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Abstract

Tractography refers to the process of tracing out the
nerve fiber bundles from diffusion Magnetic Resonance Im-
ages (dMRI) data acquired either in vivo or ex-vivo. Trac-
tography is a mature research topic within the field of diffu-
sion MRI analysis, nevertheless, several new methods are
being proposed on a regular basis thereby justifying the
need, as the problem is not fully solved. Tractography is
usually applied to the model (used to represent the diffusion
MR signal or a derived quantity) reconstructed from the
acquired data. Separating shape and orientation of these
models was previously shown to approximately preserve dif-
fusion anisotropy (a useful bio-marker) in the ubiquitous
problem of interpolation. However, no further intrinsic ge-
ometric properties of this framework were exploited to date
in literature. In this paper, we propose a new intrinsic recur-
sive filter on the product manifold of shape and orientation.
The recursive filter, dubbed IUKFPro, is a generalization
of the unscented Kalman filter (UKF) to this product mani-
fold. The salient contributions of this work are: (1) A new
intrinsic UKF for the product manifold of shape and orien-
tation. (2) Derivation of the Riemannian geometry of the
product manifold. (3) IUKFPro is tested on synthetic and
real data sets from various tractography challenge com-
petitions. From the experimental results, it is evident that
IUKFPro performs better than several competing schemes
in literature with regards to the some of the error measures
used in the competitions and is competitive with respect to
others.

1. Introduction
Diffusion Weighted Magnetic Resonance Imaging

(DWMRI) is a relatively nascent Magnetic Resonance
imaging technique that allows one to non-invasively probe
the neuronal pathways in the central nervous system. Nu-
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merous algorithms published in the literature attempt to re-
veal the fibrous structures in the brain, spinal cord and other
parts of the anatomy. The process of inferring and trac-
ing out the neuronal fiber bundles is called tractography.
The tractography methods in literature primarily fall in two
main categories, deterministic and probabilistic. However,
the probabilistic methods are far more computationally ex-
pensive than the aforementioned deterministic techniques,
thus in this paper we limit ourselves to deterministic meth-
ods only, and refer the reader for more details to [3] and the
references therein.

The streamline algorithm is one of the most popular de-
terministic tractography technique, where at each voxel the
direction of the underlying neuronal fiber is estimated and
followed [15]. For instance, in the Diffusion Tensor Imag-
ing (DTI) where the DWMR signal S(g) decay along the
magnetic field gradient direction g is modeled by a single
zero mean Gaussian, i.e., S(g) = S0 exp(−gtDg), where
S0 is the DWMR signal with zero diffusion weighting and
D is the diffusion tensor which is the inverse covariance
matrix of the Gaussian, the fibers would be oriented along
the largest eigenvector of the diffusion tensor D [2]. It is
however well-known in DWMRI analysis research commu-
nity that the single Gaussian (mono-exponential) signal de-
cay model characterizing the DTI is incapable of accurately
capturing the neuronal pathways in presence of complex fi-
brous structures, e.g., crossing and kissing fibers, which are
encountered in many locations of brain and spinal cord.

To address this shortcoming, some extensions of stream-
line are proposed based on the reconstruction models from
High Angular Resolution Diffusion Imaging (HARDI).
Higher order tensors [1], Orientation Distribution Functions
(ODFs) [8, 6] are instances of HARDI reconstruction mod-
els based on which the streamline is generalized, where in
each case, the maxima of the ODF are estimated and the
streamline technique is applied to trace out the fiber tracts.
Front-propagation approaches are another example of de-
terministic tractography, where white matter fiber bundles
are considered as a Riemannian manifold, equipped with a
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metric derived from the diffusion tensor data [9, 18]. The
neuronal fiber tracts are then treated as geodesics using this
metric. While robust, these DTI-based models suffer from
the same shortcomings mentioned earlier.

