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Abstract

In this paper, we introduce a novel framework for com-
puting a path of diffeomorphisms between a pair of input
diffeomorphisms. Direct computation of a geodesic path
on the space of diffeomorphisms Diff(Ω) is difficult, and
it can be attributed mainly to the infinite dimensionality
of Diff(Ω). Our proposed framework, to some degree, by-
passes this difficulty using the quotient map of Diff(Ω) to
the quotient space Diff(M)/Diff(M)μ obtained by quoti-
enting out the subgroup of volume-preserving diffeomor-
phisms Diff(M)μ. This quotient space was recently iden-
tified as the unit sphere in a Hilbert space in mathematics
literature, a space with well-known geometric properties.
Our framework leverages this recent result by computing
the diffeomorphic path in two stages. First, we project the
given diffeomorphism pair onto this sphere and then com-
pute the geodesic path between these projected points. Sec-
ond, we lift the geodesic on the sphere back to the space
of diffeomerphisms, by solving a quadratic programming
problem with bilinear constraints using the augmented La-
grangian technique with penalty terms. In this way, we
can estimate the path of diffeomorphisms, first, staying
in the space of diffeomorphisms, and second, preserving
shapes/volumes in the deformed images along the path as
much as possible. We have applied our framework to in-
terpolate intermediate frames of frame-sub-sampled video
sequences. In the reported experiments, our approach com-
pares favorably with the popular Large Deformation Dif-
feomorphic Metric Mapping framework (LDDMM).

1. Introduction

Image and shape matching using 2D diffeomorphisms

(diffeomorphic matching) is a popular technique in many

computer vision and medical imaging applications such as
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atlas construction [1] and shape analysis with a long and

venerable history [1, 2, 3, 4, 5, 6]. Recall that a diffeo-

morphism is a smooth bijective mapping between two (im-

age) domains, and many important types of transformations

and deformations used in computer vision can be taken as

2D/3D diffeomorphisms between appropriate domains. A

computational problem that has a fundamental importance

in diffeomorphic matching is to determine a smooth path

of diffeomorphisms that connects/interpolates a given pair

of diffeomorphisms. More specifically, let Ω denote the 2D

(image) domain and Diff(Ω) the space of diffeomorphisms,

ρ : Ω → Ω. Given two diffeomorphisms ρ0, ρ1, a smooth

path in Diff(Ω) connecting ρ0, ρ1 is a smooth map

φ : [0, 1]× Ω→ Ω,

such that for each t ∈ [0, 1], φ(t, .) ∈ Diff(Ω) is a diffeo-

morphism and φ(0, .) = ρ0, φ(1, .) = ρ1. In this paper,

we present a novel framework for computing such a smooth

path for a given pair of diffeomorphisms ρ0 and ρ1. How-

ever, evaluating diffeomorphic path between two given dif-

feomorphisms is a challenging problem. This is mainly due

to first, the infinite dimensionality of the space of diffeo-

morphisms and second, the lack of knowledge of the metric

on this space.

One of the most influential framework in this context

is the Large Deformation Diffeomorphic Metric Mapping

framework (LDDMM) introduced in [2]. However, in this

framework (applied to image registration), the diffeomor-

phic path φ is not explicitly computed; instead, a time-

dependent vector field v(t, .) is computed by minimizing

the cost functional (using an appropriate Sobolev norm on

v)

E =

∫ 1

0

||v(t, φ(t, .)||2V dt+ λ||I1 − I2 ◦ φ(t = 1, .)||2L2
,

(1)

where I1, I2 are the two input images, and the diffeomor-

phic path φ is obtained by integrating the time-dependent
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vector field v via the following ODE

d

dt
φ(t, .) = v(t, φ(t, .)). (2)

Beg et al. [2] have shown that the diffeomorphic paths

determined by LDDMM stay in the space of diffeomor-

phisms. The LDDMM framework has been further elab-

orated in the context of evolution equations on groups of

diffeomorphisms and momentum conservation [3]. For ex-

ample, Younes et al. introduced geodesic equations on the

group of diffeomorphisms based on the LDDMM in [3] and

Sommer et al. introduced a multi-scale kernel bundle for

LDDMM to increase the accuracy of LDDMM in [4]. The

latter method has been named the Large Deformation Dif-

feomorphic Kernel Bundle Mapping (LDDKBM), and [5]

introduced the evolution equations for LDDKBM.

