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A Novel Dynamic System in the Space of SPD Matrices with Applications to
Appearance Tracking∗

Guang Cheng† and Baba C. Vemuri†

Abstract. In this paper, we address the problem of video tracking using covariance descriptors constructed
from simple features extracted from the given image sequence. Theoretically, this can be posed as a
tracking problem in the space of (n, n) symmetric positive definite (SPD) matrices denoted by Pn.
A novel probabilistic dynamic model in Pn based on Riemannian geometry and probability theory
is presented in conjunction with a geometric (intrinsic) recursive filter for tracking a time sequence
of SPD matrix measurements in a Bayesian framework. This newly developed filtering method can
be used for the covariance descriptor updating problem in covariance tracking, leading to new and
efficient video tracking algorithms. To show the accuracy and efficiency of our tracker in comparison
to the state-of-the-art, we present synthetic experiments on Pn and several real data experiments
for tracking in video sequences.
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1. Introduction. The space of symmetric positive definite (SPD) matrices denoted as
Pn = {X = (xij)1≤i,j≤n|X = XT ∀v ∈ Rn,v �= 0,vTXv > 0} is very important as a feature
space in the area of computer vision and its applications. Several kinds of features lie in
Pn, such as covariance matrices, diffusion tensors in medical imaging, Cauchy deformation
tensors in mechanics, etc. Unlike Euclidean space, Pn is a Riemannian manifold but not a
vector space. Many operations and algorithms in Euclidean space cannot be applied directly
to Pn, and this has led to a flurry of research activity in the recent past. Several operations in
Euclidean space have been extended to Riemannian manifolds. For example, the extension of
the arithmetic mean to a Riemannian manifold is called the Karcher mean [14]; the extension
of principal component analysis (PCA) is called the principle geodesic analysis [10, 11]; the
mean-shift algorithm [8] has also been extended to Riemannian manifolds [31]. However,
for filtering operations in dynamic scenes such as the popular Kalman filter [29], an intrinsic
extension does not exist in the literature to date.

Recursive filtering is a technique to reduce the noise in the measurements by using the
theory of recursion applied to filtering. It is often used in time sequence data analysis, espe-
cially in the tracking problem, where the model of the target needs to be updated based on the
measurement and previous tracking results. Many recursive filtering techniques have been de-
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veloped in Euclidean space, such as the Kalman filter, the extended Kalman filter, etc., where
the inputs and outputs of the filter are all vectors [29]. However, several tracking problems
are naturally set in Pn, a Riemannian symmetric space [13]. Recent work reported in [26]
on covariance tracking uses a covariance matrix (constructed from pixelwise features inside
the object region) that belongs to Pn in order to describe the appearance of the target being
tracked. This covariance descriptor has proved to be robust in both video detection [35, 33]
and tracking [26, 24, 39, 18, 36, 15, 19, 5]. The covariance descriptor is a compact feature rep-
resentation of the object with relatively low dimension compared to other appearance models,
such as the histogram model in [9]. In [34] an efficient algorithm for generating covariance de-
scriptors from feature vectors is reported based on the integral image technique, which makes
it possible to use covariance descriptors in real time video tracking and surveillance.

One major challenge in covariance tracking is how to recursively estimate the covariance
template (a covariance descriptor that serves as the target appearance template) based on
the input video frames. In [26] and also in [24, 19] the Karcher mean of sample covariance
descriptors from a fixed number of video frames is used as the covariance template. This
method is based on the natural Riemannian distance—the GL-invariant distance (section 2.1)
in Pn. Currently, this Karcher mean can not be computed in closed form, and the computation
is achieved using a gradient based optimization technique which is inefficient especially when
the input contains a large number of samples. To overcome this efficiency problem, a Log-
Euclidean metric was used in [18, 15], an arithmetic mean like method was used in [39], and
a recursive filter for linear systems in Pn was developed in [36]. However, none of these is
intrinsic because they adopt methods which are extrinsic to Pn.

Recently, some methods were reported addressing the recursive filtering problem on Rie-
mannian manifolds other than Pn. For example, the geometric particle filter for handling
two-dimensional affine motions (2-by-2 nonsingular matrix) was reported in [25, 17, 15], and
an extension to Riemannian manifolds was developed in [28]. However, since the covariance
descriptor is usually a high-dimensional descriptor, e.g., the degrees of freedom of a 5 × 5
covariance matrix are 15, the number of samples required for the particle filter would be quite
large in this case. Additionally, computing the intrinsic (Karcher) mean on Pn is computa-
tionally expensive for large sample sizes. Thus, using an intrinsic particle filter to update
covariance descriptor would be computationally expensive for the tracking problem. There
are also existing tracking methods on Grassmann manifolds [30, 7]. However, it is nontrivial
to extend these to Pn, since Grassmann manifolds and Pn have very different geometric prop-
erties; e.g., Grassmann manifolds are compact and have a nonnegative sectional curvature
when using an invariant Riemannian metric [38], while Pn is noncompact and has nonpositive
sectional curvature when using an invariant (to the general linear group (GL)) Riemannian
metric [13].

In this paper, we focus on the problem of developing an intrinsic recursive filter—abbreviated
IRF for the rest of this paper—on Pn. A novel probabilistic dynamic model on Pn based on
Riemannian geometry and probability theory is presented. Here, the noisy state and obser-
vations are described by matrix-variate random variables whose distribution is a generalized
normal distribution on Pn based on the GL-invariant measure. In [23, 16] the authors provide
a linear approximation of this distribution for cases when the variance of the distribution is
very small. In contrast, in this paper, we explore several properties of this distribution for
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the arbitrary variance case. We then develop the IRF based on this novel dynamic model and
the Bayesian framework with a moving window approximation presented in [7] which tracks
modes of the distribution (for details, see section 3). By applying this recursive filter—to
achieve covariance tracking—in conjunction with an existing particle position tracker [2], we
obtain a new efficient real time video tracking algorithm described in section 3.2. We present
experiments with comparisons to existing state-of-the-art methods and quantitative analysis
that support the effectiveness and efficiency of the proposed algorithm.

The remainder of this paper is organized as follows. In section 2, we introduce the prob-
abilistic dynamic model on Pn after presenting some background Riemannian geometry and
an invariant probability measure. Then the IRF and the tracking algorithms are presented in
section 3, followed by the experiments in section 4. Finally we draw conclusions in section 5.

2. IRF: A new dynamic tracking model on Pn.

2.1. Riemannian geometry on Pn. In this section, we briefly introduce the basic tools of
Riemannian geometry for Pn and then motivate the use of the GL-invariant metric on Pn for
developing our new dynamic model. We refer the reader to [21, 13, 32] for details. Following
this, we contrast the popularly used Log-Euclidean framework against the intrinsic framework
for developing the dynamic recursive filter proposed in this paper. This provides the necessary
motivation for an IRF.