Most of the aforementioned fiber tracking methods are
based on a two stage procedure, first estimating the under-
lying model from DWMRI throughout the image, and then
tracking based on the estimated model. Recently, authors
in [14] proposed a clever multi-tensor (mixture of two zero
mean Gaussians – called a bi-tensor model because of the
two unknown covariance matrices each of which are rank-
2 (order-2) diffusion tensors) tractography method using
an unscented Kalman filter (UKF), where the multi-tensor
estimation and the fiber tracking were performed simul-
taneously. This approach provides two important advan-
tages: (1) The reconstruction is only performed along the
fiber tracts, which yields a significant computational effi-
ciency since one need not reconstruct the multi-tensors all
over the image but only at voxels likely to be on the fiber
paths, (2) propagating the most consistent direction to track
along achieves smoothness of the tracts being traced using
a streamline technique. The streamline method implicitly
regularizes the tracts by using the most consistent direc-
tion from the smooth estimates of tensors obtained from the
UKF. However, this UKF-based tractography method was
not intrinsic to the space of diffusion tensors, a drawback
that may cause non-positive definite matrix estimations. It
is well-known that the diffusion tensors belong to the space
of (n× n) symmetric positive-definite (SPD) matrices, de-
noted by P (n) that is not a Euclidean space, but a Rieman-
nian manifold [16]. In this context, in [10, 23] general-
izations of UKF to Riemannian manifolds were proposed.
While these methods are quite general extensions, there are
some technical problems that are not fully considered in
these works and will be discussed in details in Section 2.
While none of the above intrinsic UKFs are used in trac-
tography applications, authors in [5] presented an extension
of UKF to P (n) and applied it to tractography. The work
presented in this paper is however quite distinct as will be
evident subsequently.

Recently, in [4, 17], it was shown that the Fisher-Rao
(Riemannian) metric when used for interpolation of ODFs
fails to preserve clinically useful properties such as the frac-
tional anisotropy (FA). We refer the reader to [2] for the def-
inition of FA. Fig. 1 illustrates this phenomena for the task
of interpolation of diffusion tensors, where interpolation us-
ing different metrics is performed between two tensors hav-
ing the same FA value. It can be seen that the Euclidean,
LogEuclidean and GL-invariant Riemannian metrics, used
in [5], all produce interpolated tensors whose shapes are dif-
ferent from those of the end point tensors. Lack of preser-
vation of anisotropy measures will obviously lead to inac-
curacies in tractography.

Figure 1: Left shows the tensor interpolation, using the Rieman-
nian GL-invariant metric (1st row), Euclidean metric (2nd row),
LogEuclidean metric (3rd row) and the product Riemannian met-
ric of shape & orientation (4th row), abbreviated as RM, EM, LEM
& PRM, respectively. Right shows comparison of their FA-values.

To address this issue, a clever solution was proposed for
the case of ODFs in [4, 17] involving the concept of treating
the orientation of ODFs separately from their shape for in-
terpolation and denoising problems. To find the interpolated
path between two given ODFs (possibly located at distinct
points in an ODF field), they minimize the Fisher-Rao dis-
tance between all possible rotations of two ODFs along with
a regularization term which seeks to keep the rotation small
so that the shape is preserved in the interpolant. Authors in
both the articles do not however explore the full geometry
of the product space of shape and orientations further.

Our work is also based on the idea of separating the
shape and orientation and then additionally considers the
Riemannian product space of shape and orientation, but for
the bi-tensor model and not the ODFs. However, similar
analysis is also applicable to the ODFs and the ensemble
average propagator (EAP) which is defined as the Fourier
transform of the DWMR signal. Accordingly, we would
like to emphasize that our method is significantly differ-
ent from the one reported in [5], because in their work the
idea of separating shape and orientation was not taken into
account, leading to less accurate tractography results com-
pared to ours. These results are presented in Section 3.