These frameworks involve two different optimizations:

image matching and smoothing of the diffeomorphic paths

in the space of diffeomorphisms. However, there are certain

issues in these joint frameworks that we will elaborate on

now. First, the Sobolev metric in Eq.(1) may cause undesir-

able geometric distortion in the space of differomorphisms

(Fig.1). Second, the smoothness constraint over a diffeo-

morphic path may lead to unsatisfactory correspondences

between input images. Further, tuning the set of parame-

ters for a convergent result is heavily data-dependent, and is

often cumbersome and tedious.

One way to overcome these issues is to separate reg-

istration stage and the stage of estimating diffeomorphic

paths. The key contribution in this paper is that we de-

sign a framework for interpolating the two given differo-

morphisms, which is formulated separately from the reg-

istration task. Instead of interpolating the diffeomorphisms

in their space directly, we project diffeomorphisms on to the

space of densities, whose geodesics are readily computed,

and then lift the geodesics back to the space of diffeomor-

phisms efficiently.

More specifically, let M denote a compact n-

dimensional Riemannian manifold, and Diff(M) and

Diffμ(M) respectively denote the infinite-dimensional

group of diffeomorphisms of M and its infinite-dimensional

subgroup of volume-preserving diffeomorphisms. The quo-

tient space Diff(M)/Diff(M)μ was studied in depth and

identified with the space of densities functions Dens(M)
on M in [6]. The latter space can then be canonically

embedded into a sphere in the Hilbert space (See [6] for

details); therefore, the geodesics on Dens(M) can be

computed readily. In LDDMM, the diffeomorphic path

is computed directly in Diff(M) without referencing the

quotient space Dens(M) = Diff(M)/Diff(M)μ. How-

ever, in our method, the diffeomorphic path is first com-

puted on the quotient space Diff(M)/Diff(M)μ, and the full

path is then computed in Diff(M) by lifting the geodesic

Figure 1: Top: from left to right, a cylindrical can, 50 degree

rotated can, the color plot of diffeomorphic deformation fields de-

forming the original can, and the colormap scale respectively. Sec-

ond row: the ground truth of the rotation sequence. Third row: the

path of images warped by the diffeomorphisms along the path es-

timated using our method. Bottom: the path of images obtained

using LDDMM.

path in Dens(M) to Diff(M). We remark that it is pre-

cisely because the geometry of the quotient space is avail-

able (and simple), the geodesic path can first be deter-

mined on the quotient space. The second step of lifting the

path in Dens(M) back to Diff(M) is then formulated as

a quadratic programming problem with bilinear constraints

that minimizes point-wise L2-norm of deformation fields

along the diffeomorphic path. The resulting optimization

problem can be solved efficiently using the numerical al-

gorithm in [7] that is based on the augmented Lagrangian

method.

With the approach presented in this paper, we obtain a

novel framework for interpolating diffeomorphisms, which

is less sensitive to tuning parameters and more computa-

tionally efficient than LDDMM-based methods. This also

means that our method provides a more general approach

than the LDDMM-base methods. We validate the proposed

framework by applying it to the problem of filling-in miss-

ing frames in a video footage. We choose this application

since it can provide ground-truth comparisons and show po-

tential for further applications.

