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Abstract. This work deals with Bhattacharyya mean, Bhattacharyya
and Riemannian medians on the space of symmetric positive-definite
matrices. A comparison between these averaging methods is given in two
different areas which are mean (median) filtering to denoise a set of High
Angular Resolution Diffusion Images (HARDI) and clustering data. For
the second application, we will compare the efficiency of the Wishart
classifier algorithm using the aforementioned averaging methods and the
Bhattacharyya classifier algorithm.

1 Introduction

In recent years, need for the filtering and clustering positive-definite matrix data
sets has increased considerably in various applications such as elasticity [13],
radar signal processing [1,11], medical imaging [7,3,6,15] and image processing
[12]. In these data processing tasks the concept of the average (mean or the
median) of a set of positive-definite matrices plays a central role. The mean of a
set of symmetric positive-definite (SPD) matrices is the minimizer of the sum of
the squared distances between the mean and the members of the set while the
median is the minimizer of the sum of the distances between the median and
the elements of the set. Depending on the definition of the distance, one gets
different kinds of means and medians. In Fletcher et al. [8], the authors defined
the Riemannian median as the minimizer of the sum of the geodesic distances
from the unknown median to every member of the set whose median is being
sought. They proved existence and uniqueness of the Riemannian median and
they conjecture that their proposed gradient descent algorithm is convergent for
symmetric positive-definite matrices. They presented applications to show the
robustness of the Riemannian median filtering compared to the Fréchet mean
filtering. In [4], the authors defined the Bhattacharyya median and compared
it to the Riemannian median in order to denoise a set of Diffusion Weighted
Images (DWI).

In the present paper, we prove the existence and uniqueness of the Bhat-
tacharyya median recently used in [4]. Then, we compare it with the Rieman-
nian median and Bhattacharyya mean using the concept of median and mean
filtering of a noisy synthetic HARDI data set. We also compare the use of these
different averaging methods for clustering synthetic polarimetric SAR data.
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2 Preliminaries

In this section, we review some background material and introduce the nota-
tions that will be used throughout this paper. Let M(n,R) be the set of n× n
real matrices and S(n) its subspace of symmetric matrices, i.e., S(n) = {A ∈
M(n,R),AT = A}, where the superscript T is the transpose operator. Let
P(n) = {A ∈ S(n),A > 0} be the set of all n × n SPD matrices where A > 0
is equivalent to xTAx > 0 for any x �= 0. The Frobenius norm of a matrix

X ∈ M(n,R) is defined by ‖X‖F =
√
trace(XXT ).

It should be noted that the differentiable manifold P(n) can be given a metric
structure using several distances. In the sequel, we will use the following two
distances on P(n):

1. The Riemannian distance:

dR(X ,Y ) := ‖LogX (Y )‖F , (1)

where LogX (Y ) = X
1
2 Log(X− 1

2Y X− 1
2 )X

1
2 is the log map on the mani-

fold P(n).
2. The Bhattacharyya distance (also called log-determinant 0-distance) recently

defined in [5]:

dB(X ,Y ) := 2

√
log

det 1
2 (X + Y )√

det (X) det (Y )
. (2)

We recall that the weighted median is defined as:

med(P 1, . . . ,PN ) = argminX∈P(n)

N∑
k=1

ωkd(P k,X),

where d(·, ·) is the chosen distance, P 1, . . . ,PN , are the given SPD matrices

and ω1, . . . , ωN with
∑N

i=1 ωi = 1 are the corresponding positive real weights.
Similarly, the weighted mean is defined as:

mean(P 1, . . . ,PN ) = argminX∈P(n)

N∑
k=1

ωkd(P k,X)2.

3 Bhattacharyya Mean and Median

In [5], the authors introduced the concept of Bhattacharyya mean (BhMean) of
a set of SPD matrices. That is, if P 1, . . . ,PN is a set of symmetric positive-
definite matrices and ωi, i = 1, . . . , N a set of real weights that sum to 1, the
Bhattacharyya mean of P 1, . . . ,PN is the unique SPD matrix P satisfying:

N∑
i=1

ωi

(
1

2
P i +

1

2
P

)−1

= P−1. (3)
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The existence and uniqueness of equation (3) were discussed in [5] and its nu-
merical solution can be computed using the following fixed-point algorithm:

Alg. 1: Fixed-point algorithm
Start with an initial guess X0

Repeat for p = 0, 1, . . .
Fixed-point iterations Xp+1 = g(Xp)