Therefore, our key contributions are: we derive the Rie-
mannian geometry of this product space by imposing a bi-
invariant Riemannian metric, including the log and exp
maps and the geodesic equations. In addition, we develop
a novel recursive unscented Kalman filter on this product
space and apply it to the publicly available (fibercup chal-
lenge) DWMR realistic phantom data [7], our own synthetic
data and real DWMRI data from human brains. The accu-
racy of our tractography results on the fibercup challenge
data [7] are better than those published in literature for the
spatial distance measures used for evaluating the tractogra-
phy in [7] and competitive in the other measures used for
evaluation. As an illustration, we present results of interpo-
lation using the product space metric used in our approach
in Fig. 1. It is evident from the figure that the our approach
preserves the shape of the tensors along the interpolated
path. Note that the interpolation method using the prod-
uct space of shape and orientation approximately preserves
the FA value when compared to the other methods.
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The rest of the paper is organized as follows: in sec-
tion 2, we first provide the motivation for using UKF in
the tractography problem. Then, the mathematical deriva-
tion of the Riemannian geometry of the shape & orientation
product manifold are presented. Further, we present the in-
trinsic unscented Kalman filter on this product manifold.
Section 3 includes the synthetic and real data experiments
showing the effectiveness and accuracy of the new method.
Section 4 contains the conclusions.

2. IUKFPro: Intrinsic UKF on the Product
Space of Shape & Orientation

As described earlier, in tractography the neuronal path-
ways from imaged tissue are traced out based on the given
DWMR signal. Therefore, care must be taken to reconstruct
the underlying fiber direction accurately at each voxel in the
DWMR data. In most of the existing techniques, e.g., [8, 9],
first a model is fitted to the MR signal, the fiber pathway
direction is computed following which tractography is per-
formed using the estimated direction. It is however more apt
to estimate the fiber directions recursively along the fiber.
This brings forth two important advantages, (1) the smooth-
ness along the fiber is employed to provide more accurate
estimation of the fiber direction at each voxel, (2) the re-
construction of the tensor (ODF or EAP) is only performed
at locations in the image that lie on the fiber, and hence the
computation complexity is reduced considerably.

Simultaneous estimation of the tensors at each voxel and
propagation of the direction information for tractography
can be achieved recursively. Recursive estimation can be
easily cast into a state-space formulation as is normally
done in controls literature. From a state-space modeling
viewpoint, the tensors and the MR signal at each voxel can
be viewed as the system state and observation, respectively.
Therefore, a recursive stochastic dynamic filter such as the
well known Kalman Filter (KF) is an appealing choice for
this problem. KF is a linear filter, and the Extended KF
(EKF) is a nonlinear extension, wherein the probability dis-
tribution of the system state is estimated by a Gaussian ran-
dom variable and propagated through the system dynamics
analytically by using a first order linearization of the nonlin-
ear function. EKF however may lead to significant errors in
the mean and covariance approximation of the transformed
random variable, and in effect lead to divergence of the fil-
ter [12]. Compared with KF and the EKF, the Unscented KF
(UKF) is a more stable and accurate alternative via a set of
carefully chosen sample points to accurately approximate
the mean and covariance of the Gaussian random variable
through the system dynamics. In the tractography problem,
we model the diffusion MR signal by a mixture model in
the presence of intra-voxel heterogeneity, and we want to
estimate the model parameters and propagate the most con-
sistent directional information, simultaneously. Therefore,

the UKF is a more appealing choice for this problem than
the KF and EKF.

In this section, we present a novel intrinsic UKF hence-
forth called IUKFPro, for the case when the system state
parameters belong to the product space of shape & orienta-
tion. We first introduce the shape & orientation representa-
tion of diffusion tensors as a Riemannian product manifold
along with its Riemannian geometry. Then, we present a
detailed description of IUKFPro in subsequent sections.

2.1. Product Space of Shape & Orientation for rep
resenting Diffusion Tensors

Diffusion tensors are (3, 3) symmetric positive definite
(SPD) matrices. The eigen-decomposition of an SPD ma-
trix can be expressed as, D = UΛUT wherein, the compo-
nent U ∈ SO(n), and SO(n) is the special orthogonal group
and the component Λ, a real diagonal matrix with positive
entries. Here U contains the orientation information of a
diffusion tensor in terms of its eigen vectors, and Λ conveys
the shape information of a diffusion tensor in terms of its
eigenvalues. Let us denote the space of Λ by Hn, and it is
known that Hn is an connected Lie group isomorphic to R+

n .
We propose a natural shape & orientation representation of
a diffusion tensor by the construction of a Riemannian prod-
uct manifold M = SO(n)× Hn.