2. Model formulation
In this section, we present the novel framework for com-

puting the path of diffeomorphisms. In what follows, M
will denote the (image) domain and μ (dμ) an associated

volume form on Ω. The estimation of geodesics on the

space of diffeomorphisms requires the knowledge of its

metric. However, in this paper, instead of working on the

manifold of diffeomorphisms whose metric is unknown, we

map diffeomorphisms to a known space, the space of den-

sities, and take advantage of the fact that geodesics for the

canonical metric on the sphere are the great circles. Our

algorithm consists of the following two steps:
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• Map a given pair of diffeomorphisms to the space of

densities, Dens(M) and computing the geodesic be-

tween the two projected points.

• Lift the geodesic in Dens(M) back to Diff(M).

2.1. The Space of Densities and Diffeomorphisms

Given a pair of diffeomorphisms mapping Ω to Ω, and

without loss of generality, we can assume one of them is

the identity map id and denote the other diffeomorphism

by ρ. The goal is to compute the one-parameter family of

diffeomorphisms, φ(t), between id and ρ, such that φ(0) =
id and φ(t = tf ) = ρ where, 0 ≤ t ≤ tf .

Given an orientation-preserving diffeomorphism, let

Jacμφ denote the determinant of the Jacobian of φ. It

is a positive function, and in particular, if φ is volume-

preserving, Jacμφ is the constant function 1. Furthermore,

since φ is a diffeomorphism of M , the integral transform

μ(M) =

∫
M

dμ =

∫
M

φ∗(dμ) =
∫
M

Jacμφ dμ.

shows that the integral of the positive function Jacμφ is a

constant (the μ-volume of M ) for all φ ∈ Diff(M). There-

fore, after normalization, Jacμφ can be considered as a den-

sity function on M . Furthermore, Jacμφ has the interesting

factorization property:

Jacμ(φ ◦ ρ)(x) = Jacμφ(ρ(x)) · Jacμρ(x).

It follows that Jacμ(φ ◦ ρ) = Jacμφ if ρ is a volume-

preserving diffeomorphism. Therefore, using the square-

root of the density function, we can define the map Φ from

Diff(M) to a sphere in a Hilbert space via

Φ : φ→ f =
√
Jacμφ (3)

since ∫
M

Φ2(φ)dμ = μ(M) (4)

shows that Φ(φ) belongs to a sphere with radius
√
μ(M).

Using normalization, we can consider Φ(φ) as a point on the

unit sphere and for the two diffeomorphism id, ρ mapped on

to the sphere by Φ, the unique geodesic between them can

be readily computed using the formula

f(t) =
1

sin(θ)
[sin(θ − t)f1 + sin(t)f2] (5)

where f1 =
√
Jacμid., f2 =

√
Jacμρ.

We remark that if ρ is a volume-preserving differomor-

phism, by definition of Φ, ρ and id are projected to the same

point on the sphere. Hence, the geodesic joining the two

projected points is degenerate – i.e., it consists of just one

point– and the lifted diffeomorphic path in Diff(M) is then a

path joining ρ and id consisting of only volume-preserving

diffeomorphisms.

In this paper, diffeomorphisms are expressed as de-

formation vector fields. In the case of 2-D, φ(t) =
(x + U(r, t), y + V (r, t)) where r = (x, y), and

(U(r, t), V (r, t)) denote the deformation vector fields.

Then,

Jacμφ(t) = (1 + Ux)(1 + Vy)− UyVx

= 1 + Ux + Vy + UxVy − UyVx,
(6)

and we have

f(t)2 = Jacμφ(t)/μ(M). (7)

Eq.(6) gives the determinant of the Jacobian of φ, and

Ui and Vi are the first-order derivatives with respect to

i ∈ {x, y}, respectively. We note in passing that in 2D

Eq.(7) represents a bilinear equation and in 3D, a trilinear

equation.

2.2. Lifting the Geodesic Path to the Space of Dif-
feomorphisms

After a geodesic on the sphere is obtained, we have to lift

this path back to Diff(M). However, solving Eq.(7) does

not yield a unique solution. This is because the equation

is bilinear , and geometrically, this corresponds to the fact

that Eq.(7) only requires φ(t) to lie on a Diff(M)μ-orbit in

Diff(M), parametrized by the point f(t) in the sphere.

