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Abstract. In this paper, we present a novel dictionary learning frame-
work for data lying on the manifold of square root densities and ap-
ply it to the reconstruction of diffusion propagator (DP) fields given a
multi-shell diffusion MRI data set. Unlike most of the existing dictio-
nary learning algorithms which rely on the assumption that the data
points are vectors in some Euclidean space, our dictionary learning al-
gorithm is designed to incorporate the intrinsic geometric structure of
manifolds and performs better than traditional dictionary learning ap-
proaches when applied to data lying on the manifold of square root den-
sities. Non-negativity as well as smoothness across the whole field of the
reconstructed DPs is guaranteed in our approach. We demonstrate the
advantage of our approach by comparing it with an existing dictionary
based reconstruction method on synthetic and real multi-shell MRI data.

Keywords: Dictionary learning, Manifold, DW-MRI, Diffusion propa-
gator reconstruction

1 Introduction

Diffusion weighted MRI, as a non-invasive imaging technique, helps explore the
complex micro-structure of fibrous tissues through sensing the Brownian motion
of water molecules [1]. Water diffusion is fully characterized by the diffusion
Probability Density Function (PDF) called the diffusion propagator (DP) [2].
Under the narrow pulse assumption, the diffusion propagator denoted by P (r)
and the diffusion signal attenuation E(q) are related through the Fourier trans-
form[2]:
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P (r) =

∫
E(q)exp(−2πiq · r)dq (1)

where E(q) = S(q)/S0, S0 is the diffusion signal with zero diffusion gradient.
Given the diffusion MRI data, reconstructing the DP is one of the most

important problems in the field. Numerous techniques have been proposed to
this end [3–5]. For further reading, we refer the interested reader to a recent
survey [6]. Most of these methods either assume a model in which case, the
basis functions for reconstruction are predefined or in the case of model free
approaches, they have to explicitly enforce the positivity constraints on the DP,
which in some works was not done. In our work, we take a fresh approach to this
problem namely a dictionary learning approach. This approach will move away
from the requirement of pre-specifying the basis functions and instead learns it
from the data and hence is data adaptive. This is a more flexible approach over
fixing the basis. Further, by using the square root density representation of the
DP, we make use of the intrinsic structure of the manifold of square root densities
in the reconstruction process without having to resort to explicit enforcement of
non-negativity constraint on DP reconstruction. In the following, we first present
a brief review of relevant dictionary learning techniques and then present a review
of state-of-the-art in DP reconstruction from multi-shell diffusion MRI.

1.1 Dictionary learning on Riemannian manifolds: Literature
Review

Sparse coding which calls for modeling data as a linear combination of a small
number of elements from a collection of atoms, i.e., the dictionary, has been
proven very effective in many image processing tasks [7]. In these tasks, learn-
ing a dictionary that adapts well to the data is of great significance for a good
performance of the sparse representation. Therefore, considering the geometric
structure of the data space is critical to the success of dictionary learning. Most
existing dictionary learning algorithms often assume that the data points and the
atoms are vectors in a Euclidean space, and the dictionary is learned based on
the vector space structure of the input data. However, the data involved in many
image analysis tasks often reside on Riemannian manifolds such as the space of,
symmetric positive definite (SPD) matrices [8] and square root densities. There-
fore, the existing extrinsic approaches which overlook the potentially important
intrinsic geometric structure of the data are inadequate in the context of such
applications. Recently, this inadequacy was addressed by a few researchers [9]
leading to the generalization of dictionary learning to manifolds, specifically, to
the manifold of SPD matrices. However, most of these methods seek to trans-
form the problem to a simpler space and solve it there, instead of respecting the
geometric structure of the SPD matrix manifold. Needless to say, none of them
truly incorporated the intrinsic geometry implied by the data as is done in this
paper.

In general, dictionary learning in the Euclidean setting can be formulated as
minc1,··· ,cn,D

∑n
i=1 ‖si−Dci‖2 +Sp(ci), where s1, · · · , sn is the given collection

of data points, D is the matrix with columns composed of the atoms ai, ci the
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sparse coding coefficients and Sp(ci) the sparsity promoting term. When gen-
eralizing it to a Riemannian manifold M, one of the key difficulties that needs
resolution is to make sure that the collection of atoms as well as the approxi-
mation of data points generated using the atoms still lie on the manifold. The
reason being, in Euclidean space, it is the global linear structure that guarantees
the data synthesized from the atoms is contained in the same space, whereas,
on Riemannian manifolds the Riemannian geometry provides only local linear
structures through the Riemannian exponential and logarithmic maps. Yet, by
taking advantage of this diversity of linear structures it is possible to formulate
the dictionary learning in a data specific way. Details regarding this formulation
will be discussed in subsequent sections. It suffices to say that we employ the
log and exp maps along with an affine constraint to achieve this goal.