As pointed out in [13], SO(n) admits a canonical bi-
invariant Riemannian metric, and Hn is equipped with a bi-
invariant Riemannian metric via the Hyperbolic Metric. The
two bi-invariant Riemannian metrics are given by:

gS = tr[ṖT Ṗ]; gH = tr[(Q−1Q̇)T (Q−1Q̇)], (1)

where P ∈ SO(n), Ṗ ∈ TPSO(n), Q ∈ Hn, Q̇ ∈ TQHn, and
TPSO(n), TQHn are tangent space of P ∈ SO(n) and tangent
space of Q ∈ Hn, respectively. Given the two Riemannian
metrics in equation (1), it is easy to show from basic dif-
ferential geometry of manifolds [13] that the product Rie-
mannian metric on M is given by gM = gS ⊕ gH. Since gS
and gH are both bi-invariant, the product Riemannian met-
ric gM is also bi-invariant. In addition, following [13],
the geodesic between two points (p1, q1) and (p2, q2) on M
is given by γ(p1,q1),(p2,q2)

(t) =
(
p1(pT

1 p2)
t, q1(q

−1
1 q2)

t
)
.

where p1, p2 ∈ SO(n), q1, q2 ∈ Hn, t ∈ [0, 1]. With this
geodesic in the product manifold M, we can derive the Ex-
ponential Map and Log Map on M, which are given by:

Exp(p,q)(v1, v2) =
(
pexp(pT v1), qexp(q−1v2)

)
Log(p1,q1)

(p2, q2) =
(
p1log(pT

1 p2), q1log(q−1
1 q2)

)
(2)

where p ∈ SO(n), q ∈ Hn, v1 ∈ TpSO(n), v2 ∈ TpH(n) in
the Exponential Map, p1, p2 ∈ SO(n), q1, q2 ∈ Hn in the
Log Map, and exp(·) & log(·) are the matrix exponential &
logarithm operations, respectively.
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2.2. The State Transition and Observation Models
in IUKFPro

We are now ready to present the intrinsic unscented
Kalman filter for the product manifold M. This filter will
allow us to simultaneously estimate and track the fibers by
using a bi-tensor model [22] for the diffusion signal. To
completely specify the unscented Kalman filter, we need to
define the state transition and observation models as well as
the update equations and the Kalman gain. The state transi-
tion model on M is based on the natural direct product of Lie
group operations in SO(n) and Hn and the LogNormal dis-
tribution for the noise, in the case of diffusion tensor, when
n = 3. We employ a bi-tensor (sum of two Gaussians)
model [22] as the observation model [14] to capture cross-
ing fiber geometries at a voxel. The state transition model
at iteration k is described by the following equation:(

U(k+1)
1 ,Λ

(k+1)
1

)
= Exp(

F1U(k)
1 , F2Λ

(k)
1

) (a(k)1 , b(k)1

)
,(

U(k+1)
2 ,Λ

(k+1)
2

)
= Exp(

F1U(k)
2 , F2Λ

(k)
2

) (a(k)2 , b(k)2

)
, (3)

where F1, F2 are state transition operations in SO(3) and H3,
respectively.

(
a(k)1 , b(k)

1

)
and

(
a(k)2 , b(k)

2

)
are the Gaus-

sian distributed state transition noise in T(
U(k)

1 ,Λ
(k)
1

)M and

T(
U(k)

2 ,Λ
(k)
2

)M. “Exp(·)(·)” is the Exponential Map in (2). In

the state transition model, we assume that the two state tran-
sition noise models are independent of each other and of the
previous state. This is because in diffusion MRI, the signal
at each voxel in the presence of an inhomogeneity caused
by crossing fibers is commonly modeled by assuming that
the sum total signal at a voxel is caused by mixing of two or
more independent sources, i.e., the diffusion compartments.
We denote Q(k)