Therefore, the computation of the lifted path must be reg-

ularized, and we propose using the L2 smoothness of the de-

formation vector fields over time as the main regularization

criterion. Even though there are other choices of norms for

regularization–such as the Sobolev norm–the L2 norm regu-

larization was chosen because of its computational simplic-

ity. The lifting problem now leads to a quadratic program

with bilinear constraints for 2D domains

min

∫ ∣∣∣∣dU(t)

dt

∣∣∣∣
2

+

∣∣∣∣dV (t)

dt

∣∣∣∣
2

dμdt

s.t. Jacμφ(t) = f(t)2μ(M).

(8)

The following section shows how to optimize Eq(8) numer-

ically.

3. Numerical Solution
While Eq.(8) is formulated for continuous variables x, y

and t, in practice, we have to work with discrete pixels and
time, and its discrete version is given by

min
Ut

ij ,V
t
ij

∑
i,j,t

[∣∣∣∣∣U
t+1
ij − U t−1

ij

2δx

∣∣∣∣∣
2

+

∣∣∣∣∣V
t+1
ij − V t−1

ij

2δy

∣∣∣∣∣
2]

δtδxδy

s.t. μ(Ω)(f t
ij)

2 = (1 + U t
xij + V t

yij + U t
xijV

t
yij − U t

yijV
t
xij),

(9)
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where the superscript t and subscript i, j denote the discrete

time index and pixels, respectively and the subscripts x and

y in the constraints denote the first-order derivatives w.r.t.

x and y, respectively. We set δx and δy to be one, and

therefore the volume μ(Ω) is the image size.

Geometrically, the determinant of the Jacobian Jacμφ(t)
is the ratio of the change of volume elements by φ(t) at do-
main points at time t. In our numerical scheme, we consider
it as the change in area of a triangle in the mesh with four
neighboring pixel points replaced by the deformation field
at vertices. That is, Jacμφ(t), can be treated as the area of
a rectangle in the mesh, and it is formulated as follows.

Jacμφij(t)

= 1 + 0.5(UF
xij(t) + V F

yij(t) + UF
xij(t)V

F
yij(t)− UF

yij(t)V
F
xij(t))

+ 0.5(UB
xīj̄(t) + V B

yīj̄(t) + UB
xīj̄(t)V

B
yīj̄(t)− UB

yīj̄(t)V
B
xīj̄(t)),

(10)

where ī and j̄ denote i + 1 and j + 1 respectively, and
(i, j) ∈ [1, H − 1] × [1,W − 1] with the domain size of
H×W . The superscripts F and B in Eq.(10) denote the for-
ward and backward difference schemes of numerical deriva-
tives respectively. After vectorizing all deformation vector
fields, the optimization problem becomes a quadratic pro-
gram with bilinear constraints given by:

min
1

2
UᵀRU+

1

2
VᵀRV +Bᵀ

uU+Bᵀ
vV

s.t. h = c+CyV +CxU+Du(V)U = 0,

or h = c+CxU+CyV +Dv(U)V = 0.

(11)

In the above, Uᵀ = (Uᵀ(t = 1), ...,Uᵀ(t = T − 1)) , and

Bᵀ
u = (Uᵀ(t = 1),0ᵀ,Uᵀ(t = T )) where 0 is a vector

of zeros with length H ×W × (T − 4) if we have a time

sequence t ∈ [1, T ] including two boundary conditions. V
and Bv are defined in the same way. In Eq.(11), R is the

matrix for the quadratic component and its size is H×W ×
(T − 2), CxU and CyV correspond to the linear terms of

U and V in Eq.(10), respectively. Du(V)U ( Dv(U)V)

corresponds to the bilinear terms in Eq.(10) after factoring

out U ( V). Finally, c is the vectorization of μ(Ω)(f t
ij)

2 in

Eq.(9) plus a vector of ones.