Pn is the space of n×n SPD matrices, which is a Riemannian manifold. It can be identified
with the quotient space GL(n)/O(n) [32], where GL(n) denotes the general linear group, the
group of (n×n) nonsingular matrices, and O(n) is the orthogonal group, the group of (n×n)
orthogonal matrices. This makes Pn a homogeneous space with GL(n) as the group that acts
on it and the group action defined for any X ∈ Pn by X[g] = gXgt. One can now define
GL-invariant quantities such as the GL-invariant inner product based on the group action
defined above. We will now begin with inner product in the tangent space of Pn. For tangent
vectors U and V ∈ TXPn (the tangent space at point X, which is the space of symmetric
matrices of dimension (n+1)n/2 and a vector space) the GL-invariant inner product is defined
as ∀g ∈ GL(n), 〈U,V〉X = 〈gUgt,gVgt〉gXgt . On Pn this GL-invariant inner product takes
the form

(2.1) 〈U,V〉X = tr(X−1/2UX−1VX−1/2).

With metric/inner product defined on the manifold, the length of any curve in Pn, γ : [0, 1] →
Pn is defined as length(γ)2 =

∫ 1
0 〈γ̇, γ̇〉γ(t)dt. The distance between any X,Y ∈ Pn is defined as

the length of the shortest curve between X and Y (geodesic distance). With the GL-invariant
metric, the distance between X,Y ∈ Pn is given by (see [32])

(2.2) dist(X,Y)2 = tr(log2(X−1Y)),

where log is the matrix log operator. Since this distance is induced from the GL-invariant
metric in (2.1), it is naturally GL invariant, i.e., dist2(X,Y) = dist2(gXgt,gYgt).

With GL-invariant metric defined on Pn, the intrinsic or Karcher mean of a set of elements
Xi ∈ Pn can be computed by performing the following minimization:

(2.3) μ∗ = argmin
μ

∑
i

dist2(Xi, μ)
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Figure 1. An example of different distances on S2.

using a gradient based technique.

The Log and Exponential maps [13] are very useful tools on the Riemannian manifold.
The Exponential map denoted as ExpX(·), where X ∈ Pn, maps a vector rooted at the origin
of the tangent space TXPn to a geodesic emanating from X. The Log map (LogX(·)) is the
inverse of the Exponential map. The Exponential and Log map on Pn are given by

ExpX(V) = X1/2exp(X−1/2VX−1/2)X1/2,

LogX(Y) = X1/2log(X−1/2YX−1/2)X1/2,
(2.4)

where X,Y ∈ Pn, V ∈ TXPn, and log and exp denote the matrix exp and log operators.

2.1.1. Geodesic, Euclidean, and Log-Euclidean distances. To illustrate the differences
between geodesic, Euclidean, and Log-Euclidean distances on a Riemannian manifold, we have
a simple example on S2—the unit 2-sphere depicted in Figure 1. Given two points X,Y ∈ S2,
the geodesic distance is the length of the shorter arc of the great circle between X and Y—the
solid black line. The Euclidean distance between them is the length of the straight line between
X and Y in the embedded three-dimensional Euclidean space—the dashed grey line. Given
another point B ∈ S2, we could project X,Y to the tangent space at B, TBS

2 by the Log
map. In Figure 1, the points after projection are U,V. The length of the line UV (the dashed
black line) can then be used as the distance between X,Y, which is called Log-Euclidean
distance. Note that if B = X or B = Y, the Log-Euclidean and geodesic distances are the
same. Otherwise, they are different in Riemannian manifolds except for certain manifolds like
Euclidean space.

The Euclidean and Log-Euclidean distances are extrinsic to the manifold, i.e., depend on
the embedding Euclidean space and a predefined base point B for the Log-Euclidean distance.
Therefore, they are often called extrinsic distances, while the geodesic distance which depends
only on the manifold is called intrinsic distance. In [1], the base point B is fixed at the identity
element of the space. However, so long as there is a predefined base point B �= X or Y used
to compute the distance between X and Y as shown in Figure 1, the framework can still be
viewed as Log-Euclidean or extrinsic, especially when this distance serves the purpose of a
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cost function being optimized. In [36], the estimation error is measured using a arbitrarily
chosen base point B, which makes it a Log-Euclidean method, even though the base point is
not fixed.

In Pn, the intrinsic/geodesic distance is based on the GL-invariant metric, as shown in
section 2.1. Euclidean and Log-Euclidean distances can also be viewed as being based on
corresponding metrics which are invariant to O(n). So, which metric should we choose for the
covariance tracking problem? There are two primary reasons for the choice of a GL-invariant
metric over the conventional Euclidean metric.

First of all, Pn is an open subset of the corresponding Euclidean space R(n+1)n/2, which
implies that Pn would be incomplete with a Euclidean metric, since it is possible to find a
Cauchy sequence which might not converge for this case. This implies that for some of the
optimization problems set in Pn, the optimum cannot be achieved inside Pn. This in turn
means that the covariance updates could lead to matrices that are not covariance matrices, an
unacceptable situation in practice. This problem will not arise when using the GL-invariant
metric, since the space of Pn is geodesically complete with a GL-invariant metric [32].

Second, the feature vectors in general might contain components of different scales and
from disparate sources, e.g., object position, color, etc. In this case, a normalization of the
(in general) unknown scales of different components would be necessary when using Euclidean
distance, which is nontrivial and may lead to use of ad hoc methods. However, with a GL-
invariant metric, this scaling issue does not arise, since the presence of different scales for the
elements of a feature vector from which the covariance matrix is constructed is equivalent
to multiplication of the covariance matrix with a positive definite diagonal matrix. This
operation is a GL group operation, and since GL invariance implies invariance to GL group
operations, this scaling issue is a nonissue when using a GL-invariant metric.

The Log-Euclidean metric can be viewed as a linear approximation of the GL-invariant
metric. This approximation has lower error when in a small neighborhood of the predefined
base point. But when computed in a large region around the base/anchor point, it will suffer
from high approximation error, as shown in our variance computation in section 2.2.3 and also
the result in the synthetic experiment in section 4.1, which would accumulate with each frame
and affect the tracking result, especially for noisy data. Also, the Log-Euclidean metric as
an approximation does not preserve some of the good properties of the GL-invariant metric,
such as the scale invariance, as mentioned above.

The GL-invariant metric, on the other hand, is more difficult to compute. Many GL-
invariant computations do not have closed form solutions and thus are less efficient to compute.
However, the proposed filter in this paper could be computed with a computational effort
similar to that of the filter in [36] but is more accurate for larger amounts of noise.

2.2. Invariant measure and generalized normal distribution on Pn.

2.2.1. Probability measures on Pn. To define a probability distribution on a manifold,
first we need to define a measure on the manifold. In this paper, we use the GL-invariant
measure [dX] on Pn. GL invariance here implies ∀g ∈ GL(n) and ∀X ∈ Pn, [dgXgt] = [dX].
From [32], we know that [dX] = |X|−(n+1)/2

∏
1≤i≤j≤n dxij , where xij is the element in the

ith row and jth column of the SPD matrix X. Also, this measure is consistent with the
GL-invariant metric defined on Pn defined earlier and also presented in [23].
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Similar to the Karcher mean, the Karcher expectation for the random variable X on any
Riemannian manifold M can be defined as the result of the following minimization problem:

(2.5) X̄ = E(X) = argmin
Y∈M

∫
M

dist2(X,Y)dμ(X),

where X̄ denotes the expectation of random variable X and μ(X) is the probability measure
defined on M . Similarly, the variance can be defined based on this expectation by

(2.6) V ar(X) =

∫
M

dist2(X, X̄)dμ(X).