1 and Q(k)
2 as covariance matrices of the two

state transition noise models of dimension 6-by-6 for the
tangent vectors in T(

U(k)
i ,Λ

(k)
i

)M. Note that in [10, 23] a

constant state transition noise covariance tensor is assumed
over a Riemannian manifold to apply an intrinsic unscented
Kalman filter. However, this is not a valid assumption for
an intrinsic UKF as evident from the discussion below. Let
us denote an initial random variable by X0 and the product
group operation by F respectively. The explicit forms for
these are given by,

X0 = Exp(µU,µΛ)(vU, vΛ), F =

[
F1 0
0 F2

]
(4)

wherein vU ∈ TµU SO(3), vΛ ∈ TµΛH3. Denote µ =
[µT

U , µ
T
Λ]

T , v = [vT
U , vT

Λ]
T , and v is from zero-mean Gaus-

sian distribution with covariance matrix Q. Then after the
coordinate transform, the new random variable X = FX0 =
ExpFµ(Fv). The covariance matrix of Fv will be Q (F) =

(I ⊗ F)Q (I ⊗ F)T , where I is the identity matrix, and ⊗

denotes the Kronecker product. Therefore, the state tran-
sition noise covariance tensor should not be constant over
the manifold and should be changed by the induced group
operation. In addition, in [10] the use of parallel transport
approximated by Schild’s ladder method via a sequence of
exponential maps followed by a Log map is computation-
ally more expensive than a single Log map operation in our
approach. Further, no accuracy measures of their approxi-
mation as a function of data variance was reported.

As mentioned before, the observation model is based on
the bi-tensor model and given by:

Y
(k)
n =

Y0

2

(
e−bngTn U(k)

1 Λ
(k)
1 U(k)T

1 gn + e−bngTn U(k)
2 Λ

(k)
2 U(k)T

2 gn
)
+r

(k)
n ,

(5)
where gn denotes the nth magnetic gradient direction, bn
the corresponding b-value, Y (k)

n , r
(k)
n the MR signal and the

measurement noise for nth magnetic gradient at the kth iter-
ation, respectively. We assume that the measurements from
distinct gradient directions are independent so that the co-
variance matrix of the observation model for all magnetic
gradients, denoted as R, is a diagonal matrix.

2.3. IUKFPro: The Intrinsic Unscented Kalman
Filter on M

Since the current dynamic model is based on the shape
& orientation product manifold M, we need a non-trivial
extension of the intrinsic unscented Kalman filter derived in
[5]. To begin with, let us first define the augmented state
vector for the observation model in equation (5) by

Xk =
[
s(k)

T

U1
, s(k)

T

U2
, s(k)

T

Λ1
, s(k)

T

Λ2
, n(k)T

U1
, n(k)T

U2
, n(k)T

Λ1
, n(k)T

Λ2

]T
,

(6)

at iteration step k, where
(

s(k)Ui
, s(k)Λi

)
= LogK̂(Ui,Λi)

(Ui,Λi)

is the representation of the orientation and shape state
random vectors in the tangent plane at its Karcher
mean K̂(Ui,Λi), and

(
n(k)

Ui
, n(k)

Λi

)
is the state transition

noise vector for (Ui,Λi). The covariance matrix for

[s(k)
T

U1
, s(k)

T

U2
, s(k)

T

Λ1
, s(k)

T

Λ2
]T is denoted by Pk,UΛ. The co-

variance matrices for [n(k)T

U1
, n(k)T

Λ1
]T and [n(k)T

U2
, n(k)T

Λ2
]T are

aforementioned Q(k)
1 and Q(k)

2 . We denote the covariance
matrix for the augmented state vector Xk by Pk,X , a block-
diagonal matrix composed of Pk,UΛ, Q(k)

1 , and Q(k)
2 .

The intrinsic unscented Kalman filter consists of two
stages: prediction stage and update stage. The prediction
& update stages are detailed in Table 1 & 2, respectively.