1.2 DP reconstruction from multi-shell acquisitions: Literature
review

We now present a brief review of DP reconstruction from multi-shell diffusion
MRI data. Various techniques have been proposed to reconstruct the DP from
multi-shell acquisitions of the diffusion signal[5, 10], which, compared to single
shell acquisitions provide additional information about the radial signal decay.
Most of them assume a particular model for the diffusion signal as in q-ball
imaging (QBI) [11]. As an alternative, another category of methods place weak
assumptions about the diffusion signal and therefore are capable of generating
relatively unbiased reconstruction results, such as diffusion spectrum imaging
(DSI) proposed in [12] and the tomographic reconstruction methods in [13–15].
These methods interpolate the spherical domain data samples onto a dense regu-
lar lattice and then reconstruct the DP using the Fourier transform relationship
between P (r) and E(q). This idea is also adopted in our proposed method.

However, all of the aforementioned multi-shell methods solve the reconstruc-
tion problem in a voxel-wise manner, thereby always lead to a noisy reconstruc-
tion across the field. This gives us a strong motivation for applying dictionary
learning to the reconstruction of DP fields, because the globally defined dictio-
nary plays an implicit role in regularizing the reconstructions over the entire
field. In recent years, a few dictionary learning based DP reconstruction meth-
ods have been proposed. In [16], Bilgic et al. applied adaptive dictionaries to
accelerate the DSI method for estimating the DPs. In [17], Merlet et al. pro-
posed a parametric dictionary learning framework obtaining a closed form DP
and ODF modeling from diffusion MRI data. An over-complete dictionary based
reconstruction of DP fields from single shell acquisition was presented in [18].
Nevertheless, due to the absence of explicit use of the geometric structure of
the data space itself, none of these methods can guarantee the non-negativity
of the reconstructed propagators, an intrinsic and basic property of the DP.
Accordingly, these methods are prone to higher numerical errors.

Recently several approaches that guarantee the non-negativity of the recon-
structed DP or ODF were proposed. For instance, in [19] authors used the Spher-
ical Harmonic (SH) representation for ODF and enforced non-negativity on the
continuous domain by enforcing the positive semi-definiteness of Toeplitz-like



4 Sun et al.

matrices constructed from the SH representation. Cheng et al. in [20] proposed
to reconstruct ODFs (DPs) by estimating the square root of ODF (DP) called the
wave-function directly from diffusion signals, ensuring non-negativity. The idea
of taking advantage of the square root parameterization of DPs is also adopted
in our proposed method. However, unlike dictionary based methods, the two
methods discussed above are not guaranteed to yield a smooth reconstruction
across the field and the reconstruction basis are pre-specified.

In this paper, we propose to apply the dictionary learning method generalized
to the manifold of square root densities to the reconstruction of DP fields. As the
nature of a globally learned dictionary indicates, our method will yield a smooth
reconstruction which is desirable in real applications. By taking into considera-
tion the intrinsic geometric structure of the manifold formed by the square root
of DPs, our method performs better than the reconstruction techniques based
on dictionary learning in a Euclidean setting. Furthermore, the non-negativity of
the reconstructed DPs is naturally guaranteed due to the adoption of the square
root representation and use of the intrinsic geometry of this space.

Rest of the paper is organized as follows. Section 2 contains brief background
on Riemannian manifolds and the dictionary learning formulation. We present
application to reconstruction of DP fields in section 3 and provide several exam-
ples in section 4. Finally section 5 contains conclusions.