Note that, in Euclidean space Rm, which is also a Riemannian manifold, the Karcher expec-
tation is equivalent to the traditional definition of expectation, and the variance in (2.6) is
the trace of the covariance matrix. In Pn, by taking the gradient of the energy function in
(2.5) and setting it to zero, we find that the expectation of the random variable will satisfy
the following equation:

(2.7)

∫
Pn

log(X̄−1/2XX̄−1/2)p(X)[dX] = 0.

2.2.2. Generalized normal distribution on Pn. The generalization of the normal distri-
bution to Pn used in this paper is defined as follows:

(2.8) dP (X;M, ω2) = p(X;M, ω2)[dX] =
1

Z
exp

(
− dist(X,M)2

2ω2

)
[dX],

where P (·) and p(·) are the probability distribution and density, respectively, of the matrix-
variate random variable X ∈ Pn, with two parameters M ∈ Pn and ω2 ∈ R+, and Z is the
scalar normalization factor. dist(·) is defined in (2.2). As shown in [23], this distribution
has minimum information given the Karcher mean and variance. That is, in the absence of
any information this distribution would be the best possible assumption from an information
theoretic viewpoint. Also, this distribution is different from the Log-normal distribution which
was used in [36, 27]. Actually, the two distributions have very similar densities, but the density
used in this paper is based on GL-invariant measure while Log-normal density is based on the
Lebesgue measure in Euclidean space.

A very important property of the above generalized normal distribution is summarized in
the following theorem, whose proof is given in Appendix A.

Theorem 2.1. The normalization factor Z in (2.8) is a finite constant with respect to pa-
rameter M ∈ Pn.

The consequence of Theorem 2.1 is that if the prior and the likelihood are both based on
the generalized normal distribution defined using the GL-invariant measure, computing the
mode of the posterior density can be achieved by minimizing the sum of squared GL-invariant
distances from the unknown expectation of the given samples.

One direct consequence of Theorem 2.1 is the following corollary, whose proof is given in
Appendix A.
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Corollary 2.2. Given a set of independent and identically distributed (i.i.d) samples {Xi}
drawn from the distribution dP (X;M, ω2), the MLE of the parameter M is the Karcher mean
of all samples.

From Theorem 2.1 we know that the normalization factor Z in (2.8) is a function of ω.
The integral in (A.2) is nontrivial, and currently no exact solution is available for arbitrary
n. For n = 2 we have

Z2(ω) = 2c2

∫ ∞

−∞

∫ y1

−∞
exp

(
−

2∑
i=1

(
1

2ω2
y2i +

1

2
yi

))
(exp(y1)− exp(y2))dy2dy1

=
√
2πc2ωexp

(
1

4
ω2

)∫ ∞

−∞
exp

(
− (y1 − 0.5ω2)2

2ω2

)(
1 + erf

(
y1 + 0.5ω2

√
2ω2

))

− exp

(
− (y1 + 0.5ω2)2

2ω2

)(
1 + erf

(
y1 − 0.5ω2

√
2ω2

))
dy1

= 4πc2ω
2exp

(
1

4
ω2

)
erf

(
ω

2

)
,

(2.9)

where erf(x) = 2√
π

∫ x
0 exp(−t2)dt is the error function.

2.2.3. Mean and the variance of the generalized normal distribution. Similar to the
normal distribution in Euclidean space, the mean and variance of the generalized normal
distribution on Pn in (2.8) are controlled by the parameters M and ω2, respectively. The
relation between M and dP (X;M, ω2) is given by the following theorem, whose proof is given
in Appendix B.

Theorem 2.3. Parameter M is the Karcher expectation of the generalized normal distribu-
tion dP (X;M, ω2).

The variance of dP (X;M, ω2) is controlled by the parameter ω2. Unlike the multivariate
normal distribution in Euclidean space, where the Karcher variance (see (2.6)) is equal to
nω2, the relation between the variance and ω2 of the generalized normal distribution is much
more complex. Without loss of generality we assume X ∈ Pn is a matrix variate random

variable from dP (X; I, ω2). The variance V ar(X) = 1
Z

∫
Pn

||log(X)||2exp(− ||log(X)||2
2ω2 )[dX]. As

in (A.2), by using the Polar coordinates and taking the log of the eigenvalues, we can get

(2.10) V ar(X) = ω2V arq(y),

where y is a random vector in Rn having a distribution with density function,

(2.11) q(y) =
1

z(ω)
exp

(
− 1

2

∑
i

y2i

) ∏
1≤i<j≤n

2

∣∣∣∣sinh
(
ω(yi − yj)

2

)∣∣∣∣,
where z(ω) is the normalization factor. Currently, there are no analytic solutions for V arq(y)
for arbitrary n. When n = 2 we can compute V ar(y) using a technique similar to that in
(2.9):

(2.12) V arq(y) =
ω√

πexp(14ω
2)erf(ω2 )

+ 2

(
1 +

ω2

4

)
.
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From (2.12) we can find that in P2 when ω is close to zero, V ar(X) ≈ 3ω2, and when ω is

large, V ar(X) ≈ ω4

2 . This is because Pn can be locally approximated by a Euclidean space.
When ω is close to zero, the major portion of the distribution would be in a small region in
Pn, where Euclidean approximation is relatively accurate. Hence, V ar(X) is proportional to
ω2, which is similar to the normal distribution in Euclidean space. When ω2 is not close to
zero, Euclidean approximation is no longer accurate, and the V ar(X) becomes a complicated
function of ω2. This property has been used to get the approximation of the generalized
normal distribution with small ω2 in [23, 16].

The following two theorems show that the above stated approximations will still be satis-
fied for n > 2, whose proofs are given in Appendices C and D, respectively.

Theorem 2.4.

(2.13) lim
ω→0

V ar(X)

ω2
=

n(n+ 1)

2
.

Note that this theorem can also be obtained using the approximation of the generalized
normal distribution with small ω2 in [23, 16]. Furthermore, from the proof in Appendix C,
we can deduce that since the Log-normal is a projection of a normal distribution from the
tangent space (can be identified with Sym(n)) to Pn, and here the random vector y is the
normalized log of the eigenvalues of X, we can see that when ω is close to zero, the generalized
normal distribution can be approximated by a Log-normal distribution.

Theorem 2.5.

(2.14) lim
ω→∞

V ar(X)

ω4
=

(n3 − n)

12
.

2.3. The probabilistic dynamic model on Pn. To perform tracking on Pn, obviously the
observation Yk at frame k lies on Pn. Also, we can define the state to lie on Pn, i.e., Xk ∈ Pn.
The state transition model and the observation model can then be defined as

p(Xk|Xk−1) =
1

Zs
exp

(
− dist2(Xk,gXk−1g

t)

2ω2

)
,(2.15)

p(Yk|Xk) =
1

Zo
exp

(
− dist2(Yk,hXkh

t)

2φ2

)
,(2.16)

where g,h ∈ GL(n). ω2, φ2 > 0 are the parameters that control the variance of the state
transition and the observation noise. The above two densities are both based on the GL-
invariant measure on Pn, unlike in [36, 27], where they are based on the Lebesgue measure.
The key implication of this is that the normalization factor in the densities is a constant for
the GL-invariant measure and not so for the Lebesgue measure case. If the normalization
factor is not a constant, one does not have a valid density.