3. Experiments
To depict the accuracy of our tractography algorithm, we

present a set of synthetic data experiments generated at vari-
ous levels of Riccian noise. Since we know the ground truth
for synthesized data we report the reconstruction accuracy
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Table 1: The Prediction Stage

(1) Obtain the jth sigma point at iteration step k as described in [24]:

Xk,j =

[
s(k)T

U1,j
, s(k)T

U2,j
, s(k)T

Λ1,j
, s(k)T

Λ2,j
, n(k)T

U1,j
, n(k)T

U2,j
, n(k)T

Λ1,j
, n(k)T

Λ2,j

]T

(7)

(2) Obtain samples
(
U
(k+1)
i,j ,Λ

(k+1)
i,j

)
on M from the last iteration’s

posterior estimates
(

Û(k)
i , Λ̂

(k)
i

)
by two steps:

(
Ũ(k)
i,j , Λ̃

(k)
i,j

)
=

Exp(
Û(k)
i ,Λ̂

(k)
i

) (
s(k)

T

Ui,j
, s(k)

T

Λi,j

)
, and

(
U
(k+1)
i,j ,Λ

(k+1)
i,j

)
=

Exp(
Ũ(k)
i,j ,Λ̃

(k)
i,j

) (
n(k)

T

Ui,j
, n(k)

T

Λi,j

)
.

(3) Compute the predicted mean as a weighted Karcher mean:(
Û

(k+1)
i , Λ̂

(k+1)
i

)
= argminµ

∑
j

wjdist
2
((

U
(k+1)
i,j ,Λ

(k+1)
i,j

)
, µ

)
(8)

where dist(·, ·) is the geodesic distance, and wj are the combina-
tion weights used from the sigma point propagation scheme.

(4) Compute the predicted state covariance: PUΛ =
∑

j wjUjU
T
j .

Denote

UT
j =

[
Log

Û
(k+1)
1,j

(
U
(k+1)
1,j

)
, Log

Û
(k+1)
2,j

(
U
(k+1)
2,j

)
,

Log
Λ̂
(k+1)
1,j

(
Λ
(k+1)
1,j

)
, Log

Λ̂
(k+1)
2,j

(
Λ
(k+1)
2,j

)]
, (9)

and Y
(k+1)
j as the predicted MR signals for different magnetic gra-

dients via the observation model (5). The predicted mean of MR
signal computed by the standard vector average operation is de-
noted as Ŷ(k+1).

(5) Compute the predicted observation covariance: P
(k+1)
ss =

R +
∑

j wj

(
Y
(k+1)
j − Ŷ(k+1)

)(
Y
(k+1)
j − Ŷ(k+1)

)T
, and

the cross-correlation matrix between the observation and the states:
P
(k+1)
UΛs =

∑
j wjUj

(
Y
(k+1)
j − Ŷ(k+1)

)T
.

Table 2: The Update Stage
1. Compute the Kalman Gain: K(k+1) = P

(k+1)
UΛs P

(k+1)−1

ss

2. Compute the Innovation:
[

z(k+1)T

U1
, z(k+1)T

U2
, z(k+1)T

Λ1
, z(k+1)T

Λ2

]T
= K(k+1)

(
Y(k+1) − Ŷ(k+1)

)
, where the observation (MR signal

vector) at iteration step k + 1 is Y(k+1) =
[
Y

(k+1)
1 , . . . , Y

(k+1)
N

]
,

and Y
(k+1)
n is given by equation (5).

3. Compute the posterior estimates:(
Û(k+1)
i , Λ̂

(k+1)
i

)
= Exp(

Û
(k+1)
i ,Λ̂

(k+1)
i

) (
z(k+1)T

Ui
, z(k+1)T

Λi

)

of proposed technique w.r.t. the ground truth. The second
experiment is on results of our method on the fiber cup chal-
lenge phantom [7] which has been widely used by numerous
research groups across the world to evaluate their tractogra-
phy methods. We present our results along with quantitative
comparisons to those reported in [7]. Finally, we present
results obtained on a real dataset used in the MICCAI’12
tractography challenge.