We solve the optimization problem using the augmented
Lagrangian method with penalty terms [7] by iteratively
solving for the two blocks of variables V,U, fixing one
while optimizing the other. With fixed V, the problem is
given by

min
1

2
UᵀRU+Bᵀ

uU+ λᵀh+
1

2
c||h||2

s.t. U ∈ R
m,

(12)

where λ ∈ R
m is the Lagrange multiplier, m = H ×W ×

(T −1). This is an unconstrained optimization problem and

it can be rewritten in a more transparent way

min
1

2
Uᵀ(R+ cHᵀ

uHu)U

+

(
Bu +

1

2
c((Gᵀ

uHu)
ᵀ +Hᵀ

uGu) + (λᵀHu)
ᵀ
)ᵀ

U

s.t. U ∈ R
m,

(13)

where Hu = Du+Cx and Gu = c, i.e., h = HuU+Gu =
0.

4. Experimental Results
We evaluate the effectiveness and efficiency of the pro-

posed framework using the difficult problem image inter-

polation for missing frames in videos. Specifically, for the

experiment, an image sequence is extracted from a video

and a few frames are selected as the key frames. We then

apply our method to compute a diffeomorphic path connect-

ing two adjacent key frames, and the intermediate frames

are computed and warped by the appropriate diffeomor-

phism along the diffeomorphic path. These filled-in im-

age sequences are compared with the original sequences by

measuring the pSNR of the computed frames w.r.t. the true

frames. In addition, we compared our results with those

from the Large Deformation Diffeomorphic Metric Map-

ping (LDDMM) method.

An overall description of this filling-in process is as fol-

lows: First, a source and target images (key frames) are se-

lected, and denoted by Is and It respectively. Second, a

registration map– or diffeomorphism denoted by ρ–between

the two images is computed using an image registration

method. We then set id as the diffeomorphism which maps

the source image to itself, and in this way, we have the two

diffeomorphisms to be interpolated, id and ρ. Next, we

compute a diffeomorphic path, φ(t) joining id and ρ, us-

ing the proposed algorithm. Finally, with this computed

diffeomorphic path φ(t), we can simulate an image se-

quence I(t) between Is and It simply by warping the image

I(t) = Is ◦ φ(t).
A simple example is presented in Fig.1. We have two

cylinders: one is positioned upright and the other one is the

50-degree-rotated version of the upright cylinder. We evalu-

ate deformation fields that deform the upright cylinder to the

rotated one keeping the boundary fixed. Next we generate

intermediate images between the two images. The ground

truth is generated by rotating the upright cylinder by 50/19
degree consecutively so that we have 20 sequential images.

We present the sequences in Fig.1 (down-sampled for com-

putational efficiency). Fig.1 provides the visual compari-

son, and they show that our framework produces results that

are visually more appealing and acceptable than LDDMM.

In addition, we quantify the comparison using pSNR score

between the ground truth and the computed images. The
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Figure 2: pSNR score plot: red lines and blue lines rep-

resent scores for our method and LDDMM respectively.

Beginning at the leftmost plot, rotating cylinder experi-

ment, bending motion experiment and dancing motion ex-

periment.

Table 1: The averaged pSNR scores between ground truths

and computed image sequences using our method and LD-

DMM

Method Our method LDDMM

Rotation test 46.24 dB 26.59 dB
Bending woman 48.25 dB 46.2 dB
Dancing woman 45.94 dB No convergence

Table 2: Running time comparison between the proposed

method and LDDMM. The reported times for the proposed

method include registration and interpolation stages. For

the dancing motion sequence, we were not able to find suit-

able parameters for LDDMM and LDDMM does not pro-

duce convergent results.

Method The proposed method LDDMM

Rotation test 24min 40sec 42min 20sec

Bending woman 16min 7sec 41min 57sec

Dancing woman 12min 30sec No convergence

pSNR scores for the sequences are plotted in Fig.2, and the

average scores are reported in Table 1.