3. IRF-based tracking algorithm on Pn.

3.1. The Bayesian tracking framework. For simplicity, we use the Bayesian tracking
framework described in [7] here. The tracking problem can be viewed as, given a time sequence
of observations Ys = {Y1,Y2, . . . ,Ys} from time 1 to time s, how can one compute the state
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Xs at time s? To solve this problem, first we make two assumptions: (1) The state transition
is Markovian, i.e., the state Xs depends only on Xs−1, or say

(3.1) p(Xs|Xs−1,Ys−1) = p(Xs|Xs−1).

(2) The observation Ys is dependent only on the state Xs at the current time point s, i.e.,

(3.2) p(Ys|Xs,Ys−1) = p(Ys|Xs).

Thus, p(Xs|Xs−1) is called the state transition model and p(Ys|Xs) is called the observation
model.

The goal of tracking can thus be viewed as computing the posterior p(Xs|Ys). First we
have

(3.3) p(Xs|Ys) = p(Xs,Ys)/p(Ys) ∝ p(Xs,Ys)

and

p(Xs,Ys) = p(Ys|Xs)p(Xs|Xs−1)p(Xs−1,Ys−1)

=

s∏
k=1

p(Yk|Xk)p(Xk|Xk−1).

By using a moving window approximation and setting the window width to be 2, we can then
compute X̂k, X̂k−1 by solving the following optimization problem:

X̂k, X̂k−1 = argmax
Xk,Xk−1

k∏
j=k−1

p(Yj |Xj)p(Xj |Xj−1)

= argmin
Xk ,Xk−1

Ek(Xk,Xk−1),

where

Ek(Xk,Xk−1) = φ−2dist2(h−1Ykh
−t,Xk) + ω−2dist2(gXk−1g

t,Xk)

+φ−2dist2(h−1Yk−1h
−t,Xk−1) + ω−2dist2(Xk−1,gXk−2g

t).
(3.4)

Thus Ek is the energy function we would like to optimize at each frame k. Upon a closer
look, we get the following theorem on the geodesic convexity of Ek and whose proof is given
in Appendix E.

Theorem 3.1. The energy function Ek in (3.4) is geodesically convex on the Riemannian
manifold Pn × Pn, where × denotes the Cartesian product.

A function f : Pn �→ R being geodesically convex implies, for all geodesics on γ : [0, 1] �→
Pn, the composition f ◦ γ is convex [37]. Geodesic convexity is an extension of the standard
notion of convexity to the Riemannian manifold. It is not hard to show that both convexi-
ties share most of the properties, such as the local minimum being equivalent to the global
minimum, etc. More details on the properties can be found in [37].
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By taking the gradient of Ek with respect to Xk, we can find that at the local minimum
(3.5) will be satisfied:

(3.5) φ−2LogXk
(h−1Ykh

−t) + ω−2LogXk
(gXk−1g

t) = 0.

This means that when reaching the optimum, Xk will be on the geodesic of h−1Ykh
−t and

gXk−1g
t, and dist(h−1Ykh

−t,Xk)
dist(gXk−1g

t,Xk)
= φ2

ω2 . Thus at the optimum point we will have

φ−2dist2(h−1Ykh
−t,Xk) + ω−2dist2(gXk−1g

t,Xk)

=
1

φ2 + ω2
dist2(h−1Ykh

−t,gXk−1g
t).

(3.6)

Combining (3.6) and (3.4), we can get

E′
k(Xk−1) =

1

φ2 + ω2
dist2(h−1Ykh

−t,gXk−1g
t)

+φ−2dist2(h−1Yk−1h
−t,Xk−1) + ω−2dist2(Xk−1,gXk−2g

t).

(3.7)

It is obvious that E′
k and Ek have the same optimum. Instead of minimizing Ek, we can

minimize E′
k, which is a weighted Karcher mean of three points on Pn. The classical gradient

decent algorithm on Pn [21] can efficiently solve this problem.
After getting the optimal X∗

k−1, X
∗
k can be computed in a closed form:

(3.8) X∗
k = (h−1Ykh

−t)1/2[(h−1Ykh
−t)−1/2gX∗

k−1g
t(h−1Ykh

−t)−1/2]
φ2

φ2+ω2 (h−1Ykh
−t)1/2.

It is easy to show that the state update here is an estimation of the mode of the posterior
p(Xs|Ys), which is different from the usual Kalman filter and particle filter methods, where
the state update is the mean of the posterior p(Xs|Ys). In the proposed update process, the
covariance of the posterior is not necessary for updating the state. We do not provide an
update of the covariance here, partly because the covariance update is hard to compute for
this distribution on Pn. Actually, there is no existing closed form solution for the covariance

matrices even for the distribution p(Xk|Xk−1) = 1
Zs

exp(−dist2(Xk ,gXk−1g
t)

2ω2 ). In our future
work, we will focus on developing an efficient and convergent covariance updating mechanism
in this framework.

3.2. The tracking algorithm. The intrinsic recursive filter (IRF) for covariance matrices
(descriptors) on Pn presented above can be used in combination with many existing tracking
techniques. Many algorithms based on covariance descriptors like those in [26, 36] can use our
IRF as the model updating method for covariance descriptors. In this paper we combine the
IRF with an existing particle position tracker [2] and get a real-time video tracking algorithm.

3.2.1. Feature extraction. Assume we have an rectangular region R with width W and
height H which represents the target object in a certain image I in the video sequence. The
feature vector f(x, y), where (x, y) ∈ R, can be extracted to include the information of ap-
pearance, position, etc., to describe information at the point (x, y). In [26], the feature vector
was chosen to be f = [x, y, I(x, y), |Ix(x, y)|, |Iy(x, y)|], where Ix and Iy are the components
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of the gradient ∇I. For color images, I(x, y) = [R,G,B] is a vector. With the feature vec-
tors at each point in the region of the object, the covariance matrix can be computed as
CR = 1

WH

∑
k∈R(fk − μR)(fk − μR)

t. This covariance matrix can be computed in constant
time with respect to the size of the region R by using the technique called the integral image,
as was done in [34]. We can also add the mean μR into the covariance descriptor and still
obtain an SPD matrix in the following manner:

(3.9) ĈR =

[
CR + λ2μμt λμ

λμt 1

]
,

where λ is a parameter used to balance the effect of the mean and variance in the descriptor
(in this paper λ = 0.001).

As in [34], we use several covariance descriptors for each object in the scene. Very briefly,
each region enclosing an object is divided into five regions, and in each of these, a covariance
descriptor is computed and tracked individually. A matching score (likelihood) is computed
using four of them with relatively small distance to the corresponding template in the template
matching stage described below. This approach is used in order to increase the robustness of
our algorithm.

3.2.2. Tracking and template matching. We use a sampling importance resampling
(SIR) particle filter [2] as a position and velocity tracker. The state vector of the particle
filter at the kth frame is now given by uk = (xk, yk, vx,k, vy,k, log(sk))

t, where xk, yk, vx,k.vy,k
denote the position and velocity of the object in the two-dimensional image, and log(sk) is
the log of the scale. The state transition is defined by the equation below:

(3.10) uk = Fuk−1 + n,

where the state transition matrix F is defined based on Newton’s first law:

(3.11) F =

⎡
⎢⎢⎢⎢⎣
1 0 0.01 0 0
0 1 0 0.01 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ .

The additive noise n is normally distributed with the covariance matrix assumed to be a
diagonal matrix, and in our work reported here, it was set to (42, 42, 202, 202, 0.0152). These
state transition parameters are dependent on the videos being tracked. They could also be
learned from the manually labelled training sets.

At the kth frame, the likelihood for the particle filter is based on the generalized normal
distribution, as discussed in section 2.2:

(3.12) p(Ik|uk) =
1

Z
exp

(
− dist(Yk,hXkh

t)2

2φ2

)
,

where Yk is the covariance descriptor extracted from the image Ik based on the state vector
uk, as described in section 3.2.1. Xk is the covariance template updated using our IRF.
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The classical particle filter updates the weight for the sample using the following equation:

(3.13) wi
k ∝ wi

k−1

p(Ik|ui
k)p(u

i
k|ui

k−1)

q(ui
k|ui

k−1, Ik)
,

where wi
k is the weight for the ith sample at frame k and q is the importance sampling density.

Since we are using SIR, q(uk|uk−1, Ik) = p(uk|uk−1), and the weight update equation becomes

(3.14) wi
k ∝ wi

k−1p(Ik|ui
k).

At step k, we first compute the prediction of the object covariance template using Ŷk =
hgXk−1g

tht and then the prediction of the position and scale of the object represented in the
set of particles based on the state transition matrix (3.11). Covariance descriptors then are
computed for each of the predicted particle states at the corresponding object regions. The
likelihood for each covariance descriptor is computed based on the generalized normal distri-
bution centered at the predicted corresponding covariance template. And the likelihood for
each particle’s state is computed as multiplication of the likelihoods of covariance descriptors
that are closer to their corresponding template, as mentioned above. After multiplying the
likelihood with the weight of each particle, the mean of the sample set is computed. This is
followed by computation of covariance descriptors at the location of the mean of the particle
set. This covariance descriptor then forms the input to our IRF. The algorithm for each frame
is given in the text box below.

Tracking Algorithm

Step 1. Resample and draw samples following (3.10).
Step 2. Predict the covariance template at the current step using (2.15).
Step 3. Extract covariance descriptor using methods in section 3.2.1 for each particle and

then update each particle weight using (3.14).
Step 4. Compute the weighted mean uk of all the particles.
Step 5. Extract the covariance descriptor at uk and use as observation Yk to optimize the

energy function in (3.7), and then update the covariance templateXk using (3.8).

In our paper, we use 300 particles for the particle set. Our tracking algorithm runs at
around 15Hz for videos with a frame size of 352× 288 on a desktop with a 2.8GHz CPU.

4. Experiments. In this section, we present the results of applying our intrinsic recursive
filter to both synthetic and real data sets. The real data sets were taken from standard video
sequences used in the computer vision community for testing tracking algorithms. First we
present the synthetic data experiments and then the real data.

4.1. Synthetic data experiments. To validate the proposed filtering technique, we first
performed synthetic data experiments on P3, the space of 3×3 SPD matrices. A time sequence
of i.i.d samples of SPD matrices was randomly drawn from the Log-normal distribution [27]
centered at the identity matrix. This was done by first drawing samples {vi} in R6 (isomorphic
to Sym(3)) from the normal distribution N(0, σ2I6). Then, these samples are projected to
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Figure 2. Mean estimation error from 20 trials for the synthetic data experiment. The x-axis denotes
the time step. The y-axis denotes the estimation error measured using the Riemannian distance between the
estimates and the ground truth. In all three subfigures the black curves denote the estimation error for our IRF
and the grey curves for LRF with Xb set as the observation in the first step.

P3 (denoted by {Xi}) using the exponential map at the point I3 (identity matrix). Thus,
{Xi} can be viewed as a time sequence of random measurements of the identity matrix. Our
recursive filter can then be used as an estimator of this random process. The estimation error
at time point k can be computed as the Riemannian distance by (2.2) between the estimate
X̂k and the ground truth (the identity matrix).

We tested our IRF and evaluated it by comparing its performance with the recursive filter
for linear systems on Pn (denoted by LRF) reported in [36]. The parameters of LRF were set
to be exactly the same as was presented in [36] except for the initial base point Xb, where all
the samples are projected to the tangent space TXbPn and then processed with LRF. We set
Xb to be the observation in the first step. In this problem, setting Xb to be the ground truth
would give the best result for LRF, because in this case LRF would reduce to the Kalman
filter on the tangent space. Since in the practical case the ground truth is unknown, here we
set Xb as the observation at the first step, which is the best information we know about the
data sequence before tracking. We also tried to randomly set Xb, and this did not lead to
any observable differences. For the proposed method, the GL actions g,h were both set to be
the identity, and φ2/ω2 = 200. We performed experiments with three different noise levels,
σ2 = 0.1, 1, and 2. At each noise level we executed the whole process 20 times and computed
the mean error for the corresponding time step.

The results are summarized in Figure 2. From the figure, we can see that LRF performs
better when σ2 = 0.1, and our method (IRF) performs better when the data is more noisy
(σ2 = 1, 2). The reason is that LRF uses several Log-Euclidean operations, which is in fact an
approximation. For low noise level data, the data points are in a relatively small region around
the ground truth (identity), in which case the Log-Euclidean approximation is quite accurate.
But for higher noise levels in the data, the region becomes larger and the approximation
becomes inaccurate, which leads to large estimation errors. In contrast, our filtering method
is fully based on the Riemannian geometry without any Log-Euclidean approximation, so it
performs consistently and correctly converges for all three noise levels. In conclusion, although
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our recursive filter might converge a little bit slower than LRF, it is more robust to larger
amounts of noise, which is common in real tracking situations.

In the synthetic experiments, IRF takes on average 0.86 seconds for each sequence (1000
samples), which is slower than LRF (0.52 seconds per sequence). This is not significant, since,
in the video tracking program, the most time consuming part is the likelihood computation,
which usually takes 10 to 100 times more than the state update time.

Table 1
Tracking result for the real data experiment.

Seq. Obj. Start End Err(IRF) Err(LRF) Err(KM)
C3ps1 1 200 700 4.3213 10.8467 10.7666
C3ps1 7 200 700 4.1998 7.3524 4.7929
C3ps1 8 200 700 2.6258 5.5844 6.2928
C3ps2 7 500 800 2.7605 10.6478 12.4289
C3ps2 8 500 800 3.4451 7.2113 11.6432
Cosow2 1 500 900 3.7612 4.613 6.0196
Cosow2 3 500 900 4.9871 5.8552 7.9788

4.2. Real data experiments. For the real data experiment, we applied our IRF to more
than 3000 frames in different video sequences. Two other covariance descriptor updating
methods were also applied to these sequences for comparison, namely, (1) the LRF reported
in [36] and (2) the updating method using the Karcher mean (KM) of tracking results in pre-
vious frames reported in [26]. The image feature vectors for the target region were computed
as reported in [26]. The buffer size T in the KM method were set to 20, which means the KM
of covariance descriptors in 20 previous frames were used for the prediction of the covariance
descriptor in the current frame. The parameters for LRF were set to values given in [36].
The parameters controlling the state transition and observation noise in our IRF are set to
ω2 = 0.0001 and φ2 = 0.01. Since our IRF is combined with a particle filter as a position
tracker, for the purpose of comparisons, the KM and LRF are also combined with exactly the
same particle filter–based position tracker.