2 Theory

2.1 Relevant basics of Riemannian manifolds

In this subsection, we briefly go over some fundamentals of Riemannian geom-
etry, details of which can be found in [21]. A manifold M of dimension d is a
topological space that is locally homeomorphic to open subsets of the Euclidean
space Rd at each point. With a globally defined differential structure, manifold
M becomes a differentiable manifold. The global differential structure allows one
to define the globally differentiable tangent space. The tangent space at p ∈M
denoted by TpM is a vector space that contains all the tangent vectors toM at
point p. A Riemannian manifold is a differentiable manifold on which each tan-
gent space TpM at point p is equipped with a differentiable varying inner product
〈·, ·〉p. The family of the inner products is called a Riemannian metric. Let pi, pj
be two points on manifold M, the geodesic curve γ : [0, 1] → M is a smooth
curve with the minimum length connecting pi and pj . Let v ∈ TpM be a tangent
vector to the manifold at point p, there exists a unique geodesic γv satisfying
γv(0) = p with initial tangent vector v. The exponential map expp : TpM→M
of v is defined as expp(v) = γv(1). Logarithmic map, as the inverse of the expo-
nential map, is denoted as logp :M→ TpM. Given two points pi, pj ∈M, logpi
maps point pj to the unique tangent vector at pi that is the initial velocity of
the geodesic γ with γ(0) = pi and γ(1) = pj . The geodesic distance between pi
and pj is computed by dist(pi, pj) = ‖logpi(pj)‖pi .
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2.2 Dictionary learning on Riemannian manifolds: Formulation

In the Euclidean setting, given a collection of signals s1, . . . , sn ∈ Rd, classical
dictionary learning methods seek to find a dictionary D ∈ Rd×m whose columns
consist of m atoms such that each signal si can be approximated as a sparse
linear combination of these atoms si ≈ Dci, where ci ∈ Rm is the coefficient
vector. Using l1 regularization on ci, the dictionary learning problem can be
formulated as:

min
ci,D

n∑
i=1

(
‖si −Dci‖22 + λ‖ci‖1

)
(2)

where λ is a regularization parameter.
In the Riemannian manifold setting, denote s1, . . . , sn ∈ M as a collection

of n data points on the manifold M, and a1, . . . , am ∈ M as atoms of the
learned dictionary D = {a1, . . . , am}. Due to the local linear geometric structure
of M, it is improper to use the linear combination of atoms ŝi =

∑m
j=1 cijaj to

approximate the data si, since there is no guarantee that ŝi is on the manifold.
Instead, by using the geodesic linear interpolation on M, si can be estimated

by ŝi = expsi

(∑m
j=1 cij logsi(aj)

)
where, expsi and logsi are exponential and

logarithmic map at si respectively, and cij ∈ R are the coefficients. Intuitively, in
order to approximate data point si, we project all the atoms in the dictionary to
the tangent space at si and perform linear combination vi =

∑m
j=1 cij logsi(aj)

on the tangent vector space TsiM, then the approximation ŝi is obtained by
taking the exponential map of vi at si.

Our goal is to build a dictionary that minimizes the sum of reconstruction
error for each data point. Define

Edata =

n∑
i=1

dist(si, ŝi)
2 =

n∑
i=1

‖ logsi(ŝi)‖
2
si =

n∑
i=1

‖
m∑
j=1

cij logsi(aj)‖
2
si . (3)

By using the l1 sparsity regularization, the dictionary learning problem on the
manifold M can be formulated as the following optimization problem

min
C,D

n∑
i=1

‖
m∑
j=1

cij logsi(aj)‖
2
si + λ‖C‖1, s.t.

m∑
j=1

cij = 1, i = 1, . . . , n (4)

where C ∈ Rn×m and the (i, j) entry of C is written as cij . A similar data term
was used in [22] but the atoms were assumed fixed. The affine constraint implies
that we are using affine subspaces to approximate the data instead of the usual
subspaces, which are simply affine subspaces based at the origin. Generalizing
from vector spaces to Riemannian manifolds, there is no corresponding notion of
the origin that can be used to define subspaces, and this geometric fact requires
the abandonment of the usual subspaces in favor of general affine subspaces. We
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can also introduce other regularizations in our framework instead of the l1 norm
but that will be a topic for future research. Similar to classical dictionary learning
methods, we use the iterative method to solve this optimization problem:

1. Sparse coding step: fix the dictionary D and optimize with respect to the
coefficients C.

2. Codebook optimization step: fix C and optimize with respect to D.

The first step is a regular sparse coding problem that can be easily solved
by many existing fast algorithms. However the second subproblem is much more
challenging, since the optimization methods in Euclidean space are not appro-
priate for atoms on manifolds.