3.1. Synthetic Data Experiments

In this experiment, we generated synthetic datasets
containing 2 fiber bundles, crossing at various angles

{45, 60, 75, 90}. Then, we corrupted each data by Ric-
cian noise at 3 different levels, i.e., SNR ≈ 7, 12, 17.
We compared proposed method with 2 existing recursive
filter-based approaches (UKF & IUKF) [14, 5]. For each
method, we computed the spatial distances of each fiber to
the ground truth, using the error measure introduced in [7].
Fig. 2 shows the mean error of each method, for different
angles/noise levels. It can be seen that our method pro-
vides a more accurate estimation compared to the compet-
ing methods. We now present tractography results from

Figure 2: Comparison of accuracy of IUKFPro, IUKF & UKF.
The SNRs are 17, 12 & 7 from left to right, respectively.

an application of IUKFPro to the fiber cup phantom [7],
along with the quantitative comparisons to other tractog-
raphy methods [20, 11, 21, 14], three of who were win-
ners of the challenge [7]. The phantom simulates a coronal
section of the human brain, including various kissing and
crossing fiber bundles with different curvatures. The acqui-
sition parameters were b = 1500s/mm2 and voxel size =
3x3x3 mm3 with 130 diffusion directions. Fig. 3 depicts the
fiber tracts obtained using our method, IUKFPro, as well as
other aforementioned algorithms. For quantitative valida-
tion, we computed the spatial, angular and curvature dis-
tances, described in [7], between the estimated fibers from
each method and the ground truth.

Fig. 4 shows the errors computed from our method com-
pared to the first [20], second [11] and third [14] winners
of fiber cup challenge, which are labeled as MoG, FOD and
UKF, respectively. For the sake of completeness, we also
compared our method to the algorithms in [5] and [21], de-
noted by IUKF and PAS, respectively. It can be seen that
the IUKFPro outperforms the winners of the fiber cup chal-
lenge – in spatial distance and is competitive with respect
to the angular and curvature measures. Moreover, it can be
observed that IUKFPro provides reasonably small standard
deviations in all error measures, compared to other com-
peting methods. Further, IUKFPro is better than the other
recursive filter based approaches in [14, 5], one of which
was rated 3rd in the fiber cup challenge competition.

3.2. Real Data Experiments

We evaluated the effectiveness of our new tractography
method on a patient’s human brain scan acquired for the
challenge at MICCAI’12, using 31 gradient directions. The
acquisition parameters were, b = 1000s/mm2, TR = 14000
ms, TE = 30 ms, FOV = 25.6 cm, with 1.0 mm voxel size
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Figure 3: Tractogra-
phy results obtained
on the fiber cup
phantom data [7].
(a) Ground-truth,
(b) IUKFPro, (c)
UKF [14], (d) FOD-
SH [11] and (e)
MoG [20].

Figure 4: Quantitative comparison between IUKFPro and com-
peting methods for the fiber cup data. Left, middle and right show
the average spatial, angular and curvature distances, respectively.

Figure 5: Tractography re-
sults using IUKFPro on the
human brain dataset, depict-
ing the corticospinal tract
(CST). Brain stem is shown
in red. Segmented regions
at the top shown in red, blue
and yellow represent the tu-
mor, cavity and gliosis, re-
spectively & were part of the
input from [19].

and 2.6 mm slice thickness. See [19] for more details on
the data acquisition. In this experiment, we tracked the cor-
ticospinal fibers, originating in the brain stem. Left plate
in Fig. 5 depicts the estimated fibers along with the seeding
region and the tumor. It can be seen from the figure that
starting from the brain stem, tracts reach multiple regions
of motor cortex, as expected. Further, as expected, there is
a good number of tracts reaching the motor cortex on the
healthy side, and a good number of tracts reconstructed on
the pathological side.

4. Conclusions
In this paper, we presented novel fiber tractography algo-

rithm by separating shape and orientation and formulating
the problem of tractography on the product space of shape
and orientation. By doing so, it is easier to preserve clini-
cally useful properties like anisotropy that is a key feature
useful in achieving accurate tractography. We derived a
novel dynamic unscented Kalman filter on the product man-
ifold of shape & orientation. We presented compelling re-
sults on the fiber cup challenge phantom data [7] wherein,
IUKFPro yielded smaller error than the winners of the fiber
cup challenge competition. We also presented results on

human brain scans that match expectations from experts.
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