First, we used three video sequences from the dataset CAVIAR [4]: 1. ThreePast-
Shop1cor(C3ps1); 2. ThreePastShop2cor(C3ps2); 3. OneShopOneWait2cor(Cosow2). All
three sequences are from a fixed camera and a frame size of 384 × 288. Seven “objects” were
tracked separately. The given ground truth was used to quantitatively evaluate the tracking
results. To measure the error for the tracking results, we used the distance between the cen-
ter of the estimated region and the ground truth. With all three methods having the same
initialization, the tracking results are shown in the Table 1, where all the errors shown are
the average errors over all the tracked frames. From the table we can see that LRF is more
accurate than KM-based methods in most of the results, and our IRF outperforms both these
methods. The KM drifts away from the target, because it is based on a sliding window ap-
proach. If the number of consecutive noisy frames is close to the window size, the tracker will
tend to track the noisy features. For LRF, since it is a nonintrinsic approach, the approxi-
mation of the GL-invariant metric would introduce errors that accumulate over time across
the frames, causing it to drift away. Since IRF is an intrinsic recursive filter, which uses the
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Figure 3. Head tracking result for video sequences with a moving camera. The top and bottom
rows depict snapshots and quantitative evaluations of the results from the Seq mb and Seq sb, respectively
(http://www.ces.clemson.edu/∼stb/research/headtracker/seq/). The tracking error is measured by the distance
between the estimated object center and the ground truth. Tracking results from the three methods are shown
by using different colored boxes superposed on the images and different colored lines in the plots. Results from
our method (IRF) are in black, LRF in dark grey, and KM in white (box) or light grey (error curve).

GL-invariant metric, there is less error introduced in the covariance tracker updates. This in
turn leads to higher accuracy in the experiments above.

In the second experiment, we performed head tracking in video sequences with a moving
camera. Two video sequences were used: (i) Seq mb sequence (tracking face) and (ii) Seq sb.
Each of the sequences has 500 frames with frame size 96×128. Both sequences are challenging
because of complex background, fast appearance changes, and occlusions. The results are
summarized in Figure 3.

In Seq mb, KM fails at frame 450 where the occlusion occurs, while LRF and IRF do not
lose track. Both KM and LRF produce relatively large errors in capturing the position of
the girl’s face after the girl turns around the first time between frames 100 to 150 due to the
complete change in appearance of the target (girl’s face). LRF produces a relatively larger
error in estimating the scale (compared to the initialization) of the face between frames 400
to 500, which can be found in the snapshots included in Figure 3. The result of our method
(IRF) has a relatively larger error at around frames 100 and 180, because at this time, the
camera is tracking the hair of the girl where no feature can be used to locate the position of
the face. However, for other frames, IRF tracks the face quite accurately.

In Seq sb both KM and LRF fail at frame 200, but IRF, however, successfully tracks the
whole sequence with relatively high accuracy even with fast appearance changes and occlu-
sions, as shown in the quantitative analysis in Figure 3. These experiments thus demonstrate
the accuracy of our method in both moving camera and fixed camera cases.

http://www.ces.clemson.edu/~stb/research/headtracker/seq/
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For the speed of the tracking algorithm, since we extract features only from a window
around the target object, the resolution of the video does not really affect the tracking speed
while the size of the target object does. Here we compute the average processing time per
frame for all sequences. IRF on average takes 0.027 seconds to process each frame, which
is faster than KM (0.035 seconds), and LRF is the fastest of all three methods, which takes
0.0067 seconds. One main reason is that LRF is not a particle filter, so it needs much less
time in computing the likelihood. The state update takes only 0.0012 seconds in IRF. Also,
IRF is still a real time filter (on average more than 30 fps) and yields more accurate results,
especially in high noise cases.

5. Discussion and conclusion. In this paper, we presented a novel intrinsic recursive filter
(IRF) for covariance tracking, which proved to be more robust to noise than existing methods
reported in the literature. IRF is based on the intrinsic geometry of the space of covariance
matrices and a GL-invariant metric that are used in developing the dynamic model and the
recursive filter.

We presented a generalization of the normal distribution to Pn and used it to model the
system and the observation noise in the IRF. Several properties of this distribution in Pn were
also presented in this paper, which to the best of our knowledge have never been addressed
in the literature. Note that our generalization of the normal distribution to Pn is rotationally
invariant, and the variance of the distribution is controlled by a scalar (ω2 in (2.8)) rather
than a variance control tensor, which is a more general form. One main reason for using
this specific form is that the scalar variance control parameter is GL invariant, while the
variance control tensor is not, as shown through the following simple calculation. Suppose
V ∈ TXPn is a tangent vector (which is a symmetric matrix) at point X ∈ Pn, and Σ is a
variance control tensor. The value of the density function on expX(V) would depend upon the
quadratic form vec(V)tΣ−1vec(V), where vec(·) is the vectorization operation on the matrix
argument and Σ is a second-order tensor. In practice, X would be the Karcher expectation
of the aforementioned distribution and V would be the tangent vector corresponding to the
geodesic from X to a sample point from the distribution. If we change the coordinates by
using a GL operation g, the Karcher expectation becomes gXgt, the vector becomes gVgt,
and the quadratic form becomes vec(gVgt)tΣ−1vec(gVgt). If we want to keep the value of
the density unchanged, we need to change Σ according to g, which means that Σ is not GL
invariant. However, in contrast, it is easy to show that ω2 in (2.8) is GL invariant.

Further, the IRF is quite different from the Kalman filter, which is known to be an optimal
linear filter (in a vector space) based on an additive Gaussian noise assumption. One reason
for the Kalman filter to be optimal is that it actually tracks the distribution of the object
state (posterior) based on a Bayesian tracking framework. If a filter does not track the whole
distribution, usually it would explicitly or implicitly approximate the posterior based on the
state variables it has tracked. However, the approximation error might accumulate in the
system. From a geometric point of view, the Kalman filter is highly dependent on geometric
properties of the Euclidean space. This is because the Kalman filter is based on the fact that
the convolution of two Gaussians is a Gaussian. And this property of the Gaussian stems
from the fact that the Gaussian is the limit distribution in the central limit theorem. One key
problem in extending the Kalman filter intrinsically to Pn is finding two densities pA(X; θA),
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pB(X|Y) with the following properties:

(5.1) pA(X; θ′A) =
∫
Pn

pB(X|Y)pA(Y; θ)[dY],

where θA is the parameter of density pA. pA here is usually the posterior and pB is the state
transition noise distribution. The equation above means that after the state transition the
form of the posterior remains the same. Without this property, even if the whole distribution
is tracked, the filter is implicitly approximating the true distribution after the state transition
by using the same form as the posterior from the last step, which still would lead to errors
being accumulated in the system. However, it is nontrivial to find such distributions on Pn.
In [32, 12], a central limit theorem was presented in Pn for rotationally invariant probability
measures based on the Helgason–Fourier transform [13]. However, currently the probability
measure in the limit does not have a closed form in the space domain. Thus, intrinsically
extending the Kalman filter to Pn is still an open problem. IRF instead tracks only the mode
of the distribution. It is not an optimal filter, but is intrinsic and mathematically consistent
with respect to the noise model used, unlike the LRF in [36]. We also presented a real-
time covariance tracking algorithm based on this filter which is combined with an existing
particle position tracker from the literature [2]. Finally, experiments on synthetic and real
data favourably demonstrated the accuracy of our method over rival methods.