We developed a line search based algorithm on Riemannian manifold to up-
date the dictionary D. Let the cost function to be minimized be denoted by
f(a1, . . . , am). First, we need to initialize the atoms in the dictionary. One pos-
sible choice of initialization is the m clusters of the data s1, . . . , sn generated by
a K-means algorithm applied to all the data on M. Then, a line search on the
manifold is used to optimize f(a1, . . . , am). Intuitively, the idea is to find a de-
scent direction v on the tangent space, and then walk a step along the geodesic γ
whose initial velocity is v. The details are listed in Algorithm 1. The convergence
analysis of the line search method on manifold is discussed in [23].

Algorithm 1 Line search on Riemannian manifold

Input: A set of data S = {s1, . . . , sn} on the manifoldM, coefficients C ∈ Rn×m and
initial dictionary atoms a01, . . . , a

0
m.

Output: The optimal dictionary atoms (a∗1, . . . , a
∗
m) that minimize the cost function

f(a1, . . . , am).

1. Set scalars α > 0, β, σ ∈ (0, 1) and initialize k = 0.

2. Compute gradf(ak1 , . . . , a
k
m) = (

∂f(ak
1 )

∂a1
, . . . ,

∂f(ak
m)

∂am
)

3. Pick ηk = (ηk1 , . . . , η
k
m) = −gradf , where ηki ∈ Tak

i
M.

4. Find the smallest t such that

f(expak
1
(αβtηk1 ), . . . , expak

m
(αβtηkm)) ≤ f(ak1 , . . . , a

k
m)−

m∑
i=1

σαβt‖ηki ‖ak
i
.

5. Set ak+1
i = expak

i
(αβtηki ), i = 1, . . . ,m.

6. Stop if f does not change much, otherwise set k = k + 1 and go back to step 2.

2.3 Manifold of square root densities

In this section, without loss of generality we restrict the analysis to PDFs defined

on the interval [0, T ] for simplicity: P = {p : [0, T ]→ R|∀s, p(s) ≥ 0,
∫ T
0
p(s)ds =

1}. In [24], the Fisher-Rao metric was introduced to study the Riemannian struc-
ture formed by the statistical manifold. For a PDF pi ∈ P, the Fisher-Rao metric
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is defined as 〈vj , vk〉 =
∫ T
0
vj(s)vk(s) 1

pi(s)
ds, where vj , vk ∈ TpiP. The Fisher-

Rao metric is invariant to reparameterizations of the functions. In order to fa-
cilitate easy computations when using Riemannian operations, the square root
density representation ψ =

√
p was used in [25]. The space of square root density

functions is defined as Ψ = {ψ : [0, T ] → R|∀s, ψ(s) ≥ 0,
∫ T
0
ψ2(s)ds = 1}. As

we can see, Ψ forms a convex subset of the unit sphere in a Hilbert space.

Then the Fisher-Rao metric can be obtained as 〈vj , vk〉 =
∫ T
0
vj(s)vk(s)ds,

where vj , vk ∈ Tψi
Ψ are tangent vectors. Given any two functions ψi, ψj ∈

Ψ , the geodesic distance between these two points is given in closed form by
dist(ψi, ψj) = cos−1(〈ψi, ψj〉), which is just the angle between ψi and ψj on
the unit hypersphere. The geodesic at ψi with a direction v ∈ TψiΨ is de-
fined as γ(t) = cos(t)ψi + sin(t) v

|v| . Then, the exponential map can be repre-

sented as expψi
(v) = cos(|v|)ψi + sin(|v|) v

|v| . To ensure the exponential map

is a bijection, we restrict |v| ∈ [0, π). The logarithmic map is then given by
logψi

(ψj) = u cos−1(〈ψi, ψj〉)/
√
〈u, u〉, where u = ψj − 〈ψi, ψj〉ψi.

Using the expressions for Ψ discussed above, we can perform the dictionary
learning on square root density functions. Let s1, . . . , sn ∈ Ψ be a collection of
square root density functions, and ai, . . . , am ∈ Ψ be atoms in the dictionary
D. C is a n × m matrix. If we use l1 regularization, our dictionary learning
framework becomes

min
C,D

n∑
i=1

‖
m∑
j=1

cij cos−1(〈si, aj〉)
uij
|uij |
‖2si + λ‖C‖1, s.t.

m∑
j=1

cij = 1, i = 1, . . . , n.

(5)
where uij = aj − 〈si, aj〉si. Note that in this formulation, the normalization on
atoms ai is not needed. Because by incorporating the manifold structure of the
square root densities, the atoms we learned are always on the hypersphere, while
traditional dictionary learning (Equation (2)) needs the normalization to guar-
antee the unique solution. This optimization problem can be efficiently solved
using the algorithm presented in section 2.2.