Until stopping criterion is satisfied ‖Xp+1 −Xp‖ < ε

where g(X) :=

(∑N
i=1 ωi

(
P i+X

2

)−1
)−1

. Similarly, we can get the following

result for the Bhattacharyya median (BhMedian):

Proposition 3.1. The weighted Bhattacharyya median of N symmetric positive-
definite matrices P 1, . . . ,PN with weights ω1, . . . , ωN is the unique symmetric
positive-definite matrix X solution of the following equation:

N∑
i=1

ωi

dB(P i,X)

(
P i +X

2

)−1

=

N∑
i=1

ωi

dB(P i,X)
X−1.

Proof. For all Y in S(n) we have [5]:

d

dt
dB(P i,X + tY )|t=0 =

trace

((
P i+X

2

)−1

Y −X−1Y

)

dB(P i,X)
.

Thus, the gradient of f(X) =
∑N

i=1 ωidB(P i,X) at X is given by

∇f(X) =
N∑
i=1

ωi

dB(P i,X)

((
P i +X

2

)−1

−X−1

)
. (4)

The equation ∇f(X) = 0 has a unique solution X on the space of symmetric
positive-definite matrices. In fact, this equation is equivalent to

X = F (X) :=

N∑
i=1

ωi

dB(P i,X)

(
N∑
i=1

ωi

dB(P i,X)

(
Pi +X

2

)−1
)−1

. (5)

Analogously to the Bhattacharyya mean [5], one can prove that in (P(n), dT ), F
defines a contraction mapping, where dT is the Thompson’s metric defined for
two matrices A,B ∈ P(n) by [14]

dT (A,B) = max{logM(A,B), logM(B,A)},
where M(A,B) = inf{λ > 0,A ≤ λB} = λmax(B

−1A).

Numerical solution can be found using a fixed-point algorithm like the Bhat-
tacharyya mean (Alg. 1).
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4 Riemannian Median

The weighted median of a set of SPD matrices, P 1, . . . ,PN , with respect to the
Riemannian distance (1) (RiMedian), is defined as the unique SPD matrix X,
solution of the following equation [8]:

N∑
i=1

ωi

dR(P i,X)
LogX P i = 0. (6)

In [8], the authors conjectured that the following gradient descent algorithm is
convergent for α = 1 in the case of symmetric positive-definite matrices:

Alg. 2: Gradient-descent algorithm
Start with an initial guess X0

Repeat for p = 0, 1, . . .
Determine a descent direction Dp := −∇f(Xp)
Choose a step αp > 0
Update Xp+1 := Xp + αpDp

Until stopping criterion is satisfied ‖Dp‖ < ε

where f(X) =
∑N

i=1 ωidR(P i,X). Extensive numerical experiments show that
for 0 < α ≤ 1, the above algorithm generally converges. However, to ensure
convergence, one should decrease α as the matrix dimension increases. In the
table below, we compare the number of iterations and the CPU time needed by
each of the following methods: Bhattacharyya mean / median and Riemannian
median (for α equals 1 and 0.5) using different matrix dimensions.

Table 1. Comparison of the number of iterations (Niter) and the CPU time (T in
seconds) between different algorithms and different matrix dimensions (n = 3, 4, 6 and
10) for a set of 200 SPD matrices

n = 3 n = 4 n = 6 n = 10
Niter T Niter T Niter T Niter T

RiMedian α = 1 12 9.1886 41 14.7577 83 65.9260 - diverges

RiMedian α = .5 10 22.3705 13 32.1986 19 50.2635 24 100.6673

BhMedian 37 13.9465 42 14.8201 47 17.1913 60 194065

BhMean 63 0.3120 73 0.4056 86 0.5772 107 0.8736

5 Application of Smoothing Magnetic Resonance Imaging
Data

We apply the different algorithms described above to denoise a set of Magnetic
Resonance Imaging (MRI) data. Experiments were performed using synthetic
DW-MRI dataset. We use an image region of size 32 × 32 [2] of fourth-order
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Original data Noisy data σ = 0.1 Noisy data σ = 0.2

RiMedian (σ = 0.1) BhMedian(σ = 0.1) BhMean(σ = 0.1)

RiMedian (σ = 0.2) BhMedian(σ = 0.2) BhMean(σ = 0.2)

Fig. 1. Comparison of the robustness of the different median (mean) filtering methods

diffusion tensors as presented in Fig. 1. Then, we add to it various levels of
Rician noise [2] of standard deviation σ = 0.1, 0.2 and 0.5.