Appendix A. Proofs of Theorem 2.1 and Corollary 2.2.

Theorem 2.1. The normalization factor Z in (2.8) is a finite constant with respect to
parameter M ∈ Pn.

To prove this theorem, we need to first prove the following lemma.

Lemma A.1.

W =

∫
Pn

exp

(
−

Tr(logX logXt

)
2ω2

)[dX] < ∞.

Proof. This lemma indicates that the normalization factor Z is constant, and hence
p(X;M, ω2) is a probability density function on Pn. To prove this lemma, we first repre-
sent X in polar coordinates {λi},R based on the eigendecomposition, X = RΛRt, where
Λ = diag(λ1, . . . , λn),RRt = In×n. From [32] we know that

(A.1) [dX] = cn

n∏
j=1

λ
−(n−1)/2
j

∏
1≤i<j≤n

|λi − λj|
n∏

i=1

dλi

λi
dR,

where dR is the invariant measure on the orthogonal group O(n) [6] with
∫
O(n) dR = 1 (since

the orthogonal group is compact, we can easily normalize the measure), cn is a constant
depending on n, and dλi is the Lebesgue measure in R. With the following change of variables,



18 GUANG CHENG AND BABA C. VEMURI

yi = log(λi), we get

W = cn

∫
Rn

exp

(
−

n∑
i=1

(
1

2ω2
y2i +

n− 1

2
yi

)) ∏
1≤i<j≤n

|exp(yi)− exp(yj)|dy(A.2)

= cn

∫
Rn

∣∣∣∣∣∣
∑
γ∈Sn

sgn(γ)exp

(
− 1

2

n∑
i=1

(y2i /ω
2 + (n− 1− 2γ(i))yi)

)∣∣∣∣∣∣ dy(A.3)

≤ cn(2πω
2)

n
2

∑
γ∈Sn

exp

(
ω2
∑n

i=1 γ(i)
2 − ω2n(n− 1)2/4

2

)
< ∞,(A.4)

where γ is an element of Sn which is the set of all permutations of 0, 1, . . . , n− 1, and sgn(γ)
denotes the signature of γ which is 1 or −1, depending on the permutation. The derivation
from (A.2) to (A.3) is based on the fact that

∏
1≤i<j≤n(exp(yi)− exp(yj)) is actually a Van-

dermonde determinant. By expansion, using the Leibniz formula and putting in the Gaussian
term, we can directly get (A.3). The inequality in (A.4) is based on the convexity of the
absolute-value function.

We are now ready to present the proof of Theorem 2.1.
Proof. Assume Z is a function of M ∀M ∈ Pn denoted by Z(M):

(A.5) Z(M) =

∫
Pn

exp

(
−

dist2(X,M

)
2ω2

)[dX].

Since the GL group action is transitive on Pn, ∀N ∈ Pn, ∃g ∈ GL(n) such that N = gMgt.
Thus,

Z(N) =

∫
Pn

exp

(
− dist2(X, gMgt)

2ω2

)
[dX] =

∫
Pn

exp

(
− dist2(g−1Xg−t,M)

2ω2

)
[dX].

Let Y = g−1Xg−t so that X = gYgt. Substituting this into the above equation we get

Z(N) =

∫
Pn

exp

(
− dist2(Y,M)

2ω2

)
[dgYgt] =

∫
Pn

exp

(
− dist2(Y,M)

2ω2

)
[dY] = Z(M).

Thus, ∀M,N ∈ Pn, Z(M) = Z(N). From (A.1) we know that Z(I) < ∞; by substitution as
in the above, we obtain the result that Z is finite and constant with respect to M.

What follows is the proof of Corollary 2.2.
Corollary 2.2. Given a set of i.i.d samples {Xi} drawn from the distribution dP (X;M, ω2),

the MLE of the parameter M is the KM of all samples.
Proof.

−log(p(X1,X2, . . . ,Xm;M, ω2)) = −
∑
i

log(p(Xi;M, ω2))

= nlogZ +

∑
i dist

2(Xi,M)

2ω2
.
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Since Z is constant with respect to M, as proved the Theorem 2.1, we have

argmax
M

p(X1,X2, . . . ,Xm;M, ω2) = argmin
M

∑
i

dist2(Xi,M)

Thus, the MLE of the parameterM of the distribution dP (X;M) equals the KM of samples.

Appendix B. Proof of Theorem 2.3.
Theorem 2.3. Parameter M is the Karcher expectation of the generalized normal distri-

bution dP (X;M, ω2).
Proof. To prove this, we need to show that dP (X;M, ω2) satisfies (2.7). Let

Ψ =

∫
Pn

log(M−1/2XM−1/2)dP (X;M, ω2);

then in the integral, using a change of variables, X to Y = MX−1M (X = MY−1M). Since
Pn is a symmetric space and the metric/measure is GL invariant, we know that [dX] = [dY],
and dist(X,M) = dist(Y,M). Thus we have

Ψ =

∫
Pn

log(M−1/2XM−1/2)
1

Z
exp

(
− dist2(X,M)

2ω2

)
[dX]

=

∫
Pn

log(M1/2Y−1M1/2)
1

Z
exp

(
− dist2(Y,M)

2ω2

)
[dY] = −Ψ = 0.

Since Pn has nonpositive curvature, the solution of (2.5) is unique [14]. Thus M is the Karcher
expectation of dP (X;M, ω2).

Appendix C. Proof of Theorem 2.4.
Theorem 2.4.

lim
ω→0

V ar(X)

ω2
=

n(n+ 1)

2
.

Proof. Let

(C.1) v(y, ω) =
∑
γ∈Sn

sgn(γ)exp

(
− 1

2

n∑
i=1

(y2i + ω(n− 1− 2γ(i))yi)

)
,

where γ, Sn, and sgn(γ) are related to the permutation of 0, 1, . . . , n− 1, which is defined to

be the same as in (A.3). Also we can find that q(y) = |v(y,ω)|
z(ω) and z(ω) =

∫
Rn |v(y, ω)|dy.

The Taylor expansion of v(y, ω) up to n(n−1)
2 th order with respect to ω around zero is

v(y, ω) =
∑
γ∈Sn

sgn(γ)

n(n−1)
2∑

k=0

(−ω)k

k!
exp

(
−
∑n

i=1 y
2
i

2

)( n∑
i=1

(
n− 1

2
− γ(i)

)
yi

)k

+O(ω
n2−n+2

2 )

= C(−ω)
n(n−1)

2 exp

(
−
∑n

i=1 y
2
i

2

) ∏
1≤i<j≤n

(yi − yj) +O(ω
n2−n+2

2 ),

(C.2)
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where C is a constant. Equation (C.2) used the fact that given n nonnegative integers κi and∑n
i=1 κi ≤ n(n−1)

2 ,

(C.3)
∑
γ

sgn(γ)
n∏

i=1

γ(i)κi = 0 if {κi} /∈ Sn.