3 Application to reconstruction of DP fields

As mentioned in the introduction section, in the DP reconstruction problem, we
aim to reconstruct a smooth field of DPs P (r,x) from a given field of multi-shell
diffusion weighted MRI data E(q,x), where x represents the spatial locations.
We propose to solve this problem in two steps. Briefly speaking, the first step
is to acquire a rough estimation of the DP at each voxel through the Fourier
transform relationship between the signal E(q) and the DP, P (r), specified in
Equation (1). In the second step, in order to get a smooth reconstruction of the
DPs over the entire field, we apply the proposed dictionary learning algorithm
on the set of square root densities obtained by taking the square root of the DPs
estimated from step 1. The implementation details are given below.

Despite the simple relationship between the diffusion signal and the DP de-
scribed in Equation (1), it is often infeasible to reconstruct the DP from the
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diffusion signal directly through Fourier transform. The reason is that in prac-
tice, the diffusion signal is sampled in the q space following some pre-specified
sampling scheme, which might not be uniform and regular. One solution is to
define a regular lattice in q space and estimate the values on this lattice through
interpolation. Inspired by the work of Ye et al.[15], we choose Body Centered
Cubic (BCC) lattice to be our regular lattice for interpolation and apply Fourier
transform to the interpolated values to get an estimate of the DPs. As demon-
strated in [15], in 3-D, BCC lattice is the optimal lattice for q space sampling
because its reciprocal lattice (i.e. the FCC lattice) is the densest sphere packing
lattice.

Specifically, givenN sample measurements E(qn) on multiple spherical shells,
the desired K values E(xk) on the BCC lattice xk ∈ L can be estimated by

solving the following linear system E(qn) =
∑1≤k≤K

xk∈L E(xk)sincL(qn−xk), n =
1, . . . , N , where sincL(x) is the ideal interpolation function that depends on the
sampling lattice L. The sincL(x) for the BCC lattice is computed by Ye et. al in
[15]. Once the K estimates E(xk) on the lattice are obtained, we get a continuous

representation of E(q) as E(q) =
∑1≤k≤K

xk∈L E(xk)sincL(q−xk). Taking Fourier

transform on this equation, we get P (r) = box(r)
∑1≤k≤K

xk∈L E(xk)exp(−2πixk ·r),
where box(r) is the Fourier transform of sincL(q).

According to the definition of DP, P (r) is a PDF defined on a 3-D displace-
ment r space. Therefore, by adopting the square root parameterization, we are
able to map the estimated DPs from the space of PDFs to the manifold of square
root densities. Let ψ(r) =

√
P (r) denote the square root of the DP at a single

voxel, we apply the proposed dictionary learning algorithm on the set of ψ(r)
over the entire field. After solving for the globally defined dictionary D and the
coefficient matrix C over the field, the reconstructed DPs can be obtained by
solving a weighted mean problem on the hypersphere as described in section 2.2.

4 Experiments

In this section, we evaluate our reconstruction method by comparing it to a tra-
ditional dictionary learning based DP reconstruction method on both synthetic
and real data sets.

4.1 Synthetic Data

We synthesized a 32× 32 field of diffusion signals simulating two straight fibers
crossing in the center. The signals were generated using a mixture of two Gaus-
sian functions. The data was sampled on multiple q shells using the interlaced
scheme described in [15]. Note that this sampling scheme is not a necessity for
the application of our proposed method, we used it simply due to its high reso-
lution in q space. Rician noise with level δ varying from 0.05 to 0.3 was added
on the generated data.

Next we give the parameter settings in our reconstruction framework. In the
first step, we chose a BCC lattice to interpolate the signals onto, which consists
of two staggered Cartesian lattices of size (11 × 11 × 11) and (12 × 12 × 12)
respectively. The ‖r‖ value to evaluate P (r) on was set to be 18. Then in the
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process of dictionary learning on the square root density manifold, we set the
dictionary size to be 100.

In order to demonstrate the advantage of incorporating the manifold struc-
ture into the reconstruction, we compared our method with the method in [18].
Since in [18] the authors adopted an adaptive kernel framework to model the
signal in q space, which assumes a single b value in the signal acquisition, their
framework can not handle data acquired on multiple q shells. Therefore, for the
purpose of comparison we generalized it to make it applicable to multi-shell data,
by using a tensor product of two 1-D splines in place of the 1-D spline in the
Kernel they used. Also, we removed the NLM-based term in the cost function
of [18] to achieve fair comparisons with our method.