To denoise this data, we assign to each voxel (i, j) the median (or the mean)
of a window W centered at the voxel (i, j) of square shape whose sides are an
odd number of pixels, e.g., (3 × 3). Fig. 1 shows the results of denoising our
data (for Rician noise of σ = 0.1, 0.2) using the different methods presented
above. Each tensor is colored according to the orientation of maximum value.
The orientation components X , Y and Z are assigned to the color components
R, G and B, respectively. In Table 2 we give the error over the whole image. The
error is calculated as the sum of the differences between the norm of the initial
data and the norm of the denoised data.

Table 2. Error values of the different filtering algorithms

Error σ = 0.1 σ = 0.2 σ = 0.5

Original data 0 0 0

Noisy data 0.7091 1.0898 1.2782

Riemannian median 0.5474 0.8780 1.0403

Bhattacharyya median 0.5477 0.8849 1.0582

Bhattacharyya mean 0.5498 0.8627 1.0350
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We remark that the three filtering algorithms are close in terms of robustness
but taking into account the CPU time, the Bhattacharyya mean algorithm is
preferred.

6 Application to Data Classification

Another area of application of symmetric positive-definite matrix averaging is
the clustering polarimetric SAR data [9]. For polarimetric non Gaussian model
[16], the data in each pixel is a compound Gaussian vector defined as the product
of a positive scalar random variable τ (generally chosen as Gamma distributed)
and complex Gaussian vector x. Then, the polarimetric data in each pixel follows
a K distribution with parameters τ and C, where C is the covariance matrix of
x. Gini et al. [10], derived the Maximum Likelihood estimate of the covariance
matrix, which enables the parametrization of the polarimetric data in each pixel
as a Hermitian positive definite matrix.

In the literature, the well known classification model for polarimetric SAR
data is the Wishart classifier which is described by:

Alg. 3: The Wishart classifier algorithm
1. Start with an initial classification of the image.
2. Compute the class centers Hi as the mean (or median) of the class elements.
3. Reassign the pixels to the corresponding class that minimizes the Wishart

distance measure defined by dW (C,Hi) = log det(Hi) + trace(Hi
−1C).

4. Repeat steps 2-3 until a stopping criterion is met.

To compare the efficiency of the three averaging methods, we constructed a
simulated image (Fig. 2 (a)) as in [9]. The image is divided into four equal quad-
rants A1, . . . , A4. Each Ai, i = 1, . . . , 4 is also divided in four small quadrants
Aij , j = 1, . . . , 4. Polarimetric information in each pixel of the region Aij is
randomly chosen following the K distribution [9].

Fig. 2. In (a) we present the shape of a constructed image as in [9], while in (b)
we show the initialization clusters for both the Wishart and Bhattacharyya classifier
algorithms
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After only three iterations of the Wishart classifier algorithm we obtain the
results shown in Fig. 3. One can easily note the robustness of the classification
based on the Bhattacharyya mean when compared with the classification based
on the two other averaging methods.

Fig. 3. Results of Wishart classifier algorithm for Riemannian median, Bhattacharyya
median and Bhattacharyya mean, respectively

Now, we replace the Wishart distance by the Bhattacharyya distance in the
Wishart classifier algorithm. This new algorithm will be called Bhattacharyya
classifier algorithm. We apply this new classifier algorithm to the same data used
before. After three iterations, we obtain the results shown in Fig. 4.

Fig. 4. Results of Bhattacharyya classifier algorithm for the Riemannian median, Bhat-
tacharyya median and Bhattacharyya mean, respectively

We can easily notice that the classification results have been clearly improved
by using the Bhattacharyya distance instead of the Wishart distance.

7 Conclusion

In this work, we have compared three averaging methods which are the Rie-
mannian median, Bhattacharyya median and Bhattacharyya mean. The results
showed that these methods when used for smoothing DW-MRI data are equiva-
lent in terms of robustness but the difference appears in terms of computational
time which leads us to prefer the Bhattacharyya mean algorithm. On the other
hand, it is clear based on the clustering results that the Wishart classifier and
its modified version are much more robust when using the Bhattacharyya mean.
In forthcoming works, we will try to apply these results to real data. We believe
that the Bhattacharyya classifier algorithm will give good results for real data.
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