So, in the Taylor expansion all the terms with degree less than n(n−1)
2 are zeros. In the

n(n−1)
2 th order terms, only terms with powers in Sn will be nonzero.

Let the density q̂(y) = 1
ẑ exp(−

∑n
i=1 y

2
i

2 )
∏

1≤i<j≤n |yi − yj|, which is exactly the joint dis-
tribution of the eigenvalues of a Gaussian orthogonal ensemble [20], which is a symmetric
random matrix with each of its elements being independent random variables drawn from a
zero mean Gaussian. In this case, the variance of the diagonal elements in the random matrix
is 1 and that of the off diagonal elements is 1

2 . Recall that we are now in polar coordinates.
By transforming q̂ to the Cartesian coordinates of the space of symmetric matrices we get

V arq̂(y) =
1

ẑ

∫
Rn

ytyq̂(y)dy

= (2π)−
n(n−1)

4

∫
V∈Sym(n)

tr(V2)exp

(
− tr(V2)

2

)
dV =

n(n+ 1)

2
,

(C.4)

where Sym(n) is the space of n× n symmetric matrices, and dV is the Lebesgue measure in
Sym(n).

From above we know that

(C.5) lim
ω→0

V ar(X)

ω2
= lim

ω→0
V arq(y) = V arq̂(y) =

n(n+ 1)

2
.

Appendix D. Proof of Theorem 2.5.
Theorem 2.5.

lim
ω→∞

V ar(X)

ω4
=

(n3 − n)

12
.

Proof. We first define the upper bound and lower bound on q(y):

qu(y) =
1

zu(ω)

∑
γ

exp

(
−1

2

n∑
i=1

(y2i + ω(n− 1− 2γ(i))yi)

)
,

qι(y) =
1

zι(ω)
exp

(
−1

2

∑
i

y2i

) ∏
1≤i<j≤n

2

(
cosh

(
ω(yi − yj)

2

)
− 1

)(D.1)

with zu and zι being the normalization factors, respectively. Note that both qu and qι are
Gaussian mixtures. In qu all mixing weights are positive, while in qι there are negative weights.
After expansion we have

qι(y) =
1

zι(ω)

∑
β∈Bn

wβexp

(
−1

2

n∑
i=1

(yi + ω(n− 1− 2β(i))/2)2

)
,

wβ = αβexp

(
ω2
∑n

i=1 β(i)
2 − ω2(n(n− 1)2/4)

2

)
,

(D.2)



TRACKING ON THE MANIFOLD OF COVARIANCE 21

where Bn is the set of all possible power combinations of polynomial

(D.3)
∑
β∈Bn

αβ

n∏
i=1

x
β(i)
i =

∏
1≤i<j≤n

(xi + xj − 2
√
xixj)

and αβ are the coefficients. We can prove that

(D.4) max
β∈Bn

n∑
i=1

β(i)2 =

n∑
i=1

γ(i)2 =
(2n − 1)(n2 − n)

6
.

The maximum can be achieved only at β ∈ Sn, and αβ = 1 ∀β ∈ Sn.

From the definition we can compute the normalization constants and the variances of qι
and qu in a closed form:

zu = (2π)n/2
∑
γ

exp

(
ω2
∑n

i=1 γ(i)
2 − ω2n(n− 1)2/4

2

)

= (2π)n/2n!exp

(
ω2n(n2 − 1)

24

)
,

zι = (2π)n/2
∑
β∈Bn

αβexp

(
ω2
∑n

i=1 β(i)
2 − ω2n(n− 1)2/4

2

)

= zu + (2π)n/2
∑

β∈Bn\Sn

αβexp

(
ω2
∑n

i=1 β(i)
2 − ω2n(n− 1)2/4

2

)
,

V arqu(y) = n+
n3 − n

12
ω2,

V arqι(y) = n− n(n− 1)2

4
ω2

+
(2π)n/2

zι
ω2
∑
β∈Bn

exp

(
ω2
∑n

i=1 β(i)
2 − ω2n(n− 1)2/4

2

)( n∑
i=1

β(i)2

)
.

(D.5)

Since 0 ≤ cosh(x) − 1 ≤ |sinh(x)| and |∑i xi| ≤
∑

i |xi|, we have ∀y ∈ Rn, zιqι(y) ≤
zq(y) < zuqu(y) and also zι ≤ z < zu. We can then get the following bounds for V arq(y):

(D.6)
zι
zu

V arqι(y) ≤ V arq(y) ≤ zu
zι
V arqu(y).

From (D.5) we can show that

(D.7) lim
ω→∞

zι
zu

= lim
ω→∞

⎛
⎝1 +

∑
β∈Bn\Sn

αβexp

(
ω2

2

(
n∑

i=1

β(i)2 − (2n− 1)(n2 − n)

6

))⎞
⎠ = 1,
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because ∀β ∈ Bn \ Sn,
∑

i β(i)
2 < (2n−1)(n2−n)

6 . Similarly,

lim
ω→∞

V arqι(y)

ω2
= −n(n− 1)2

4

+ lim
ω→∞

∑
β∈Bn

αβexp

(
ω2

2

(
n∑

i=1

β(i)2 − (2n − 1)(n2 − n)

6

))(
n∑

i=1

β(i)2

)

=
n3 − n

12
= lim

ω→∞
V arqu(y)

ω2
= lim

ω→∞
V arq(y)

ω2
= lim

ω→∞
V ar(X)

ω4
.

(D.8)

Appendix E. Proof of Theorem 3.1.
Theorem 3.1. The energy function Ek in (3.4) is geodesically convex on the Riemannian

manifold Pn × Pn, where × denotes the Cartesian product.
Proof. Recall that Ek in (3.4) is a sum of squared distance function with positive weights.

Here the strategy is to prove that each item inside the sum is geodesically convex.
It is known that ∀C ∈ Pn, function dC(X) = dist(X,C) is geodesically convex [22]. Also,

it is known that if γ, β : [0, 1] �→ Pn are two geodesics on Pn, then α(t) = (γ(t), β(t)) is a
geodesic on Pn × Pn [40]. Combining these two facts with the nonnegativity of the distance
function, we can see that in Pn×Pn, the function fC((X1,X2)) = dist(X1,C)2 is geodesically
convex.

Now we want to prove that the function g((X1,X2)) = dist(X1,X2)
2 is geodesically

convex. As shown in [3], for any two geodesics γ1, γ2 : [0, 1] �→ Pn,

(E.1) dist

(
γ1

(
1

2

)
, γ2

(
1

2

))
≤ 1

2
dist(γ1(0), γ2(0)) +

1

2
dist(γ1(1), γ2(1)).

With the definition of the geodesic convexity, we can see that
√

(g) and g are both geodesically
convex.

Since the distance function is GL invariant, Ek can be written as a weighted sum of f and
g with positive weights, and then we know that Ek is also geodesically convex.
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