We applied both methods to the synthetic data we generated with varying
noise levels. The accuracy of the reconstruction was evaluated in terms of the
average angular error over the entire field as well as within the crossing area. The
angular error was computed based on the reconstructed P (r) value at ‖r‖ = 18.
The quantitative comparisons of the two methods are given in Fig.1. The plot
shows that our method has a higher accuracy in the reconstruction over the
traditional dictionary learning based method. Note that the scales of the Average
Angular Error axis are different in these two graphs. By comparing them we can
see that the advantage of our scheme over the other one is more significant in
the crossing area, where an accurate reconstruction is more difficult to achieve.
This good performance is due to the incorporation of the intrinsic geometric
structure of the Riemannian manifold in our reconstruction process.

In addition to the numerical comparison, a visual comparison is also shown
above. The plots of the reconstructed P (r) field from synthetic data with noise
level δ = 0.25 for the two methods are displayed side by side in Fig. 2. As is
shown in the image, our method yields a smoother reconstruction over the entire
field, especially in the crossing region. Furthermore, in our result(b), the fiber
directions can be easily identified at each voxel in the crossing area whereas in
the other one(a), the information is lost at some locations.

Fig. 1. The average angular error on the synthetic data set with varying noise levels.
(a) Over the entire field. (b) Within the crossing area.
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Fig. 2. Reconstruction of P (r) on synthetic data set with noise level δ = 0.25. (a) The
traditional dictionary learning based method. (b) The proposed method.

4.2 Real Data

In this section we present experimental results on real diffusion MRI data ac-
quired from two different regions of a mouse brain: 1) a sagittal set through the
midline and 2) a coronal set at the level of the corpus callosum. All magnetic
resonance imaging was performed on a 600MHz Bruker imaging spectrometer,
using a conventional diffusion weighted spin echo sequence. Parameters of the
data acquisition for the two data sets are as follows. Dataset 1 was acquired with:
slicethickness = 0.35mm, 1.8 × 0.9cm2 field-of-view, 256 × 128 data matrix,
and 70.3µm in-plane resolution. Diffusion parameters include: diffusion time,
∆ = 12msec, diffusion gradient duration, δ = 1msec, and b-values of 187, 750,
1687 and 3000s/mm2. Dataset 2: slicethickness = 0.3mm, 1.2 × 1.2cm2 field-
of-view, 192 × 192 data matrix, and 62.5µm in-plane resolution, the diffusion
parameters are identical to the ones in Dataset 1. The sampling scheme was the
same as used in the synthetic experiments.

The P (r) reconstruction results for both data sets are displayed in Fig.3. The
images in the first row correspond to Dataset 1 while the second row Dataset
2. In each row, from left to right, the images are respectively the S0 image
of the entire image plane including the ROI (the region in the red box), the
reconstruction result using traditional dictionary learning based method and
the one given by our proposed method. It is obvious from the visualization
that our method performs better at smoothing out the noise from both data
sets and therefore yields smoother DP fields. Furthermore, the fiber orientations
estimated in our method are in accordance with expectations. As we can see in
the ROI of Fig 3(a), which is part of the mouse cerebellum, the orientations of
the DPs in the white matter (corresponding to the dark region in the S0 image)
are more consistent in (c) than in (b).
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5 Conclusions

In this paper, we generalized the traditional dictionary learning methods on
Euclidean space to Riemannian manifolds. Specifically, we proposed a novel dic-
tionary learning framework for data on the manifold of square root densities
and applied it to the reconstruction of DP fields from multi-shell diffusion MRI
data. Through multiple synthetic and real data experiments, we showed that our
reconstruction method performs well in comparison to the traditional dictionary
learning based DP reconstruction methods, hence, justifying the incorporation
of the geometric structure of the data space (square root density Riemannian
manifold in our case) into our reconstruction.

Fig. 3. Reconstruction results on real data. (a) The S0 image of the entire field of
Dataset 1, where the ROI is indicated by the red box. (b) P (r) Reconstruction using
traditional dictionary learning based method on Dataset 1. (c) P (r) Reconstruction
using the proposed method on Dataset 1. (d)(e)(f) are the corresponding images for
Dataset 2.
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