize each of the tractography algorithms, seed points were
placed over the entire grey matter. In IUKF, a bitensor model
estimation was employed at each seed point to initialize the
algorithm. Also, we set the state transition noise variance in (3),
Q1 = Qs = 0.081, the observation noise variance R = 0.0037
and the size of each tracking step 67 = 0.01 mm. Although,
there are systematic ways to estimate the observation noise
variance R. [44] and the state transition noise variance, Q; from
the data, in this paper, we empirically found values that were
quite robust in all our experiments.

Based on the type of injury (contusion) in the thoracic spinal
cord, we were particularly interested in the motoneuron fiber
bundle, which emanates from the grey matter and continues al-
most horizontally to the boundary of the spinal cord. There-
fore, to remove the “unwanted” fibers we applied the following
angle threshold criteria to each tractography result: any fiber
with an angle less than 10° with the z axis is discarded. This
way the fiber bundles which are passing vertically through all
slices are removed, and the ones that are sufficiently horizontal
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Fig. 2. (I) T-test analysis on fiber densities for [IUKF (squares), UKF (hatched) and CSD (dots). Images (a), (b), (c), and (d) illustrate the regions in slices 8, 9,
10, and 11, respectively, with p-value less than 0.05, overlaid on the atlas So image. (II) Coronal view of the tractography results using UKF (e) and IUKF (f) on

the human brain dataset.

survived. We applied the same angle threshold to the results of
each method on each dataset.

The differences between the fiber tracts from injured and con-
trol rats cannot be visually discerned directly from the bundles.
To visualize the differences, axonal fiber density maps are com-
puted for each data set by counting the number of fibers passing
through a 3 x 3 neighborhood of each voxel. In order to perform
a voxelwise comparison between the axonal densities from the
injured and control spinal cords, the density maps then were
deformed nonlinearly to a spinal cord atlas derived from the
HARDI data using the method described in [45]. Finally, a vox-
elwise t-test analysis was employed, and the regions with the
p-value less than 0.05 were extracted to highlight the areas with
significant differences.

Fig. 2(a)—~(d) illustrates the regions obtained from tractog-
raphy using IUKF, UKF, and CSD, represented using squares,
hatches and dots, respectively and overlaid on the spinal cord
atlas Sy image (zero magnetic field gradient image). It can be
seen that the IUKF results indicate significant differences be-
tween the control and injured subjects, in the motoneuron re-
gions, while CSD and UKF were not able to discriminate be-
tween normal and injured datasets in these regions when com-
pared to the IUKF. This experiment shows the effectiveness of
the fiber density maps computed using our tractography method,
as a biomarker to detect spinal cord injuries.

C. Human Brain Tractography

In this section we present the results of our tractography al-
gorithm on human brain datasets. The patient human brain scan
was acquired for the tractography challenge at MICCAI’12
using a 3.0-T EXCITE Signa scanner with 31 gradient direc-
tions and 1 baseline was used. The acquisition parameters were
as follows: b = 1000 s/1111112, TR = 14000 ms , TE = 30 ms,
FOV = 25.6 cm. Whole brain coverage was obtained by
collecting 52 slices with 1.0 mm x 1.0 mm voxel size and
2.6 mm slice thickness [41].

In this experiment, we tracked the corticospinal tract which
starts in the cerebral cortex and terminates in the spinal cord. To
reconstruct these fibers, we first performed a full brain [TUKF
tractography, by placing seed points in every voxels inside the
brain. For the sake of comparison, we also performed tractog-
raphy using the publicly available UKF code [31]. The input
dataset and the seeding regions in both UKF and IUKF were
exactly the same. Then two fiber reduction criteria were applied
to discard “unwanted” fibers from each method.

Firsty, each retained fiber must pass through both ROIs, one
at the top of the brain, and the other in the brainstem. In this

way, the fiber length criterion is implicitly applied, such that
only fibers that are long enough to start from the brain stem and
end in the cortex are retained.

Second, based on the structure of corticospinal tracts, the
fibers with an angle less than 60° to the axial plane are removed
from results. Fig. 2(e) and (f) illustrates the coronal view of the
resulting fibers from each method in the presence of a tumor.
It can be seen that starting from the stem, tracts obtained from
TUKF reach multiple regions of motor cortex, as expected. Fur-
ther, as anticipated it can be observed that there is a good number
of tracts reconstructed by IUKF in both the healthy and the
pathological sides, while UKF was not able to detect as many
corticospinal tracts as [UKF.

IV. CONCLUSION

We have presented a novel intrinsic unscented Kalman filter
(IUKF) to achieve simultaneous estimation of multitensors
and tractography. The key difference between the existing
unscented Kalman filter algorithm for tractography and the
method presented here is the theory and implementation of
our technique which makes use of the group operations on
the manifold of diffusion tensors, a Riemannian manifold and
not a vector space and hence vector space operations if used
can result in erroneous predictions. We tested the algorithm
on several data sets including the fibercup challenge data [39],
rat spinal cords with and without injury and human brain data
sets from the tractography challenge held in conjunction with
MICCATI’12. For the experiments on rat spinal cords, we also
depicted the differences between the tracts in cords with and
without injury and quantified them via the axonal density mea-
sure. In all our comparisons, the [UKF algorithm performed
either better than the state-of-the-art or was quite competitive.
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