The following subsections consider more practical ex-

amples. All resulting sequences and original video footages

are provides as movie files in the supplemental material.

The original footages are obtained from http://www.
greenscreenfilms.com/

4.1. Bending motion sequence

In this experiment, we present a video sequence in which

a person is depicting a bending motion. The video’s frame

rate is 29.75 fps, and we have extracted 34 frames from

videos. The images from the sequence are shown in Fig.3.

However, due to space limit, we present only down-sampled

sequence in the figure. We choose the first, the last and

the seventeenth frames as keyframes so that there are fif-

teen missing frames between keyframes. In Fig.3, the

two groups of missing frames in each sequence are high-

lighted with rectangular boxes, with the three remaining key

frames. Next we compute two diffeomorphic deformation

fields: one from the first to the the seventeenth frame, and

one from the seventeenth frame to the last frame. The miss-

ing frames are computed as described in the previous sec-

tion. The resulting frames are compared with the ground

truth and also with results produced by LDDMM: visual

comparison shown in in Fig.3 and quantitative comparison

reported in Table 1 and Table 2. Visually from Fig.3, there

are no marked differences between the proposed method

and LDDMM. The reason could be that the motion in the

sequence is not particularly complicated. However, the re-

sults in Table 1, Table 2 and Fig.2 show that our method is

more accurate and with a considerable shorter running time

than LDDMM. Additionally, LDDMM requires more key

frames (between the first and seventeenth frames) in order

to ensure its convergence.

4.2. Dancing motion sequence

In this experiment, we work on a video sequence with a

more complicated motion namely, dancing. Twenty-seven

image frames have been sampled from the original video,

and twenty-two frames have been removed, leaving five key

frames. These keyframes and missing frames are shown in

Fig.4. Due the amount of motion variation, we have re-

tained more key frames (five) than the previous experiment

on bending motion (three). We compute the same number

of missing frames using our method as in the previous ex-

periment. Fig.4 shows the ground truth images in the se-

quence and the ones computed with our method. The pSNR

scores are plotted in Fig.2, and the averaged pSNR score is

reported in Table1. We remark that for this experiment we

were not able to find suitable parameters for LDDMM to

produce convergent results.

5. Conclusion
In this paper, we have introduced a novel framework for

computing a diffeomorphic path that interpolates the two

given diffeomorphisms, and we have demonstrated its appli-

cability to image interpolation problems for reconstructing

missing or corrupted images in videos. Computing diffeo-

morphic paths is often challenging, and the difficulty mainly

arises from the nonlinearity and the infinite dimensionality

of the space. Furthermore, the lack of known and computa-

tionally accessible metric is also a substantial hurdle. How-

ever, some of these difficulties can be circumvented by ap-

pealing to the fact that the quotient space of Diff(M) by (the

subgroup of) volume-preserving diffeomorphisms can be

identified with a convex subset of the unit sphere in a Hilbert

space. Using this decomposition (loosely speaking), the ge-

ometry of the sphere, which is well-known and computa-

tionally straightforward, provides us with geodesics that can

be readily computed. In particular, for the problems that re-

quires treating the volume-preserving diffeomorphisms as

the nuisance parameters, the path computed by our method

is exactly the geodesic paths for the problems. Comparing

with LDDMM, our method does not require specifying a

Riemannian metric and has fewer tunable parameters. Fur-
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Figure 3: The original missing frames are highlighted with blue bounding rectangles, and the frames computed using our

method and LDDMM are highlighted with red and green bounding rectangles, respectively. The three key frames are shown

individually without bounding rectangles.

Figure 4: Missing frames from the video are highlighted with red bounding rectangles and the computed frames are high-

lighted using blue bounding rectangles. The remaining five key frames are also shown in the sequence.

thermore, its running time is considerably shorter than that

of LDDMM. Preliminary experiments, with favorable com-

parisons to LDDMM, have demonstrated the effectiveness

and efficiency of the proposed method.
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